1/I/7H Statistics

A Bayesian statistician observes a random sample X_1, \ldots, X_n drawn from a $N(\mu, \tau^{-1})$ distribution. He has a prior density for the unknown parameters μ , τ of the form

$$\pi_0(\mu, \tau) \propto \tau^{\alpha_0 - 1} \exp\left(-\frac{1}{2} K_0 \tau (\mu - \mu_0)^2 - \beta_0 \tau\right) \sqrt{\tau},$$

where α_0 , β_0 , μ_0 and K_0 are constants which he chooses. Show that after observing X_1, \ldots, X_n his posterior density $\pi_n(\mu, \tau)$ is again of the form

$$\pi_n(\mu,\tau) \propto \tau^{\alpha_n-1} \exp\left(-\frac{1}{2} K_n \tau \left(\mu-\mu_n\right)^2 - \beta_n \tau\right) \sqrt{\tau} \,,$$

where you should find explicitly the form of α_n , β_n , μ_n and K_n .

1/II/18H Statistics

Suppose that X_1, \ldots, X_n is a sample of size *n* with common $N(\mu_X, 1)$ distribution, and Y_1, \ldots, Y_n is an independent sample of size *n* from a $N(\mu_Y, 1)$ distribution.

- (i) Find (with careful justification) the form of the size- α likelihood-ratio test of the null hypothesis $H_0: \mu_Y = 0$ against alternative $H_1: (\mu_X, \mu_Y)$ unrestricted.
- (ii) Find the form of the size- α likelihood-ratio test of the hypothesis

$$H_0: \mu_X \geqslant A, \mu_Y = 0,$$

against $H_1: (\mu_X, \mu_Y)$ unrestricted, where A is a given constant.

Compare the critical regions you obtain in (i) and (ii) and comment briefly.

Part IB 2008

2/II/19H Statistics

Suppose that the joint distribution of random variables X, Y taking values in $\mathbb{Z}^+ = \{0, 1, 2, ...\}$ is given by the joint probability generating function

$$\varphi(s,t)\,\equiv\,E\left[s^Xt^Y\right]\,=\,\frac{1-\alpha-\beta}{1-\alpha s-\beta t}\,,$$

where the unknown parameters α and β are positive, and satisfy the inequality $\alpha + \beta < 1$. Find E(X). Prove that the probability mass function of (X, Y) is

$$f(x, y \mid \alpha, \beta) = (1 - \alpha - \beta) \binom{x + y}{x} \alpha^{x} \beta^{y} \qquad (x, y \in \mathbb{Z}^{+}),$$

and prove that the maximum-likelihood estimators of α and β based on a sample of size n drawn from the distribution are

$$\hat{\alpha} = \frac{\overline{X}}{1 + \overline{X} + \overline{Y}}, \qquad \hat{\beta} = \frac{\overline{Y}}{1 + \overline{X} + \overline{Y}},$$

where \overline{X} (respectively, \overline{Y}) is the sample mean of X_1, \ldots, X_n (respectively, Y_1, \ldots, Y_n).

By considering $\hat{\alpha} + \hat{\beta}$ or otherwise, prove that the maximum-likelihood estimator is biased. Stating clearly any results to which you appeal, prove that as $n \to \infty$, $\hat{\alpha} \to \alpha$, making clear the sense in which this convergence happens.

3/I/8H Statistics

If X_1, \ldots, X_n is a sample from a density $f(\cdot | \theta)$ with θ unknown, what is a 95% confidence set for θ ?

In the case where the X_i are independent $N(\mu, \sigma^2)$ random variables with σ^2 known, μ unknown, find (in terms of σ^2) how large the size n of the sample must be in order for there to exist a 95% confidence interval for μ of length no more than some given $\varepsilon > 0$.

[*Hint:* If $Z \sim N(0, 1)$ then P(Z > 1.960) = 0.025.]

Part IB 2008

4/II/19H Statistics

(i) Consider the linear model

$$Y_i = \alpha + \beta x_i + \varepsilon_i \,,$$

where observations Y_i , i = 1, ..., n, depend on known explanatory variables x_i , i = 1, ..., n, and independent $N(0, \sigma^2)$ random variables ε_i , i = 1, ..., n.

Derive the maximum-likelihood estimators of α , β and σ^2 .

Stating clearly any results you require about the distribution of the maximum-likelihood estimators of α , β and σ^2 , explain how to construct a test of the hypothesis that $\alpha = 0$ against an unrestricted alternative.

(ii) A simple ballistic theory predicts that the range of a gun fired at angle of elevation θ should be given by the formula

$$Y = \frac{V^2}{g} \, \sin 2\theta \,,$$

where V is the muzzle velocity, and g is the gravitational acceleration. Shells are fired at 9 different elevations, and the ranges observed are as follows:

θ (degrees)	5	15	25	35	45	55	65	75	85
$\sin 2 heta$	0.1736	0.5	0.7660	0.9397	1	0.9397	0.7660	0.5	0.1736
Y (m)	4322	11898	17485	20664	21296	19491	15572	10027	3458

The model

$$Y_i = \alpha + \beta \sin 2\theta_i + \varepsilon_i \tag{(*)}$$

is proposed. Using the theory of part (i) above, find expressions for the maximumlikelihood estimators of α and β .

The *t*-test of the null hypothesis that $\alpha = 0$ against an unrestricted alternative does not reject the null hypothesis. Would you be willing to accept the model (*)? Briefly explain your answer.

[You may need the following summary statistics of the data. If $x_i = \sin 2\theta_i$, then $\bar{x} \equiv n^{-1} \sum x_i = 0.63986$, $\bar{Y} = 13802$, $S_{xx} \equiv \sum (x_i - \bar{x})^2 = 0.81517$, $S_{xy} = \sum Y_i(x_i - \bar{x}) = 17186$.]

Part IB 2008