Paper 4, Section II

$24 J$ Principles of Statistics

Given independent and identically distributed observations X_{1}, \ldots, X_{n} with finite mean $E\left(X_{1}\right)=\mu$ and variance $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, explain the notion of a bootstrap sample $X_{1}^{b}, \ldots, X_{n}^{b}$, and discuss how you can use it to construct a confidence interval C_{n} for μ.

Suppose you can operate a random number generator that can simulate independent uniform random variables U_{1}, \ldots, U_{n} on $[0,1]$. How can you use such a random number generator to simulate a bootstrap sample?

Suppose that $\left(F_{n}: n \in \mathbb{N}\right)$ and F are cumulative probability distribution functions defined on the real line, that $F_{n}(t) \rightarrow F(t)$ as $n \rightarrow \infty$ for every $t \in \mathbb{R}$, and that F is continuous on \mathbb{R}. Show that, as $n \rightarrow \infty$,

$$
\sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right| \rightarrow 0
$$

State (without proof) the theorem about the consistency of the bootstrap of the mean, and use it to give an asymptotic justification of the confidence interval C_{n}. That is, prove that as $n \rightarrow \infty, P^{\mathbb{N}}\left(\mu \in C_{n}\right) \rightarrow 1-\alpha$ where $P^{\mathbb{N}}$ is the joint distribution of X_{1}, X_{2}, \ldots
[You may use standard facts of stochastic convergence and the Central Limit Theorem without proof.]

Paper 3, Section II

24J Principles of Statistics

Define what it means for an estimator $\hat{\theta}$ of an unknown parameter θ to be consistent.
Let S_{n} be a sequence of random real-valued continuous functions defined on \mathbb{R} such that, as $n \rightarrow \infty, S_{n}(\theta)$ converges to $S(\theta)$ in probability for every $\theta \in \mathbb{R}$, where $S: \mathbb{R} \rightarrow \mathbb{R}$ is non-random. Suppose that for some $\theta_{0} \in \mathbb{R}$ and every $\varepsilon>0$ we have

$$
S\left(\theta_{0}-\varepsilon\right)<0<S\left(\theta_{0}+\varepsilon\right)
$$

and that S_{n} has exactly one zero $\hat{\theta}_{n}$ for every $n \in \mathbb{N}$. Show that $\hat{\theta}_{n} \rightarrow^{P} \theta_{0}$ as $n \rightarrow \infty$, and deduce from this that the maximum likelihood estimator (MLE) based on observations X_{1}, \ldots, X_{n} from a $N(\theta, 1), \theta \in \mathbb{R}$ model is consistent.

Now consider independent observations $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ of bivariate normal random vectors

$$
\mathbf{X}_{i}=\left(X_{1 i}, X_{2 i}\right)^{T} \sim N_{2}\left[\left(\mu_{i}, \mu_{i}\right)^{T}, \sigma^{2} I_{2}\right], \quad i=1, \ldots, n
$$

where $\mu_{i} \in \mathbb{R}, \sigma>0$ and I_{2} is the 2×2 identity matrix. Find the MLE $\hat{\mu}=\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{n}\right)^{T}$ of $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$ and show that the MLE of σ^{2} equals

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} s_{i}^{2}, \quad s_{i}^{2}=\frac{1}{2}\left[\left(X_{1 i}-\hat{\mu}_{i}\right)^{2}+\left(X_{2 i}-\hat{\mu}_{i}\right)^{2}\right] .
$$

Show that $\hat{\sigma}^{2}$ is not consistent for estimating σ^{2}. Explain briefly why the MLE fails in this model.
[You may use the Law of Large Numbers without proof.]

Paper 2, Section II

$25 J$ Principles of Statistics

Consider a random variable X arising from the $\operatorname{binomial}$ distribution $\operatorname{Bin}(n, \theta)$, $\theta \in \Theta=[0,1]$. Find the maximum likelihood estimator $\hat{\theta}_{M L E}$ and the Fisher information $I(\theta)$ for $\theta \in \Theta$.

Now consider the following priors on Θ :
(i) a uniform $U([0,1])$ prior on $[0,1]$,
(ii) a prior with density $\pi(\theta)$ proportional to $\sqrt{I(\theta)}$,
(iii) a $\operatorname{Beta}(\sqrt{n} / 2, \sqrt{n} / 2)$ prior.

Find the means $E[\theta \mid X]$ and modes $m_{\theta} \mid X$ of the posterior distributions corresponding to the prior distributions (i)-(iii). Which of these posterior decision rules coincide with $\hat{\theta}_{M L E}$? Which one is minimax for quadratic risk? Justify your answers.
[You may use the following properties of the $\operatorname{Beta}(a, b)(a>0, b>0)$ distribution. Its density $f(x ; a, b), x \in[0,1]$, is proportional to $x^{a-1}(1-x)^{b-1}$, its mean is equal to $a /(a+b)$, and its mode is equal to

$$
\frac{\max (a-1,0)}{\max (a, 1)+\max (b, 1)-2}
$$

provided either $a>1$ or $b>1$.
You may further use the fact that a unique Bayes rule of constant risk is a unique minimax rule for that risk.]

Paper 1, Section II

25J Principles of Statistics

Consider a normally distributed random vector $X \in \mathbb{R}^{p}$ modelled as $X \sim N\left(\theta, I_{p}\right)$ where $\theta \in \mathbb{R}^{p}, I_{p}$ is the $p \times p$ identity matrix, and where $p \geqslant 3$. Define the Stein estimator $\hat{\theta}_{\text {STEIN }}$ of θ.

Prove that $\hat{\theta}_{\text {STEIN }}$ dominates the estimator $\tilde{\theta}=X$ for the risk function induced by quadratic loss

$$
\ell(a, \theta)=\sum_{i=1}^{p}\left(a_{i}-\theta_{i}\right)^{2}, \quad a \in \mathbb{R}^{p} .
$$

Show however that the worst case risks coincide, that is, show that

$$
\sup _{\theta \in \mathbb{R}^{p}} E_{\theta} \ell(X, \theta)=\sup _{\theta \in \mathbb{R}^{p}} E_{\theta} \ell\left(\hat{\theta}_{S T E I N}, \theta\right) .
$$

[You may use Stein's lemma without proof, provided it is clearly stated.]

