Paper 3, Section II

25J Principles of Statistics

Let X_{1}, \ldots, X_{n} be i.i.d. random variables from a $N(\theta, 1)$ distribution, $\theta \in \mathbb{R}$, and consider a Bayesian model $\theta \sim N\left(0, v^{2}\right)$ for the unknown parameter, where $v>0$ is a fixed constant.
(a) Derive the posterior distribution $\Pi\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ of $\theta \mid X_{1}, \ldots, X_{n}$.
(b) Construct a credible set $C_{n} \subset \mathbb{R}$ such that
(i) $\Pi\left(C_{n} \mid X_{1}, \ldots, X_{n}\right)=0.95$ for every $n \in \mathbb{N}$, and
(ii) for any $\theta_{0} \in \mathbb{R}$,

$$
P_{\theta_{0}}^{\mathbb{N}}\left(\theta_{0} \in C_{n}\right) \rightarrow 0.95 \quad \text { as } n \rightarrow \infty
$$

where $P_{\theta}^{\mathbb{N}}$ denotes the distribution of the infinite sequence X_{1}, X_{2}, \ldots when drawn independently from a fixed $N(\theta, 1)$ distribution.
[You may use the central limit theorem.]

Paper 2, Section II

$26 J$ Principles of Statistics

(a) State and prove the Cramér-Rao inequality in a parametric model $\{f(\theta): \theta \in \Theta\}$, where $\Theta \subseteq \mathbb{R}$. [Necessary regularity conditions on the model need not be specified.]
(b) Let X_{1}, \ldots, X_{n} be i.i.d. Poisson random variables with unknown parameter $E X_{1}=\theta>0$. For $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ and $S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ define

$$
T_{\alpha}=\alpha \bar{X}_{n}+(1-\alpha) S^{2}, \quad 0 \leqslant \alpha \leqslant 1
$$

Show that $\operatorname{Var}_{\theta}\left(T_{\alpha}\right) \geqslant \operatorname{Var}_{\theta}\left(\bar{X}_{n}\right)$ for all values of α, θ.
Now suppose $\tilde{\theta}=\tilde{\theta}\left(X_{1}, \ldots, X_{n}\right)$ is an estimator of θ with possibly nonzero bias $B(\theta)=E_{\theta} \tilde{\theta}-\theta$. Suppose the function B is monotone increasing on $(0, \infty)$. Prove that the mean-squared errors satisfy

$$
E_{\theta}\left(\tilde{\theta}_{n}-\theta\right)^{2} \geqslant E_{\theta}\left(\bar{X}_{n}-\theta\right)^{2} \quad \text { for all } \theta \in \Theta
$$

Paper 4, Section II

26J Principles of Statistics

Consider a decision problem with parameter space Θ. Define the concepts of a Bayes decision rule δ_{π} and of a least favourable prior.

Suppose π is a prior distribution on Θ such that the Bayes risk of the Bayes rule equals $\sup _{\theta \in \Theta} R\left(\delta_{\pi}, \theta\right)$, where $R(\delta, \theta)$ is the risk function associated to the decision problem. Prove that δ_{π} is least favourable.

Now consider a random variable X arising from the binomial distribution $\operatorname{Bin}(n, \theta)$, where $\theta \in \Theta=[0,1]$. Construct a least favourable prior for the squared risk $R(\delta, \theta)=E_{\theta}(\delta(X)-\theta)^{2}$. [You may use without proof the fact that the Bayes rule for quadratic risk is given by the posterior mean.]

Paper 1, Section II

$27 J$ Principles of Statistics

Derive the maximum likelihood estimator $\widehat{\theta}_{n}$ based on independent observations X_{1}, \ldots, X_{n} that are identically distributed as $N(\theta, 1)$, where the unknown parameter θ lies in the parameter space $\Theta=\mathbb{R}$. Find the limiting distribution of $\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right)$ as $n \rightarrow \infty$.

Now define

$$
\begin{aligned}
\widetilde{\theta}_{n} & =\widehat{\theta}_{n} \quad \text { whenever }\left|\widehat{\theta}_{n}\right|>n^{-1 / 4} \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

and find the limiting distribution of $\sqrt{n}\left(\widetilde{\theta}_{n}-\theta\right)$ as $n \rightarrow \infty$.
Calculate

$$
\lim _{n \rightarrow \infty} \sup _{\theta \in \Theta} n E_{\theta}\left(T_{n}-\theta\right)^{2}
$$

for the choices $T_{n}=\widehat{\theta}_{n}$ and $T_{n}=\widetilde{\theta}_{n}$. Based on the above findings, which estimator T_{n} of θ would you prefer? Explain your answer.
[Throughout, you may use standard facts of stochastic convergence, such as the central limit theorem, provided they are clearly stated.]

