PRINCIPLES OF STATISTICS — EXAMPLES 1/4

Part II, Michaelmas 2023, Po-Ling Loh (email: pll28@cam.ac.uk)
Questions by courtesy of Richard Nickl

Throughout, the abbreviations “i.i.d.,” “pdf/pmf,” and “MLE” stand for “independent and
identically distributed,” “probability density /mass function,” and “maximum likelihood estima-
tor,” respectively. A normal distribution in R? with mean vector y and covariance matrix ¥ is
denoted by Ny(u,Y), and N(u,o?) corresponds to the univariate case d = 1.

1. Consider an i.i.d. sample Xi,...,X,, of random variables. For each of the following
parametric models of pmf/pdfs, find the MLE of the unknown parameter, the score equation,
and the Fisher information.

a) X; ~"*% Bernoulli(),0 € [0,1],

b) X, ~iid N(0,1),0 € R,

X; ~d- N(0,8),0 € (0,00),

X; ~d N(p,0%),0 = (p,0%)T € R x (0,00),

X; ~td Poisson(6), 6 € (0,00),

X; ~4td from model {f(-,0) : 0 € (0,00)} with pdf f(z,0) = (1/8)e=*/? = > 0.
X; ~*4d- from model {f(-,0) : 6 € (0,00)} with pdf f(x,0) = 0e=%% x> 0.
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2. In which of the examples in the previous exercise is the MLE unbiased (i.e., does one have
Epl = 0 for all @ € ©)7 When unbiased, deduce whether or not the variance of the MLE attains
the Cramér-Rao lower bound.

3. Let Xy,..., X, be iid. Poisson random variables with parameter 6 > 0, and let X,, =
(1/n) >0, X, and S2=(n—1)"* 3" | (X; — X,,)?. Show that Var(X,,) < Var(S?).

4. Find the MLE for an i.i.d. sample X1, ..., X, arising from the models (a) N(6,1), where
6 €0 =[0,00), and (b) N(0,6), where § € © = (0, 00).

5. Consider an i.i.d. sample X1, ..., X, arising from the model
1
{f(-,0):0 €R}, f(x,0) = ie*“ﬂ*"‘,x €R,

of Laplace distributions. Assuming n to be odd for simplicity, show that the MLE is equal to the
sample median. Discuss what happens when n is even. Can you calculate the Fisher information?

6. Consider observing an n x 1 random vector Y ~ N,,(X6, ), where X is a non-stochastic
n X p matrix of full column rank, § € © = RP for p < n, and I is the n x n identity matrix.
Compute the MLE and find its distribution. Calculate the Fisher information for this model
and compare it to the variance of the MLE. Deduce, as a special case, the form of the MLE and
Fisher information in the case when p =n and X = I.

7. Let Py be the law of a N,(0,I) distribution on RP with identity covariance matrix I and
mean vector 6. For fixed 6y € RP, compute the Kullback-Leibler divergence K L(Py,, FPp).

8. Let (X, X, : n € N) be random vectors in R¥.

(a) Prove that X,, = X as n — oo if and only if each vector component Xng,d=1,...,k,
of X,, converges in probability to the corresponding vector component X; of X as n — oo.
Formulate and prove an analogous result for random k& x k matrices.



(b) Suppose E||X,, — X| — 0 as n — oo, where | - || is the Euclidean norm on R*. Deduce
that X,, =¥ X as n — 0.

(c) Show that the converse in (b) is false, i.e., give an example of real random variables such
that X,, = X as n — oo, but E|X,, — X| /4 0.

9. Given Xi,..., X, iid. random variables such that FX; = 0 and EX? € (0,00), the
Student’s t-statistic is given by

by = ‘/EX”, X, = EZX“ 52 = ! zn:(xi - X,)2
=1

Sh n 4 n—1

Show that t,, —% N(0,1) as n — oco. Assuming now that EX; = u € R, deduce an asymptotic
level 1 — a confidence interval for £X;.

10. For the examples from Exercise 1, derive directly (without using the general asymptotic
theory for MLEs) the asymptotic distribution of v/n(6y g — 6) as n — co.

11. Suppose one observes one random vector X = (Xj, X2)T from a bivariate normal
distribution No(6, %), where 6 = (01, 602)T and ¥ is an arbitrary but known 2 x 2 positive definite
covariance matrix.

(a) Compute the Cramér-Rao lower bound for estimating the first coefficient 6 if (i) 05 is
known and (ii) if 65 is unknown.

(b) Show that the two bounds in (a) coincide when ¥ is a diagonal matrix.

(c¢) Show that the bound in (a)(i) is always less than or equal to the bound in (a)(ii), and
give an information-theoretic interpretation of this result.



