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1/I/7C Statistics

Let X1, . . . , Xn be independent, identically distributed random variables from the
N

(
µ, σ2

)
distribution where µ and σ2 are unknown. Use the generalized likelihood-ratio

test to derive the form of a test of the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0.

Explain carefully how the test should be implemented.

1/II/18C Statistics

Let X1, . . . , Xn be independent, identically distributed random variables with

P (Xi = 1) = θ = 1− P (Xi = 0) ,

where θ is an unknown parameter, 0 < θ < 1, and n > 2. It is desired to estimate the
quantity φ = θ(1− θ) = nVar ((X1 + · · ·+Xn) /n).

(i) Find the maximum-likelihood estimate, φ̂, of φ.

(ii) Show that φ̂1 = X1 (1−X2) is an unbiased estimate of φ and hence, or otherwise,
obtain an unbiased estimate of φ which has smaller variance than φ̂1 and which is
a function of φ̂.

(iii) Now suppose that a Bayesian approach is adopted and that the prior distribution
for θ, π(θ), is taken to be the uniform distribution on (0, 1). Compute the Bayes
point estimate of φ when the loss function is L(φ, a) = (φ− a)2.

[You may use that fact that when r, s are non-negative integers,∫ 1

0

xr(1− x)sdx = r!s!/(r + s+ 1)! ]

2/II/19C Statistics

State and prove the Neyman–Pearson lemma.

Suppose that X is a random variable drawn from the probability density function

f(x | θ) = 1
2 |x |

θ−1e−|x|/Γ(θ), −∞ < x <∞ ,

where Γ(θ) =
∞∫
0

yθ−1e−ydy and θ > 1 is unknown. Find the most powerful test of size α,

0 < α < 1, of the hypothesis H0 : θ = 1 against the alternative H1 : θ = 2. Express the
power of the test as a function of α.

Is your test uniformly most powerful for testing H0 : θ = 1 against H1 : θ > 1?
Explain your answer carefully.
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3/I/8C Statistics

Light bulbs are sold in packets of 3 but some of the bulbs are defective. A sample
of 256 packets yields the following figures for the number of defectives in a packet:

No. of defectives 0 1 2 3

No. of packets 116 94 40 6

Test the hypothesis that each bulb has a constant (but unknown) probability θ of
being defective independently of all other bulbs.

[ Hint: You may wish to use some of the following percentage points:

Distribution χ2
1 χ2

2 χ2
3 χ2

4 t1 t2 t3 t4

90% percentile 2·71 4·61 6·25 7·78 3·08 1·89 1·64 1·53
95% percentile 3·84 5·99 7·81 9·49 6·31 2·92 2·35 2·13 ]

4/II/19C Statistics

Consider the linear regression model

Yi = α+ βxi + εi, 1 6 i 6 n ,

where ε1, . . . , εn are independent, identically distributed N(0, σ2), x1, . . . , xn are known
real numbers with

∑n
i=1 xi = 0 and α, β and σ2 are unknown.

(i) Find the least-squares estimates α̂ and β̂ of α and β, respectively, and explain why
in this case they are the same as the maximum-likelihood estimates.

(ii) Determine the maximum-likelihood estimate σ̂2 of σ2 and find a multiple of it which
is an unbiased estimate of σ2.

(iii) Determine the joint distribution of α̂, β̂ and σ̂2.

(iv) Explain carefully how you would test the hypothesis H0 : α = α0 against the
alternative H1 : α 6= α0.
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