Paper 1, Section I

7E Statistics

Suppose X_{1}, \ldots, X_{n} are independent $N\left(0, \sigma^{2}\right)$ random variables, where σ^{2} is an unknown parameter. Explain carefully how to construct the uniformly most powerful test of size α for the hypothesis $H_{0}: \sigma^{2}=1$ versus the alternative $H_{1}: \sigma^{2}>1$.

Paper 2, Section I

8E Statistics

A washing powder manufacturer wants to determine the effectiveness of a television advertisement. Before the advertisement is shown, a pollster asks 100 randomly chosen people which of the three most popular washing powders, labelled A, B and C, they prefer. After the advertisement is shown, another 100 randomly chosen people (not the same as before) are asked the same question. The results are summarized below.

	A	B	C
before	36	47	17
after	44	33	23

Derive and carry out an appropriate test at the 5% significance level of the hypothesis that the advertisement has had no effect on people's preferences.
[You may find the following table helpful:

	χ_{1}^{2}	χ_{2}^{2}	χ_{3}^{2}	χ_{4}^{2}	χ_{5}^{2}	χ_{6}^{2}	
95 percentile	3.84	5.99	7.82	9.49	11.07	12.59	.

Paper 1, Section II

19E Statistics

Consider the the linear regression model

$$
Y_{i}=\beta x_{i}+\epsilon_{i}
$$

where the numbers x_{1}, \ldots, x_{n} are known, the independent random variables $\epsilon_{1}, \ldots, \epsilon_{n}$ have the $N\left(0, \sigma^{2}\right)$ distribution, and the parameters β and σ^{2} are unknown. Find the maximum likelihood estimator for β.

State and prove the Gauss-Markov theorem in the context of this model.
Write down the distribution of an arbitrary linear estimator for β. Hence show that there exists a linear, unbiased estimator $\widehat{\beta}$ for β such that

$$
\mathbb{E}_{\beta, \sigma^{2}}\left[(\widehat{\beta}-\beta)^{4}\right] \leqslant \mathbb{E}_{\beta, \sigma^{2}}\left[(\widetilde{\beta}-\beta)^{4}\right]
$$

for all linear, unbiased estimators $\widetilde{\beta}$.
[Hint: If $Z \sim N\left(a, b^{2}\right)$ then $\mathbb{E}\left[(Z-a)^{4}\right]=3 b^{4}$.]

Paper 3, Section II

20E Statistics

Let X_{1}, \ldots, X_{n} be independent $\operatorname{Exp}(\theta)$ random variables with unknown parameter θ. Find the maximum likelihood estimator $\hat{\theta}$ of θ, and state the distribution of $n / \hat{\theta}$. Show that $\theta / \hat{\theta}$ has the $\Gamma(n, n)$ distribution. Find the $100(1-\alpha) \%$ confidence interval for θ of the form $[0, C \hat{\theta}]$ for a constant $C>0$ depending on α.

Now, taking a Bayesian point of view, suppose your prior distribution for the parameter θ is $\Gamma(k, \lambda)$. Show that your Bayesian point estimator $\hat{\theta}_{B}$ of θ for the loss function $L(\theta, a)=(\theta-a)^{2}$ is given by

$$
\hat{\theta}_{B}=\frac{n+k}{\lambda+\sum_{i} X_{i}}
$$

Find a constant $C_{B}>0$ depending on α such that the posterior probability that $\theta \leqslant C_{B} \hat{\theta}_{B}$ is equal to $1-\alpha$.
[The density of the $\Gamma(k, \lambda)$ distribution is $f(x ; k, \lambda)=\lambda^{k} x^{k-1} e^{-\lambda x} / \Gamma(k)$, for $x>0$.]

Paper 4, Section II

19E Statistics

Consider a collection X_{1}, \ldots, X_{n} of independent random variables with common density function $f(x ; \theta)$ depending on a real parameter θ. What does it mean to say T is a sufficient statistic for θ ? Prove that if the joint density of X_{1}, \ldots, X_{n} satisfies the factorisation criterion for a statistic T, then T is sufficient for θ.

Let each X_{i} be uniformly distributed on $[-\sqrt{\theta}, \sqrt{\theta}]$. Find a two-dimensional sufficient statistic $T=\left(T_{1}, T_{2}\right)$. Using the fact that $\hat{\theta}=3 X_{1}^{2}$ is an unbiased estimator of θ, or otherwise, find an unbiased estimator of θ which is a function of T and has smaller variance than $\hat{\theta}$. Clearly state any results you use.

