1/I/7C \quad Statistics

Let X_{1}, \ldots, X_{n} be independent, identically distributed random variables from the $N\left(\mu, \sigma^{2}\right)$ distribution where μ and σ^{2} are unknown. Use the generalized likelihood-ratio test to derive the form of a test of the hypothesis $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.

Explain carefully how the test should be implemented.

1/II/18C Statistics

Let X_{1}, \ldots, X_{n} be independent, identically distributed random variables with

$$
\mathbb{P}\left(X_{i}=1\right)=\theta=1-\mathbb{P}\left(X_{i}=0\right)
$$

where θ is an unknown parameter, $0<\theta<1$, and $n \geqslant 2$. It is desired to estimate the quantity $\phi=\theta(1-\theta)=n \mathbb{V}$ ar $\left(\left(X_{1}+\cdots+X_{n}\right) / n\right)$.
(i) Find the maximum-likelihood estimate, $\hat{\phi}$, of ϕ.
(ii) Show that $\hat{\phi}_{1}=X_{1}\left(1-X_{2}\right)$ is an unbiased estimate of ϕ and hence, or otherwise, obtain an unbiased estimate of ϕ which has smaller variance than $\hat{\phi}_{1}$ and which is a function of $\hat{\phi}$.
(iii) Now suppose that a Bayesian approach is adopted and that the prior distribution for $\theta, \pi(\theta)$, is taken to be the uniform distribution on $(0,1)$. Compute the Bayes point estimate of ϕ when the loss function is $L(\phi, a)=(\phi-a)^{2}$.
[You may use that fact that when r, s are non-negative integers,

$$
\left.\int_{0}^{1} x^{r}(1-x)^{s} d x=r!s!/(r+s+1)!\quad\right]
$$

2/II/19C Statistics

State and prove the Neyman-Pearson lemma.
Suppose that X is a random variable drawn from the probability density function

$$
f(x \mid \theta)=\frac{1}{2}|x|^{\theta-1} e^{-|x|} / \Gamma(\theta), \quad-\infty<x<\infty
$$

where $\Gamma(\theta)=\int_{0}^{\infty} y^{\theta-1} e^{-y} d y$ and $\theta \geqslant 1$ is unknown. Find the most powerful test of size α, $0<\alpha<1$, of the hypothesis $H_{0}: \theta=1$ against the alternative $H_{1}: \theta=2$. Express the power of the test as a function of α.

Is your test uniformly most powerful for testing $H_{0}: \theta=1$ against $H_{1}: \theta>1$? Explain your answer carefully.

3/I/8C \quad Statistics

Light bulbs are sold in packets of 3 but some of the bulbs are defective. A sample of 256 packets yields the following figures for the number of defectives in a packet:

No. of defectives	0	1	2	3
No. of packets	116	94	40	6

Test the hypothesis that each bulb has a constant (but unknown) probability θ of being defective independently of all other bulbs.
[Hint: You may wish to use some of the following percentage points:
$\left.\begin{array}{l|cccccccc}\text { Distribution } & \chi_{1}^{2} & \chi_{2}^{2} & \chi_{3}^{2} & \chi_{4}^{2} & t_{1} & t_{2} & t_{3} & t_{4} \\ \hline 90 \% \text { percentile } & 2.71 & 4.61 & 6.25 & 7.78 & 3.08 & 1.89 & 1.64 & 1.53 \\ 95 \% \text { percentile } & 3.84 & 5.99 & 7.81 & 9.49 & 6.31 & 2.92 & 2.35 & 2 \cdot 13\end{array}\right]$

4/II/19C Statistics

Consider the linear regression model

$$
Y_{i}=\alpha+\beta x_{i}+\epsilon_{i}, \quad 1 \leqslant i \leqslant n
$$

where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent, identically distributed $N\left(0, \sigma^{2}\right), x_{1}, \ldots, x_{n}$ are known real numbers with $\sum_{i=1}^{n} x_{i}=0$ and α, β and σ^{2} are unknown.
(i) Find the least-squares estimates $\widehat{\alpha}$ and $\widehat{\beta}$ of α and β, respectively, and explain why in this case they are the same as the maximum-likelihood estimates.
(ii) Determine the maximum-likelihood estimate $\widehat{\sigma}^{2}$ of σ^{2} and find a multiple of it which is an unbiased estimate of σ^{2}.
(iii) Determine the joint distribution of $\widehat{\alpha}, \widehat{\beta}$ and $\widehat{\sigma}^{2}$.
(iv) Explain carefully how you would test the hypothesis $H_{0}: \alpha=\alpha_{0}$ against the alternative $H_{1}: \alpha \neq \alpha_{0}$.

