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Paper 4, Section II

27K Principles of Statistics
Assuming only the existence and properties of the univariate normal distribution,

define Np(µ,Σ), the multivariate normal distribution with mean (row-)vector µ and
dispersion matrix Σ; and Wp(ν; Σ), the Wishart distribution on integer ν > 1 degrees
of freedom and with scale parameter Σ. Show that, if X ∼ Np(µ,Σ), S ∼ Wp(ν; Σ), and

b (1 × q), A (p × q) are fixed, then b +XA ∼ Nq(b + µA,Φ), ATSA ∼ Wp(ν; Φ), where

Φ = ATΣA.

The random (n × p) matrix X has rows that are independently distributed as
Np(M,Σ), where both parameters M and Σ are unknown. Let X := n−11TX, where
1 is the (n × 1) vector of 1s; and Sc := XTΠX, with Π := In − n−111T. State the joint
distribution of X and Sc given the parameters.

Now suppose n > p and Σ is positive definite. Hotelling’s T 2 is defined as

T 2 := n(X −M)
(
S
c)−1

(X −M)T

where S
c
:= Sc/ν with ν := (n − 1). Show that, for any values of M and Σ,

(
ν − p+ 1

νp

)
T 2 ∼ F p

ν−p+1 ,

the F distribution on p and ν − p+ 1 degrees of freedom.

[You may assume that:

1. If S ∼ Wp(ν; Σ) and a is a fixed (p × 1) vector, then

aTΣ−1a

aTS−1a
∼ χ2

ν−p+1.

2. If V ∼ χ2
p, W ∼ χ2

λ are independent, then

V/p

W/λ
∼ F p

λ . ]
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Paper 3, Section II

27K Principles of Statistics
What is meant by a convex decision problem? State and prove a theorem to the

effect that, in a convex decision problem, there is no point in randomising. [You may use
standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set
{1, 2}. The observable X takes value 1 with probability 2/3 when the parameter Θ = 1,
and with probability 3/4 when Θ = 2. The loss function L(θ, a) is 0 if a = θ, otherwise 1.
Describe all the non-randomised decision rules, compute their risk functions, and plot
these as points in the unit square. Identify an inadmissible non-randomised decision rule,
and a decision rule that dominates it.

Show that the minimax rule has risk function (8/17, 8/17), and is Bayes against a
prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with
this prior distribution be bound to use the minimax rule?

Paper 1, Section II

28K Principles of Statistics
When the real parameter Θ takes value θ, variables X1,X2, . . . arise independently

from a distribution Pθ having density function pθ(x) with respect to an underlying
measure µ. Define the score variable Un(θ) and the information function In(θ) for
estimation of Θ based on Xn := (X1, . . . ,Xn), and relate In(θ) to i(θ) := I1(θ).

State and prove the Cramér–Rao inequality for the variance of an unbiased estimator
of Θ. Under what conditions does this inequality become an equality? What is the form
of the estimator in this case? [You may assume Eθ{Un(θ)} = 0, varθ{Un(θ)} = In(θ), and
any further required regularity conditions, without comment.]

Let Θ̂n be the maximum likelihood estimator of Θ based on Xn. What is the
asymptotic distribution of n

1
2 (Θ̂n −Θ) when Θ = θ?

Suppose that, for each n, Θ̂n is unbiased for Θ, and the variance of n
1
2 (Θ̂n − Θ) is

exactly equal to its asymptotic variance. By considering the estimator αΘ̂k + (1 − α)Θ̂n,
or otherwise, show that, for k < n, covθ(Θ̂k, Θ̂n) = varθ(Θ̂n).
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Paper 2, Section II

28K Principles of Statistics
Describe theWeak Sufficiency Principle (WSP) and the Strong Sufficiency Principle

(SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter Φ has a prior distribution which is normal with mean 0 and precision
(inverse variance) hΦ. Given Φ = φ, further parameters Θ := (Θi : i = 1, . . . , I) have
independent normal distributions with mean φ and precision hΘ. Finally, given both
Φ = φ and Θ = θ := (θ1, . . . , θI), observables X := (Xij : i = 1, . . . , I; j = 1, . . . , J) are
independent, Xij being normal with mean θi, and precision hX . The precision parameters

(hΦ, hΘ, hX) are all fixed and known. Let X := (X1, . . . ,XI), where Xi :=
∑J

j=1Xij/J .

Show, directly from the definition of sufficiency, that X is sufficient for (Φ,Θ). [You may
assume without proof that, if Y1, . . . , Yn have independent normal distributions with the
same variance, and Y := n−1

∑n
i=1 Yi, then the vector (Y1−Y , . . . , Yn−Y ) is independent

of Y .]

For data-values x := (xij : i = 1, . . . , I; j = 1, . . . , J), determine the joint
distribution, Πφ say, of Θ, given X = x and Φ = φ. What is the distribution of Φ,
given Θ = θ and X = x?

Using these results, describe clearly how Gibbs sampling combined with Rao–
Blackwellisation could be applied to estimate the posterior joint distribution of Θ, given
X = x.
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