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Part II, Michaelmas 2022, Po-Ling Loh (email: pll28@cam.ac.uk)
Questions by courtesy of Richard Nickl

Throughout, the term “asymptotic” refers to a large-sample limit as n→∞ under a sampling
distribution Pθ = PN

θ where, unless otherwise specified, θ is assumed to be a fixed element of the
parameter space Θ ⊆ Rp.

1. Let Θ ⊆ R have nonempty interior, and let {Sn} be a sequence of random real-valued
continuous functions defined on Θ such that, as n→∞, Sn(θ)→P S(θ) ∀θ ∈ Θ, where S : Θ→ R
is nonrandom. Suppose that for some θ0 in the interior of Θ and every ε > 0 small enough, we
have S(θ0±ε) < 0 < S(θ0∓ε), and also that Sn has exactly one zero θ̂n for every n ∈ N. Deduce

that θ̂n →P θ0 as n→∞.

2. Consider an i.i.d. sample X1, . . . , Xn arising from the model{
f(x, θ) = θxθ−1 exp{−xθ}, x > 0, θ ∈ (0,∞)

}
of Weibull distributions. Show that the MLE exists with probability one and is consistent. [Hint:
Use the previous exercise. You may interchange differentiation d/dθ and dx-integration without
justification in your argument.]

3. Give an example of functions {Qn} and Q defined on Θ ⊆ R which have unique maximizers

{θ̂n} and θ0, respectively, such that Qn(θ)→ Q(θ) for every θ ∈ Θ as n→∞, but θ̂n 6→ θ0.

4. Consider the maximum likelihood estimator θ̂ from X1, . . . , Xn i.i.d. N(θ, 1) where θ ∈
Θ = [0,∞). Show that

√
n(θ̂ − θ) is asymptotically normal whenever θ > 0. What happens

when θ = 0? Comment on your findings in light of the general asymptotic theory for maximum
likelihood estimators.

5. Let X1, . . . , Xn be i.i.d. random variables from a uniform distribution U [0, θ] with θ ∈ Θ =

(0,∞). Find the maximum likelihood estimator θ̂ of θ and show that θ̃ = n+1
n θ̂ is unbiased for

θ. Find the variance of θ̃, compare it to what the Cramér-Rao inequality predicts, and discuss
your findings. Finally, find the asymptotic distribution of n(θ̂ − θ).

6. Suppose one is given a parametric model {f(·, θ) : θ ∈ Θ} with likelihood function L(θ)

and corresponding maximum likelihood estimator θ̂MLE , and consider a mapping Φ : Θ → F ,
where Θ and F are subsets of R.

(a) Assuming Φ is injective, show that a maximum likelihood estimator of φ in the model

{f(·, φ) : φ = Φ(θ) for some θ ∈ Θ} equals Φ(θ̂MLE).

(b) Now consider a mapping Φ that is not necessarily injective. Define the induced likelihood

function L∗(φ) = supθ:Φ(θ)=φ L(θ) and show that Φ(θ̂MLE) is a maximum likelihood estimator

of φ (that is, show that Φ(θ̂MLE) maximizes L∗(φ)).

(c) Based on n repeated observations of a random variable X from one of the following
parametric models, find the maximum likelihood estimator of the parameter φ: (i) φ = V ar(X)
in a Poisson(θ) model, (ii) φ = V ar(X) in a Bernoulli(θ) model, and (iii) φ = (EX)2 in a N(θ, 1)
model.

7. Consider the parameter φ = EX4 equal to the fourth moment of a N(0, θ) distribution.

Find the MLE φ̂ of φ and derive the asymptotic distribution of
√
n(φ̂− φ) as n→∞.
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8. Let θ̂ be the maximum likelihood estimator in a model {f(·, θ) : Θ ⊂ Rp} arising from an
i.i.d. sample X1, . . . , Xn. Assuming the model satisfies the regularity conditions from lectures,
ensuring in particular the asymptotic normality of

√
n(θ̂ − θ) under Pθ, derive the asymptotic

distribution of the random variable

Wn = n(θ̂ − θ)T in(θ̂ − θ)

under Pθ, where in equals either in(θ) or in(θ̂), and in(θ) denotes the observed Fisher information
matrix at θ. From this limiting result: (i) derive a test for the hypothesis H0 : θ = θ0 vs. H1 =
Θ\{θ0} which has asymptotic type I error at most α; and (ii) deduce that the confidence ellipsoid

Cn = {θ ∈ Rp : (θ̂ − θ)T in(θ̂)(θ̂ − θ) ≤ zα/n}

has asymptotic coverage level 1−α, where zα denotes the (1−α)-quantile of the limit distribution
derived above.

9. Consider the parametric models from Exercise 1 on Sheet 1 with corresponding parameter
space Θ. For all these models, derive explicit expressions for the likelihood ratio test statistic of
a simple hypothesis test of H0 : θ = θ0, θ0 ∈ Θ, vs. H1 = Θ \ {θ0}.

10. For σ2 a fixed positive constant, consider X1, . . . , Xn|θ ∼i.i.d N(θ, σ2) with prior distri-
bution θ ∼ N(µ, v2), where µ ∈ R and v2 > 0. Show that the posterior distribution of θ given
the observations is

θ|X1, . . . , Xn ∼ N

(
nX̄
σ2 + µ

v2

n
σ2 + 1

v2

,
1

n
σ2 + 1

v2

)
, where X̄ =

1

n

n∑
i=1

Xi.

11. Consider X1, . . . , Xn|µ, σ2 i.i.d. N(µ, σ2) with improper prior density π(µ, σ) propor-
tional to σ−2 (constant in µ). Argue that the resulting “posterior distribution” has a density
proportional to

σ−(n+2) exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
,

and thus, the distribution of µ|σ2, X1, . . . , Xn is N(X̄, σ2/n), where X̄ = (1/n)
∑n
i=1Xi. When

0 < α < 1 and assuming σ2 is known, construct a level 1 − α credible set for the posterior
distribution µ|σ2, X1, . . . , Xn that is also an exact level 1− α (frequentist) confidence set.
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