Paper 1, Section II

29K Principles of Statistics

(a) Suppose that Θ is an open subset of \mathbb{R}^{p}, that $\Phi: \Theta \rightarrow \mathbb{R}$ is continuously differentiable at some $\theta_{0} \in \Theta$, and that $\left\{\widehat{\theta}_{n}\right\}_{n \geqslant 1}$ is a sequence of random vectors in \mathbb{R}^{p} satisfying $\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} Z$, where $Z \in \mathbb{R}^{p}$. Prove that

$$
\sqrt{n}\left(\Phi\left(\widehat{\theta}_{n}\right)-\Phi\left(\theta_{0}\right)\right) \xrightarrow{d} \nabla_{\theta} \Phi\left(\theta_{0}\right)^{T} Z .
$$

For the remainder of this problem, consider the $N\left(0, \sigma^{2}\right)$ model, where $\sigma \in(0, \infty)$.
(b) Derive the maximum likelihood estimator $\widehat{\sigma}_{\text {MLE }}$ of σ based on an i.i.d. sample of size n from the model. What is the asymptotic distribution of $\sqrt{n}\left(\widehat{\sigma}_{\text {MLE }}-\sigma\right)$? [Hint: You may use, without proof, the fact that $\mathbb{E}\left[Z^{4}\right]=3$ when $Z \sim N(0,1)$.]
(c) What is the Fisher information $I(\sigma)$ (for the sample size $n=1$)?
(d) Now consider the alternative parametrization of the model in terms of $\rho=\sigma^{2}$, where $\rho \in(0, \infty)$. What is the maximum likelihood estimator $\widehat{\rho}_{\text {MLE }}$ of ρ ?

Paper 2, Section II

29K Principles of Statistics

Suppose X_{1}, \ldots, X_{n} are i.i.d. samples from a $N(\theta, 1)$ distribution. Consider an estimator $\widehat{\theta}_{a, b}$ of the form $a \bar{X}_{n}+b$, where $a, b \in \mathbb{R}$ and \bar{X}_{n} denotes the sample mean. Throughout this question, we will consider risks computed with respect to the quadratic loss.
(a) Compute the risk of $\widehat{\theta}_{a, b}$ for estimating θ.
(b) Use the formula in part (a) to show that when $a>1$, the estimator $\widehat{\theta}_{a, b}$ is inadmissible for estimating θ.
(c) Now use the formula in part (a) to show that when $a<0$, the estimator $\widehat{\theta}_{a, b}$ is also inadmissible for estimating θ. [Hint: Compare the estimator with the constant estimator $\delta:=\frac{-b}{a-1}$.]
(d) Prove that \bar{X}_{n} is admissible for estimating θ. [Hint: You may use, without proof, the general Cramér-Rao lower bound, and the facts that $I(\theta)=1$ and $\mathbb{E}_{\theta}[\delta(X)]$ is differentiable for any estimator δ under the Gaussian model.]
(e) Can any of the estimators considered in parts (b) and (c) be minimax for estimating θ ?

Paper 3, Section II

28K Principles of Statistics

Suppose T_{n} is an estimator computed from n i.i.d. observations X_{1}, \ldots, X_{n}. Recall that the jackknife bias-corrected estimate of T_{n} is given by $\widetilde{T}_{\mathrm{JACK}}=T_{n}-\widehat{B}_{n}$, where

$$
\widehat{B}_{n}=(n-1)\left(\frac{1}{n} \sum_{i=1}^{n} T_{(-i)}-T_{n}\right) .
$$

(a) Suppose that as $n \rightarrow \infty$ the bias function $B_{n}(\theta)=\mathbb{E}_{\theta}\left[T_{n}\right]-\theta$ can be approximated as

$$
B_{n}(\theta)=\frac{a}{n}+\frac{b}{n^{2}}+O\left(\frac{1}{n^{3}}\right),
$$

for some $a, b \in \mathbb{R}$. Prove that

$$
\left|\mathbb{E}\left[\widetilde{T}_{\mathrm{JACK}}\right]-\theta\right|=O\left(\frac{1}{n^{2}}\right) .
$$

For the remainder of this problem, suppose $X_{i} \stackrel{i . i . d .}{\sim} N(\mu, 1)$.
(b) Consider the estimator $T_{n}=\left(\bar{X}_{n}\right)^{2}$ for $\theta=\mu^{2}$, where \bar{X}_{n} denotes the sample mean. Compute the biases of T_{n} and $\widetilde{T}_{\text {JACK }}$.
(c) What is the asymptotic distribution of $\sqrt{n}\left(T_{n}-\mu^{2}\right)$?
(d) Show that $\sqrt{n}\left(\widetilde{T}_{\text {JACK }}-\mu^{2}\right)$ has the same asymptotic distribution as $\sqrt{n}\left(T_{n}-\mu^{2}\right)$. [Hint: Define $g(t)=t^{2}$ and define $\bar{X}_{n-1, i}$ to be the sample mean of the observations with X_{i} excluded. Note that

$$
\widetilde{T}_{\mathrm{JACK}}=T_{n}-\frac{n-1}{n} \sum_{i=1}^{n}\left(g\left(\bar{X}_{n-1, i}\right)-g\left(\bar{X}_{n}\right)\right)
$$

and use the identities

$$
\sum_{i=1}^{n}\left(\bar{X}_{n-1, i}-\bar{X}_{n}\right)=0 \quad \text { and } \quad \bar{X}_{n-1, i}-\bar{X}_{n}=\frac{1}{n-1}\left(\bar{X}_{n}-X_{i}\right) .
$$

Paper 4, Section II

28K Principles of Statistics

(a) Suppose it is possible to generate samples from a Uniform[0,1] distribution. Describe a method for generating samples from an exponential distribution with rate parameter 1, and prove that the method is valid.
(b) Recall that the accept/reject algorithm, which operates on two pdfs f and h satisfying $f \leqslant M h$, proceeds as follows:

1. Generate $X \sim h$ and $U \sim \operatorname{Uniform}[0,1]$.
2. If $U \leqslant \frac{f(X)}{M h(X)}$, take $Y=X$. Otherwise, return to Step 1 .

Prove that the output Y has pdf f.
(c) Suppose the pdf f is given by

$$
f(x)=\frac{2}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { for all } x \geqslant 0 .
$$

Let h be the pdf of an exponential distribution with rate parameter 1. Explain how to apply the accept/reject algorithm in this special case. Identify an appropriate value for M.
(d) Compute the expected number of steps required to generate one sample from the pdf f in part (c) using the accept/reject algorithm.
(e) Let Y be a random variable generated according to the algorithm in (c). Now suppose we generate a random variable X using the following additional steps:

1. Generate $V \sim \operatorname{Uniform}[0,1]$.
2. If $V \leqslant \frac{1}{2}$, take $Z=Y$. Otherwise, take $Z=-Y$.

What is the distribution of Z ?
(f) Suppose the final goal is to generate samples from the distribution of Z in part (e). Following the steps outlined in parts (a)-(e), could the efficiency of the algorithm be improved by choosing X to be an exponential random variable with rate parameter $\lambda \neq 1$?

