Paper 1, Section II 29K Principles of Statistics

(a) Suppose that Θ is an open subset of \mathbb{R}^p , that $\Phi : \Theta \to \mathbb{R}$ is continuously differentiable at some $\theta_0 \in \Theta$, and that $\{\widehat{\theta}_n\}_{n \geq 1}$ is a sequence of random vectors in \mathbb{R}^p satisfying $\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} Z$, where $Z \in \mathbb{R}^p$. Prove that

$$\sqrt{n}(\Phi(\widehat{\theta}_n) - \Phi(\theta_0)) \xrightarrow{d} \nabla_{\theta} \Phi(\theta_0)^T Z$$
.

For the remainder of this problem, consider the $N(0, \sigma^2)$ model, where $\sigma \in (0, \infty)$.

(b) Derive the maximum likelihood estimator $\hat{\sigma}_{MLE}$ of σ based on an i.i.d. sample of size *n* from the model. What is the asymptotic distribution of $\sqrt{n}(\hat{\sigma}_{MLE} - \sigma)$? [*Hint:* You may use, without proof, the fact that $\mathbb{E}[Z^4] = 3$ when $Z \sim N(0, 1)$.]

(c) What is the Fisher information $I(\sigma)$ (for the sample size n = 1)?

(d) Now consider the alternative parametrization of the model in terms of $\rho = \sigma^2$, where $\rho \in (0, \infty)$. What is the maximum likelihood estimator $\hat{\rho}_{\text{MLE}}$ of ρ ?

Paper 2, Section II 29K Principles of Statistics

Suppose X_1, \ldots, X_n are i.i.d. samples from a $N(\theta, 1)$ distribution. Consider an estimator $\hat{\theta}_{a,b}$ of the form $a\bar{X}_n + b$, where $a, b \in \mathbb{R}$ and \bar{X}_n denotes the sample mean. Throughout this question, we will consider risks computed with respect to the quadratic loss.

(a) Compute the risk of $\hat{\theta}_{a,b}$ for estimating θ .

(b) Use the formula in part (a) to show that when a > 1, the estimator $\hat{\theta}_{a,b}$ is inadmissible for estimating θ .

(c) Now use the formula in part (a) to show that when a < 0, the estimator $\hat{\theta}_{a,b}$ is also inadmissible for estimating θ . [*Hint: Compare the estimator with the constant estimator* $\delta := \frac{-b}{a-1}$.]

(d) Prove that \bar{X}_n is admissible for estimating θ . [Hint: You may use, without proof, the general Cramér-Rao lower bound, and the facts that $I(\theta) = 1$ and $\mathbb{E}_{\theta}[\delta(X)]$ is differentiable for any estimator δ under the Gaussian model.]

(e) Can any of the estimators considered in parts (b) and (c) be minimax for estimating θ ?

Paper 3, Section II 28K Principles of Statistics

Suppose T_n is an estimator computed from n i.i.d. observations X_1, \ldots, X_n . Recall that the jackknife bias-corrected estimate of T_n is given by $\widetilde{T}_{\text{JACK}} = T_n - \widehat{B}_n$, where

$$\widehat{B}_n = (n-1) \left(\frac{1}{n} \sum_{i=1}^n T_{(-i)} - T_n \right).$$

(a) Suppose that as $n \to \infty$ the bias function $B_n(\theta) = \mathbb{E}_{\theta}[T_n] - \theta$ can be approximated as

$$B_n(\theta) = \frac{a}{n} + \frac{b}{n^2} + O\left(\frac{1}{n^3}\right),$$

for some $a, b \in \mathbb{R}$. Prove that

$$|\mathbb{E}[\widetilde{T}_{\mathrm{JACK}}] - \theta| = O\left(\frac{1}{n^2}\right).$$

For the remainder of this problem, suppose $X_i \stackrel{i.i.d.}{\sim} N(\mu, 1)$.

(b) Consider the estimator $T_n = (\bar{X}_n)^2$ for $\theta = \mu^2$, where \bar{X}_n denotes the sample mean. Compute the biases of T_n and \tilde{T}_{JACK} .

(c) What is the asymptotic distribution of $\sqrt{n}(T_n - \mu^2)$?

(d) Show that $\sqrt{n}(\tilde{T}_{\text{JACK}}-\mu^2)$ has the same asymptotic distribution as $\sqrt{n}(T_n-\mu^2)$. [*Hint: Define* $g(t) = t^2$ and define $\bar{X}_{n-1,i}$ to be the sample mean of the observations with X_i excluded. Note that

$$\widetilde{T}_{\text{JACK}} = T_n - \frac{n-1}{n} \sum_{i=1}^n \left(g(\bar{X}_{n-1,i}) - g(\bar{X}_n) \right)$$

and use the identities

$$\sum_{i=1}^{n} (\bar{X}_{n-1,i} - \bar{X}_n) = 0 \quad and \quad \bar{X}_{n-1,i} - \bar{X}_n = \frac{1}{n-1} (\bar{X}_n - X_i). \qquad]$$

Paper 4, Section II

28K Principles of Statistics

(a) Suppose it is possible to generate samples from a Uniform[0, 1] distribution. Describe a method for generating samples from an exponential distribution with rate parameter 1, and prove that the method is valid.

(b) Recall that the accept/reject algorithm, which operates on two pdfs f and h satisfying $f \leq Mh$, proceeds as follows:

- 1. Generate $X \sim h$ and $U \sim \text{Uniform}[0, 1]$.
- 2. If $U \leq \frac{f(X)}{Mh(X)}$, take Y = X. Otherwise, return to Step 1.

Prove that the output Y has pdf f.

(c) Suppose the pdf f is given by

$$f(x) = \frac{2}{\sqrt{2\pi}} e^{-x^2/2}, \quad \text{for all } x \ge 0.$$

Let h be the pdf of an exponential distribution with rate parameter 1. Explain how to apply the accept/reject algorithm in this special case. Identify an appropriate value for M.

(d) Compute the expected number of steps required to generate one sample from the pdf f in part (c) using the accept/reject algorithm.

(e) Let Y be a random variable generated according to the algorithm in (c). Now suppose we generate a random variable X using the following additional steps:

1. Generate $V \sim \text{Uniform}[0, 1]$.

2. If $V \leq \frac{1}{2}$, take Z = Y. Otherwise, take Z = -Y.

What is the distribution of Z?

(f) Suppose the final goal is to generate samples from the distribution of Z in part (e). Following the steps outlined in parts (a)–(e), could the efficiency of the algorithm be improved by choosing X to be an exponential random variable with rate parameter $\lambda \neq 1$?