Paper 2, Section II

26K Principles of Statistics

We consider the problem of estimating θ in the model $\{f(x, \theta): \theta \in(0, \infty)\}$, where

$$
f(x, \theta)=(1-\alpha)(x-\theta)^{-\alpha} \mathbf{1}\{x \in[\theta, \theta+1]\}
$$

Here $1\{A\}$ is the indicator of the set A, and $\alpha \in(0,1)$ is known. This estimation is based on a sample of n i.i.d. X_{1}, \ldots, X_{n}, and we denote by $X_{(1)}<\ldots<X_{(n)}$ the ordered sample.
(a) Compute the mean and the variance of X_{1}. Construct an unbiased estimator of θ taking the form $\tilde{\theta}_{n}=\bar{X}_{n}+c(\alpha)$, where $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$, specifying $c(\alpha)$.
(b) Show that $\tilde{\theta}_{n}$ is consistent and find the limit in distribution of $\sqrt{n}\left(\tilde{\theta}_{n}-\theta\right)$. Justify your answer, citing theorems that you use.
(c) Find the maximum likelihood estimator $\hat{\theta}_{n}$ of θ. Compute $\mathbf{P}\left(\hat{\theta}_{n}-\theta>t\right)$ for all real t. Is $\hat{\theta}_{n}$ unbiased?
(d) For $t>0$, show that $\mathbf{P}\left(n^{\beta}\left(\hat{\theta}_{n}-\theta\right)>t\right)$ has a limit in $(0,1)$ for some $\beta>0$. Give explicitly the value of β and the limit. Why should one favour using $\hat{\theta}_{n}$ over $\tilde{\theta}_{n}$?

Paper 3, Section II

26K Principles of Statistics

We consider the problem of estimating an unknown θ_{0} in a statistical model $\{f(x, \theta), \theta \in \Theta\}$ where $\Theta \subset \mathbb{R}$, based on n i.i.d. observations X_{1}, \ldots, X_{n} whose distribution has p.d.f. $f\left(x, \theta_{0}\right)$.

In all the parts below you may assume that the model satisfies necessary regularity conditions.
(a) Define the score function S_{n} of θ. Prove that $S_{n}\left(\theta_{0}\right)$ has mean 0 .
(b) Define the Fisher Information $I(\theta)$. Show that it can also be expressed as

$$
I(\theta)=-\mathbb{E}_{\theta}\left[\frac{d^{2}}{d \theta^{2}} \log f\left(X_{1}, \theta\right)\right] .
$$

(c) Define the maximum likelihood estimator $\hat{\theta}_{n}$ of θ. Give without proof the limits of $\hat{\theta}_{n}$ and of $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ (in a manner which you should specify). [Be as precise as possible when describing a distribution.]
(d) Let $\psi: \Theta \rightarrow \mathbb{R}$ be a continuously differentiable function, and $\tilde{\theta}_{n}$ another estimator of θ_{0} such that $\left|\hat{\theta}_{n}-\tilde{\theta}_{n}\right| \leqslant 1 / n$ with probability 1 . Give the limits of $\psi\left(\tilde{\theta}_{n}\right)$ and of $\sqrt{n}\left(\psi\left(\tilde{\theta}_{n}\right)-\psi\left(\theta_{0}\right)\right)$ (in a manner which you should specify).

Paper 4, Section II

$\mathbf{2 7 K}$ Principles of Statistics

For the statistical model $\left\{\mathcal{N}_{d}(\theta, \Sigma), \theta \in \mathbb{R}^{d}\right\}$, where Σ is a known, positive-definite $d \times d$ matrix, we want to estimate θ based on n i.i.d. observations X_{1}, \ldots, X_{n} with distribution $\mathcal{N}_{d}(\theta, \Sigma)$.
(a) Derive the maximum likelihood estimator $\hat{\theta}_{n}$ of θ. What is the distribution of $\hat{\theta}_{n}$?
(b) For $\alpha \in(0,1)$, construct a confidence region C_{n}^{α} such that $\mathbf{P}_{\theta}\left(\theta \in C_{n}^{\alpha}\right)=1-\alpha$.
(c) For $\Sigma=I_{d}$, compute the maximum likelihood estimator of θ for the following parameter spaces:
(i) $\Theta=\left\{\theta:\|\theta\|_{2}=1\right\}$.
(ii) $\Theta=\left\{\theta: v^{\top} \theta=0\right\}$ for some unit vector $v \in \mathbb{R}^{d}$.
(d) For $\Sigma=I_{d}$, we want to test the null hypothesis $\Theta_{0}=\{0\}$ (i.e. $\theta=0$) against the composite alternative $\Theta_{1}=\mathbb{R}^{d} \backslash\{0\}$. Compute the likelihood ratio statistic $\Lambda\left(\Theta_{1}, \Theta_{0}\right)$ and give its distribution under the null hypothesis. Compare this result with the statement of Wilks' theorem.

Paper 1, Section II

28K Principles of Statistics

For a positive integer n, we want to estimate the parameter p in the binomial statistical model $\{\operatorname{Bin}(n, p), p \in[0,1]\}$, based on an observation $X \sim \operatorname{Bin}(n, p)$.
(a) Compute the maximum likelihood estimator for p. Show that the posterior distribution for p under a uniform prior on $[0,1]$ is $\operatorname{Beta}(a, b)$, and specify a and b. [The p.d.f. of $\operatorname{Beta}(a, b)$ is given by

$$
\left.f_{a, b}(p)=\frac{(a+b-1)!}{(a-1)!(b-1)!} p^{a-1}(1-p)^{b-1} .\right]
$$

(b) (i) For a risk function L, define the risk of an estimator \hat{p} of p, and the Bayes risk under a prior π for p.
(ii) Under the loss function

$$
L(\hat{p}, p)=\frac{(\hat{p}-p)^{2}}{p(1-p)},
$$

find a Bayes optimal estimator for the uniform prior. Give its risk as a function of p.
(iii) Give a minimax optimal estimator for the loss function L given above. Justify your answer.

