25

1/I/3D Statistics

Let X_1, \ldots, X_n be independent, identically distributed $N(\mu, \mu^2)$ random variables, $\mu > 0$.

Find a two-dimensional sufficient statistic for $\mu,$ quoting carefully, without proof, any result you use.

What is the maximum likelihood estimator of μ ?

1/II/12D Statistics

What is a *simple hypothesis*? Define the terms *size* and *power* for a test of one simple hypothesis against another.

State, without proof, the Neyman–Pearson lemma.

Let X be a **single** random variable, with distribution F. Consider testing the null hypothesis $H_0: F$ is standard normal, N(0, 1), against the alternative hypothesis $H_1: F$ is double exponential, with density $\frac{1}{4}e^{-|x|/2}, x \in \mathbb{R}$.

Find the test of size $\alpha, \alpha < \frac{1}{4}$, which maximises power, and show that the power is $e^{-t/2}$, where $\Phi(t) = 1 - \alpha/2$ and Φ is the distribution function of N(0, 1).

[*Hint:* if $X \sim N(0, 1)$, P(|X| > 1) = 0.3174.]

2/I/3D Statistics

Suppose the **single** random variable X has a uniform distribution on the interval $[0, \theta]$ and it is required to estimate θ with the loss function

$$L(\theta, a) = c(\theta - a)^2,$$

where c > 0.

Find the posterior distribution for θ and the optimal Bayes point estimate with respect to the prior distribution with density $p(\theta) = \theta e^{-\theta}$, $\theta > 0$.

Part IB

2/II/12D Statistics

What is meant by a *generalized likelihood ratio test*? Explain in detail how to perform such a test.

Let X_1, \ldots, X_n be independent random variables, and let X_i have a Poisson distribution with unknown mean λ_i , $i = 1, \ldots, n$.

Find the form of the generalized likelihood ratio statistic for testing $H_0: \lambda_1 = \ldots = \lambda_n$, and show that it may be approximated by

$$\frac{1}{\bar{X}}\sum_{i=1}^{n}(X_i-\bar{X})^2,$$

where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$.

If, for n = 7, you found that the value of this statistic was 27.3, would you accept H_0 ? Justify your answer.

4/I/3D Statistics

Consider the linear regression model

$$Y_i = \beta x_i + \epsilon_i,$$

 $i = 1, \ldots, n$, where x_1, \ldots, x_n are given constants, and $\epsilon_1, \ldots, \epsilon_n$ are independent, identically distributed $N(0, \sigma^2)$, with σ^2 unknown.

Find the least squares estimator $\hat{\beta}$ of β . State, without proof, the distribution of $\hat{\beta}$ and describe how you would test $H_0: \beta = \beta_0$ against $H_1: \beta \neq \beta_0$, where β_0 is given.

4/II/12D Statistics

Let X_1, \ldots, X_n be independent, identically distributed $N(\mu, \sigma^2)$ random variables, where μ and σ^2 are unknown.

Derive the maximum likelihood estimators $\hat{\mu}, \hat{\sigma}^2$ of μ, σ^2 , based on X_1, \ldots, X_n . Show that $\hat{\mu}$ and $\hat{\sigma}^2$ are independent, and derive their distributions.

Suppose now it is intended to construct a "prediction interval" $I(X_1, \ldots, X_n)$ for a future, independent, $N(\mu, \sigma^2)$ random variable X_0 . We require

$$P\left\{X_0 \in I(X_1, \dots, X_n)\right\} = 1 - \alpha,$$

with the probability over the *joint* distribution of X_0, X_1, \ldots, X_n .

Let

$$I_{\gamma}(X_1,\ldots,X_n) = \left(\widehat{\mu} - \gamma\widehat{\sigma}\sqrt{1+\frac{1}{n}}, \ \widehat{\mu} + \gamma\widehat{\sigma}\sqrt{1+\frac{1}{n}}\right).$$

By considering the distribution of $(X_0 - \hat{\mu})/(\hat{\sigma}\sqrt{\frac{n+1}{n-1}})$, find the value of γ for which $P\{X_0 \in I_{\gamma}(X_1, \ldots, X_n)\} = 1 - \alpha$.

Part IB