1/I/3H \quad Statistics

Derive the least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ for the coefficients of the simple linear regression model

$$
Y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where x_{1}, \ldots, x_{n} are given constants, $\bar{x}=n^{-1} \sum_{i=1}^{n} x_{i}$, and ε_{i} are independent with $\mathrm{E} \varepsilon_{i}=0, \operatorname{Var} \varepsilon_{i}=\sigma^{2}, i=1, \ldots, n$.

A manufacturer of optical equipment has the following data on the unit cost (in pounds) of certain custom-made lenses and the number of units made in each order:

No. of units, x_{i}	1	3	5	10	12
Cost per unit, y_{i}	58	55	40	37	22

Assuming that the conditions underlying simple linear regression analysis are met, estimate the regression coefficients and use the estimated regression equation to predict the unit cost in an order for 8 of these lenses.
[Hint: for the data above, $S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}=-257.4$.]

1/II/12H Statistics

Suppose that six observations X_{1}, \ldots, X_{6} are selected at random from a normal distribution for which both the mean μ_{X} and the variance σ_{X}^{2} are unknown, and it is found that $S_{X X}=\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=30$, where $\bar{x}=\frac{1}{6} \sum_{i=1}^{6} x_{i}$. Suppose also that 21 observations Y_{1}, \ldots, Y_{21} are selected at random from another normal distribution for which both the mean μ_{Y} and the variance σ_{Y}^{2} are unknown, and it is found that $S_{Y Y}=40$. Derive carefully the likelihood ratio test of the hypothesis $H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$ against $H_{1}: \sigma_{X}^{2}>\sigma_{Y}^{2}$ and apply it to the data above at the 0.05 level.
[Hint:

$$
\begin{array}{lccccccc}
\text { Distribution } & \chi_{5}^{2} & \chi_{6}^{2} & \chi_{20}^{2} & \chi_{21}^{2} & F_{5,20} & F_{6,21} & \\
95 \% \text { percentile } & 11.07 & 12.59 & 31.41 & 32.68 & 2.71 & 2.57 & \text {] }
\end{array}
$$

2/I/3H \quad Statistics

Let X_{1}, \ldots, X_{n} be a random sample from the $N\left(\theta, \sigma^{2}\right)$ distribution, and suppose that the prior distribution for θ is $N\left(\mu, \tau^{2}\right)$, where $\sigma^{2}, \mu, \tau^{2}$ are known. Determine the posterior distribution for θ, given X_{1}, \ldots, X_{n}, and the best point estimate of θ under both quadratic and absolute error loss.

$2 / \mathrm{II} / 12 \mathrm{H} \quad$ Statistics

An examination was given to 500 high-school students in each of two large cities, and their grades were recorded as low, medium, or high. The results are given in the table below.

	Low	Medium	High
City A	103	145	252
City B	140	136	224

Derive carefully the test of homogeneity and test the hypothesis that the distributions of scores among students in the two cities are the same.
[Hint:

Distribution	χ_{1}^{2}	χ_{2}^{2}	χ_{3}^{2}	χ_{5}^{2}	χ_{6}^{2}	
99\% percentile	6.63	9.21	11.34	15.09	16.81	
95\% percentile	3.84	5.99	7.81	11.07	12.59]

4/I/3H \quad Statistics

The following table contains a distribution obtained in 320 tosses of 6 coins and the corresponding expected frequencies calculated with the formula for the binomial distribution for $p=0.5$ and $n=6$.

No. heads	0	1	2	3	4	5	6
Observed frequencies	3	21	85	110	62	32	7
Expected frequencies	5	30	75	100	75	30	5

Conduct a goodness-of-fit test at the 0.05 level for the null hypothesis that the coins are all fair.
[Hint:

Distribution	χ_{5}^{2}	χ_{6}^{2}	χ_{7}^{2}	
95% percentile	11.07	12.59	14.07	$]$

4/II/12H Statistics

State and prove the Rao-Blackwell theorem.
Suppose that X_{1}, \ldots, X_{n} are independent random variables uniformly distributed over $(\theta, 3 \theta)$. Find a two-dimensional sufficient statistic $T(X)$ for θ. Show that an unbiased estimator of θ is $\hat{\theta}=X_{1} / 2$.

Find an unbiased estimator of θ which is a function of $T(X)$ and whose mean square error is no more than that of $\hat{\theta}$.

