Paper 3, Section II

25J Principles of Statistics

Let X_1, \ldots, X_n be i.i.d. random variables from a $N(\theta, 1)$ distribution, $\theta \in \mathbb{R}$, and consider a Bayesian model $\theta \sim N(0, v^2)$ for the unknown parameter, where v > 0 is a fixed constant.

- (a) Derive the posterior distribution $\Pi(\cdot \mid X_1, \ldots, X_n)$ of $\theta \mid X_1, \ldots, X_n$.
- (b) Construct a credible set $C_n \subset \mathbb{R}$ such that
 - (i) $\Pi(C_n|X_1,\ldots,X_n) = 0.95$ for every $n \in \mathbb{N}$, and
 - (ii) for any $\theta_0 \in \mathbb{R}$,

 $P_{\theta_0}^{\mathbb{N}}(\theta_0 \in C_n) \to 0.95 \quad \text{as } n \to \infty,$

where $P_{\theta}^{\mathbb{N}}$ denotes the distribution of the infinite sequence X_1, X_2, \ldots when drawn independently from a fixed $N(\theta, 1)$ distribution.

[You may use the central limit theorem.]

Paper 2, Section II

26J Principles of Statistics

(a) State and prove the Cramér–Rao inequality in a parametric model $\{f(\theta) : \theta \in \Theta\}$, where $\Theta \subseteq \mathbb{R}$. [Necessary regularity conditions on the model need not be specified.]

(b) Let X_1, \ldots, X_n be i.i.d. Poisson random variables with unknown parameter $EX_1 = \theta > 0$. For $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$ and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ define

$$T_{\alpha} = \alpha \bar{X}_n + (1 - \alpha)S^2, \quad 0 \le \alpha \le 1.$$

Show that $\operatorname{Var}_{\theta}(T_{\alpha}) \geq \operatorname{Var}_{\theta}(\bar{X}_n)$ for all values of α, θ .

Now suppose $\tilde{\theta} = \tilde{\theta}(X_1, \ldots, X_n)$ is an estimator of θ with possibly nonzero bias $B(\theta) = E_{\theta}\tilde{\theta} - \theta$. Suppose the function B is monotone increasing on $(0, \infty)$. Prove that the mean-squared errors satisfy

$$E_{\theta}(\tilde{\theta}_n - \theta)^2 \ge E_{\theta}(\bar{X}_n - \theta)^2 \text{ for all } \theta \in \Theta.$$

[TURN OVER

CAMBRIDGE

Paper 4, Section II

26J Principles of Statistics

Consider a decision problem with parameter space Θ . Define the concepts of a *Bayes decision rule* δ_{π} and of a *least favourable prior*.

Suppose π is a prior distribution on Θ such that the Bayes risk of the Bayes rule equals $\sup_{\theta \in \Theta} R(\delta_{\pi}, \theta)$, where $R(\delta, \theta)$ is the risk function associated to the decision problem. Prove that δ_{π} is least favourable.

Now consider a random variable X arising from the binomial distribution $Bin(n,\theta)$, where $\theta \in \Theta = [0,1]$. Construct a least favourable prior for the squared risk $R(\delta,\theta) = E_{\theta}(\delta(X) - \theta)^2$. [You may use without proof the fact that the Bayes rule for quadratic risk is given by the posterior mean.]

Paper 1, Section II

27J Principles of Statistics

Derive the maximum likelihood estimator $\hat{\theta}_n$ based on independent observations X_1, \ldots, X_n that are identically distributed as $N(\theta, 1)$, where the unknown parameter θ lies in the parameter space $\Theta = \mathbb{R}$. Find the limiting distribution of $\sqrt{n}(\hat{\theta}_n - \theta)$ as $n \to \infty$.

Now define

$$\widetilde{\theta}_n = \widehat{\theta}_n \quad \text{whenever } |\widehat{\theta}_n| > n^{-1/4},$$

$$= 0 \quad \text{otherwise,}$$

and find the limiting distribution of $\sqrt{n}(\tilde{\theta}_n - \theta)$ as $n \to \infty$.

Calculate

$$\lim_{n \to \infty} \sup_{\theta \in \Theta} n E_{\theta} (T_n - \theta)^2$$

for the choices $T_n = \hat{\theta}_n$ and $T_n = \tilde{\theta}_n$. Based on the above findings, which estimator T_n of θ would you prefer? Explain your answer.

[Throughout, you may use standard facts of stochastic convergence, such as the central limit theorem, provided they are clearly stated.]