1/I/7C Statistics

Let X_1, \ldots, X_n be independent, identically distributed random variables from the $N(\mu, \sigma^2)$ distribution where μ and σ^2 are unknown. Use the generalized likelihood-ratio test to derive the form of a test of the hypothesis $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.

Explain carefully how the test should be implemented.

1/II/18C Statistics

Let X_1, \ldots, X_n be independent, identically distributed random variables with

$$\mathbb{P}(X_i = 1) = \theta = 1 - \mathbb{P}(X_i = 0) ,$$

where θ is an unknown parameter, $0 < \theta < 1$, and $n \ge 2$. It is desired to estimate the quantity $\phi = \theta(1 - \theta) = n \mathbb{V} \text{ar} \left((X_1 + \dots + X_n) / n \right)$.

- (i) Find the maximum-likelihood estimate, $\hat{\phi}$, of ϕ .
- (ii) Show that $\hat{\phi}_1 = X_1 (1 X_2)$ is an unbiased estimate of ϕ and hence, or otherwise, obtain an unbiased estimate of ϕ which has smaller variance than $\hat{\phi}_1$ and which is a function of $\hat{\phi}$.
- (iii) Now suppose that a Bayesian approach is adopted and that the prior distribution for θ , $\pi(\theta)$, is taken to be the uniform distribution on (0, 1). Compute the Bayes point estimate of ϕ when the loss function is $L(\phi, a) = (\phi a)^2$.

[You may use that fact that when r, s are non-negative integers,

$$\int_0^1 x^r (1-x)^s dx = r! s! / (r+s+1)! \quad]$$

2/II/19C Statistics

State and prove the Neyman–Pearson lemma.

Suppose that X is a random variable drawn from the probability density function

$$f(x \mid \theta) = \frac{1}{2} |x|^{\theta - 1} e^{-|x|} / \Gamma(\theta), \quad -\infty < x < \infty,$$

where $\Gamma(\theta) = \int_{0}^{\infty} y^{\theta-1} e^{-y} dy$ and $\theta \ge 1$ is unknown. Find the most powerful test of size α , $0 < \alpha < 1$, of the hypothesis $H_0: \theta = 1$ against the alternative $H_1: \theta = 2$. Express the power of the test as a function of α .

Is your test uniformly most powerful for testing $H_0: \theta = 1$ against $H_1: \theta > 1$? Explain your answer carefully.

Part IB 2007

3/I/8C Statistics

_

Light bulbs are sold in packets of 3 but some of the bulbs are defective. A sample of 256 packets yields the following figures for the number of defectives in a packet:

No. of defectives	0	1	2	3
No. of packets	116	94	40	6

Test the hypothesis that each bulb has a constant (but unknown) probability θ of being defective independently of all other bulbs.

[Hint: You may wish to use some of the following percentage points:

Distribution	χ_1^2	χ^2_2	χ^2_3	χ_4^2	t_1	t_2	t_3	t_4	
90% percentile	2.71	4.61	6.25	7.78	3.08	1.89	1.64	1.53	-
95% percentile	3.84	5.99	7.81	9.49	6.31	2.92	2.35	$2 \cdot 13$]

4/II/19C Statistics

Consider the linear regression model

$$Y_i = \alpha + \beta x_i + \epsilon_i, \qquad 1 \leq i \leq n,$$

where $\epsilon_1, \ldots, \epsilon_n$ are independent, identically distributed $N(0, \sigma^2), x_1, \ldots, x_n$ are known real numbers with $\sum_{i=1}^n x_i = 0$ and α, β and σ^2 are unknown.

- (i) Find the least-squares estimates $\hat{\alpha}$ and $\hat{\beta}$ of α and β , respectively, and explain why in this case they are the same as the maximum-likelihood estimates.
- (ii) Determine the maximum-likelihood estimate $\hat{\sigma}^2$ of σ^2 and find a multiple of it which is an unbiased estimate of σ^2 .
- (iii) Determine the joint distribution of $\hat{\alpha}$, $\hat{\beta}$ and $\hat{\sigma}^2$.

(iv) Explain carefully how you would test the hypothesis H_0 : $\alpha = \alpha_0$ against the alternative $H_1: \alpha \neq \alpha_0$.

Part IB 2007