Paper 1, Section I

7E Statistics

Suppose X_1, \ldots, X_n are independent $N(0, \sigma^2)$ random variables, where σ^2 is an unknown parameter. Explain carefully how to construct the uniformly most powerful test of size α for the hypothesis $H_0: \sigma^2 = 1$ versus the alternative $H_1: \sigma^2 > 1$.

Paper 2, Section I

8E Statistics

A washing powder manufacturer wants to determine the effectiveness of a television advertisement. Before the advertisement is shown, a pollster asks 100 randomly chosen people which of the three most popular washing powders, labelled A, B and C, they prefer. After the advertisement is shown, another 100 randomly chosen people (not the same as before) are asked the same question. The results are summarized below.

	Α	В	С
before	36	47	17
after	44	33	23

Derive and carry out an appropriate test at the 5% significance level of the hypothesis that the advertisement has had no effect on people's preferences.

You may find the following table helpful:

Paper 1, Section II

19E Statistics

Consider the the linear regression model

 $Y_i = \beta x_i + \epsilon_i,$

where the numbers x_1, \ldots, x_n are known, the independent random variables $\epsilon_1, \ldots, \epsilon_n$ have the $N(0, \sigma^2)$ distribution, and the parameters β and σ^2 are unknown. Find the maximum likelihood estimator for β .

State and prove the Gauss–Markov theorem in the context of this model.

Write down the distribution of an arbitrary linear estimator for β . Hence show that there exists a linear, unbiased estimator $\hat{\beta}$ for β such that

$$\mathbb{E}_{\beta,\sigma^2}[(\widehat{\beta}-\beta)^4] \leqslant \mathbb{E}_{\beta,\sigma^2}[(\widetilde{\beta}-\beta)^4]$$

for all linear, unbiased estimators β .

[Hint: If $Z \sim N(a, b^2)$ then $\mathbb{E}\left[(Z - a)^4\right] = 3 b^4$.]

Paper 3, Section II 20E Statistics

Let X_1, \ldots, X_n be independent $\text{Exp}(\theta)$ random variables with unknown parameter θ . Find the maximum likelihood estimator $\hat{\theta}$ of θ , and state the distribution of $n/\hat{\theta}$. Show that $\theta/\hat{\theta}$ has the $\Gamma(n,n)$ distribution. Find the $100 (1-\alpha)\%$ confidence interval for θ of the form $[0, C \hat{\theta}]$ for a constant C > 0 depending on α .

Now, taking a Bayesian point of view, suppose your prior distribution for the parameter θ is $\Gamma(k, \lambda)$. Show that your Bayesian point estimator $\hat{\theta}_B$ of θ for the loss function $L(\theta, a) = (\theta - a)^2$ is given by

$$\hat{\theta}_B = \frac{n+k}{\lambda + \sum_i X_i} \,.$$

Find a constant $C_B > 0$ depending on α such that the posterior probability that $\theta \leq C_B \hat{\theta}_B$ is equal to $1 - \alpha$.

[The density of the $\Gamma(k,\lambda)$ distribution is $f(x; k,\lambda) = \lambda^k x^{k-1} e^{-\lambda x} / \Gamma(k)$, for x > 0.]

Paper 4, Section II

19E Statistics

Consider a collection X_1, \ldots, X_n of independent random variables with common density function $f(x; \theta)$ depending on a real parameter θ . What does it mean to say T is a sufficient statistic for θ ? Prove that if the joint density of X_1, \ldots, X_n satisfies the factorisation criterion for a statistic T, then T is sufficient for θ .

Let each X_i be uniformly distributed on $[-\sqrt{\theta}, \sqrt{\theta}]$. Find a two-dimensional sufficient statistic $T = (T_1, T_2)$. Using the fact that $\hat{\theta} = 3X_1^2$ is an unbiased estimator of θ , or otherwise, find an unbiased estimator of θ which is a function of T and has smaller variance than $\hat{\theta}$. Clearly state any results you use.