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Paper 4, Section II

27J Principles of Statistics
Suppose you have at hand a pseudo-random number generator that can simulate an

i.i.d. sequence of uniform U [0, 1] distributed random variables U∗
1 , . . . , U

∗
N for any N ∈ N.

Construct an algorithm to simulate an i.i.d. sequence X∗
1 , . . . ,X

∗
N of standard normal

N(0, 1) random variables. [Should your algorithm depend on the inverse of any cumulative
probability distribution function, you are required to provide an explicit expression for this
inverse function.]

Suppose as a matter of urgency you need to approximately evaluate the integral

I =
1√
2π

∫

R

1

(π + |x|)1/4 e
−x2/2dx.

Find an approximation IN of this integral that requires N simulation steps from your
pseudo-random number generator, and which has stochastic accuracy

Pr(|IN − I| > N−1/4) 6 N−1/2,

where Pr denotes the joint law of the simulated random variables. Justify your answer.

Paper 3, Section II

27J Principles of Statistics
State and prove Wilks’ theorem about testing the simple hypothesis H0 : θ = θ0,

against the alternative H1 : θ ∈ Θ \ {θ0}, in a one-dimensional regular parametric model
{f(·, θ) : θ ∈ Θ},Θ ⊆ R. [You may use without proof the results from lectures on the
consistency and asymptotic distribution of maximum likelihood estimators, as well as on
uniform laws of large numbers. Necessary regularity conditions can be assumed without
statement.]

Find the maximum likelihood estimator θ̂n based on i.i.d. observations X1, . . . ,Xn

in a N(0, θ)-model, θ ∈ Θ = (0,∞). Deduce the limit distribution as n → ∞ of the
sequence of statistics

−n
(
log(X2)− (X2 − 1)

)
,

where X2 = (1/n)
∑n

i=1 X
2
i and X1, . . . ,Xn are i.i.d. N(0, 1).
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Paper 2, Section II

28J Principles of Statistics
In a general decision problem, define the concepts of a Bayes rule and of admissi-

bility. Show that a unique Bayes rule is admissible.

Consider i.i.d. observations X1, . . . ,Xn from a Poisson(θ), θ ∈ Θ = (0,∞), model.
Can the maximum likelihood estimator θ̂MLE of θ be a Bayes rule for estimating θ in
quadratic risk for any prior distribution on θ that has a continuous probability density on
(0,∞)? Justify your answer.

Now model the Xi as i.i.d. copies of X|θ ∼ Poisson(θ), where θ is drawn from a
prior that is a Gamma distribution with parameters α > 0 and λ > 0 (given below).
Show that the posterior distribution of θ|X1, . . . ,Xn is a Gamma distribution and find its
parameters. Find the Bayes rule θ̂BAYES for estimating θ in quadratic risk for this prior.
[The Gamma probability density function with parameters α > 0, λ > 0 is given by

f(θ) =
λαθα−1e−λθ

Γ(α)
, θ > 0,

where Γ(α) is the usual Gamma function.]

Finally assume that the Xi have actually been generated from a fixed Poisson(θ0)
distribution, where θ0 > 0. Show that

√
n(θ̂BAYES−θ̂MLE ) converges to zero in probability

and deduce the asymptotic distribution of
√
n(θ̂BAYES − θ0) under the joint law PN

θ0
of the

random variables X1,X2, . . . . [You may use standard results from lectures without proof
provided they are clearly stated.]

Paper 1, Section II

28J Principles of Statistics
State without proof the inequality known as the Cramér–Rao lower bound in a

parametric model {f(·, θ) : θ ∈ Θ},Θ ⊆ R. Give an example of a maximum likelihood
estimator that attains this lower bound, and justify your answer.

Give an example of a parametric model where the maximum likelihood estimator
based on observations X1, . . . ,Xn is biased. State without proof an analogue of the
Cramér–Rao inequality for biased estimators.

Define the concept of a minimax decision rule, and show that the maximum
likelihood estimator θ̂MLE based on X1, . . . ,Xn in a N(θ, 1) model is minimax for
estimating θ ∈ Θ = R in quadratic risk.
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