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Given independent and identically distributed observations X1, . . . ,Xn with finite
mean E(X1) = µ and variance Var(X1) = σ2, explain the notion of a bootstrap sample
Xb

1, . . . ,X
b
n, and discuss how you can use it to construct a confidence interval Cn for µ.

Suppose you can operate a random number generator that can simulate independent
uniform random variables U1, . . . , Un on [0, 1]. How can you use such a random number
generator to simulate a bootstrap sample?

Suppose that (Fn : n ∈ N) and F are cumulative probability distribution functions
defined on the real line, that Fn(t) → F (t) as n → ∞ for every t ∈ R, and that F is
continuous on R. Show that, as n → ∞,

sup
t∈R

|Fn(t)− F (t)| → 0.

State (without proof) the theorem about the consistency of the bootstrap of the
mean, and use it to give an asymptotic justification of the confidence interval Cn. That
is, prove that as n → ∞, PN(µ ∈ Cn) → 1 − α where PN is the joint distribution of
X1,X2, . . . .

[You may use standard facts of stochastic convergence and the Central Limit
Theorem without proof.]
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Define what it means for an estimator θ̂ of an unknown parameter θ to be consistent.

Let Sn be a sequence of random real-valued continuous functions defined on R such
that, as n → ∞, Sn(θ) converges to S(θ) in probability for every θ ∈ R, where S : R → R
is non-random. Suppose that for some θ0 ∈ R and every ε > 0 we have

S(θ0 − ε) < 0 < S(θ0 + ε),

and that Sn has exactly one zero θ̂n for every n ∈ N. Show that θ̂n →P θ0 as n → ∞, and
deduce from this that the maximum likelihood estimator (MLE) based on observations
X1, . . . ,Xn from a N(θ, 1), θ ∈ R model is consistent.

Now consider independent observations X1, . . . ,Xn of bivariate normal random
vectors

Xi = (X1i,X2i)
T ∼ N2

[
(µi, µi)

T , σ2I2
]
, i = 1, . . . , n,

where µi ∈ R, σ > 0 and I2 is the 2× 2 identity matrix. Find the MLE µ̂ = (µ̂1, . . . , µ̂n)
T

of µ = (µ1, . . . , µn)
T and show that the MLE of σ2 equals

σ̂2 =
1

n

n∑

i=1

s2i , s2i =
1

2
[(X1i − µ̂i)

2 + (X2i − µ̂i)
2].

Show that σ̂2 is not consistent for estimating σ2. Explain briefly why the MLE fails in
this model.

[You may use the Law of Large Numbers without proof.]
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Consider a random variable X arising from the binomial distribution Bin(n, θ),
θ ∈ Θ = [0, 1]. Find the maximum likelihood estimator θ̂MLE and the Fisher information
I(θ) for θ ∈ Θ.

Now consider the following priors on Θ:

(i) a uniform U([0, 1]) prior on [0, 1],

(ii) a prior with density π(θ) proportional to
√

I(θ),

(iii) a Beta(
√
n/2,

√
n/2) prior.

Find the means E[θ|X] and modes mθ|X of the posterior distributions corresponding to
the prior distributions (i)–(iii). Which of these posterior decision rules coincide with θ̂MLE?
Which one is minimax for quadratic risk? Justify your answers.

[You may use the following properties of the Beta(a, b) (a > 0, b > 0) distribution.
Its density f(x; a, b), x ∈ [0, 1], is proportional to xa−1(1 − x)b−1, its mean is equal to
a/(a+ b), and its mode is equal to

max(a− 1, 0)

max(a, 1) +max(b, 1)− 2

provided either a > 1 or b > 1.

You may further use the fact that a unique Bayes rule of constant risk is a unique
minimax rule for that risk.]
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Consider a normally distributed random vector X ∈ Rp modelled as X ∼ N(θ, Ip)
where θ ∈ Rp, Ip is the p× p identity matrix, and where p > 3. Define the Stein estimator

θ̂STEIN of θ.

Prove that θ̂STEIN dominates the estimator θ̃ = X for the risk function induced by
quadratic loss

ℓ(a, θ) =

p∑

i=1

(ai − θi)
2, a ∈ Rp.

Show however that the worst case risks coincide, that is, show that

sup
θ∈Rp

Eθ ℓ(X, θ) = sup
θ∈Rp

Eθ ℓ(θ̂STEIN, θ).

[You may use Stein’s lemma without proof, provided it is clearly stated.]
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