CAMBRIDGE

Paper 4, Section II

27K Principles of Statistics

Assuming only the existence and properties of the univariate normal distribution, define $\mathcal{N}_p(\underline{\mu}, \Sigma)$, the *multivariate normal* distribution with mean (row-)vector $\underline{\mu}$ and dispersion matrix Σ ; and $W_p(\nu; \Sigma)$, the *Wishart* distribution on integer $\nu > 1$ degrees of freedom and with scale parameter Σ . Show that, if $\underline{X} \sim \mathcal{N}_p(\underline{\mu}, \Sigma)$, $S \sim W_p(\nu; \Sigma)$, and $\underline{b} (1 \times q)$, $A (p \times q)$ are fixed, then $\underline{b} + \underline{X}A \sim \mathcal{N}_q(\underline{b} + \underline{\mu}A, \Phi)$, $A^{\mathrm{T}}SA \sim W_p(\nu; \Phi)$, where $\Phi = A^{\mathrm{T}}\Sigma A$.

The random $(n \times p)$ matrix X has rows that are independently distributed as $\mathcal{N}_p(\underline{M}, \Sigma)$, where both parameters \underline{M} and Σ are unknown. Let $\overline{X} := n^{-1} \mathbf{1}^T X$, where **1** is the $(n \times 1)$ vector of 1s; and $S^c := X^T \Pi X$, with $\Pi := I_n - n^{-1} \mathbf{1} \mathbf{1}^T$. State the joint distribution of \overline{X} and S^c given the parameters.

Now suppose n > p and Σ is positive definite. *Hotelling's* T^2 is defined as

$$T^{2} := n(\overline{X} - \underline{M}) \left(\overline{S}^{c}\right)^{-1} \left(\overline{X} - \underline{M}\right)^{\mathrm{T}}$$

where $\overline{S}^c := S^c / \nu$ with $\nu := (n-1)$. Show that, for any values of <u>M</u> and Σ ,

$$\left(\frac{\nu-p+1}{\nu p}\right) T^2 \sim F^p_{\nu-p+1},$$

the F distribution on p and $\nu - p + 1$ degrees of freedom. [You may assume that:

1. If $S \sim W_p(\nu; \Sigma)$ and **a** is a fixed $(p \times 1)$ vector, then

$$\frac{\mathbf{a}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{a}}{\mathbf{a}^{\mathrm{T}} S^{-1} \mathbf{a}} \sim \chi^2_{\nu - p + 1}.$$

2. If $V \sim \chi_p^2$, $W \sim \chi_\lambda^2$ are independent, then

$$\frac{V/p}{W/\lambda} \sim F_{\lambda}^p.$$
]

Paper 3, Section II

27K Principles of Statistics

What is meant by a *convex decision problem*? State and prove a theorem to the effect that, in a convex decision problem, there is no point in randomising. [You may use standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set $\{1, 2\}$. The observable X takes value 1 with probability 2/3 when the parameter $\Theta = 1$, and with probability 3/4 when $\Theta = 2$. The loss function $L(\theta, a)$ is 0 if $a = \theta$, otherwise 1. Describe all the non-randomised decision rules, compute their risk functions, and plot these as points in the unit square. Identify an inadmissible non-randomised decision rule, and a decision rule that dominates it.

Show that the minimax rule has risk function (8/17, 8/17), and is Bayes against a prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with this prior distribution be bound to use the minimax rule?

Paper 1, Section II 28K Principles of Statistics

When the real parameter Θ takes value θ , variables X_1, X_2, \ldots arise independently from a distribution P_{θ} having density function $p_{\theta}(x)$ with respect to an underlying measure μ . Define the score variable $U_n(\theta)$ and the information function $I_n(\theta)$ for estimation of Θ based on $\mathbf{X}^n := (X_1, \ldots, X_n)$, and relate $I_n(\theta)$ to $i(\theta) := I_1(\theta)$.

State and prove the Cramér–Rao inequality for the variance of an unbiased estimator of Θ . Under what conditions does this inequality become an equality? What is the form of the estimator in this case? [You may assume $\mathbb{E}_{\theta}\{U_n(\theta)\} = 0$, $\operatorname{var}_{\theta}\{U_n(\theta)\} = I_n(\theta)$, and any further required regularity conditions, without comment.]

Let $\widehat{\Theta}_n$ be the maximum likelihood estimator of Θ based on X^n . What is the asymptotic distribution of $n^{\frac{1}{2}}(\widehat{\Theta}_n - \Theta)$ when $\Theta = \theta$?

Suppose that, for each n, $\widehat{\Theta}_n$ is unbiased for Θ , and the variance of $n^{\frac{1}{2}}(\widehat{\Theta}_n - \Theta)$ is exactly equal to its asymptotic variance. By considering the estimator $\alpha \widehat{\Theta}_k + (1 - \alpha) \widehat{\Theta}_n$, or otherwise, show that, for k < n, $\operatorname{cov}_{\theta}(\widehat{\Theta}_k, \widehat{\Theta}_n) = \operatorname{var}_{\theta}(\widehat{\Theta}_n)$.

Paper 2, Section II

28K Principles of Statistics

Describe the *Weak Sufficiency Principle* (WSP) and the *Strong Sufficiency Principle* (SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter Φ has a prior distribution which is normal with mean 0 and precision (inverse variance) h_{Φ} . Given $\Phi = \phi$, further parameters $\Theta := (\Theta_i : i = 1, ..., I)$ have independent normal distributions with mean ϕ and precision h_{Θ} . Finally, given both $\Phi = \phi$ and $\Theta = \theta := (\theta_1, ..., \theta_I)$, observables $\mathbf{X} := (X_{ij} : i = 1, ..., I; j = 1, ..., J)$ are independent, X_{ij} being normal with mean θ_i , and precision h_X . The precision parameters $(h_{\Phi}, h_{\Theta}, h_X)$ are all fixed and known. Let $\overline{\mathbf{X}} := (\overline{X}_1, ..., \overline{X}_I)$, where $\overline{X}_i := \sum_{j=1}^J X_{ij}/J$. Show, directly from the definition of sufficiency, that $\overline{\mathbf{X}}$ is sufficient for (Φ, Θ) . [You may assume without proof that, if $Y_1, ..., Y_n$ have independent normal distributions with the same variance, and $\overline{Y} := n^{-1} \sum_{i=1}^n Y_i$, then the vector $(Y_1 - \overline{Y}, ..., Y_n - \overline{Y})$ is independent of \overline{Y} .]

For data-values $\boldsymbol{x} := (x_{ij} : i = 1, \dots, I; j = 1, \dots, J)$, determine the joint distribution, Π_{ϕ} say, of $\boldsymbol{\Theta}$, given $\boldsymbol{X} = \boldsymbol{x}$ and $\boldsymbol{\Phi} = \phi$. What is the distribution of $\boldsymbol{\Phi}$, given $\boldsymbol{\Theta} = \boldsymbol{\theta}$ and $\boldsymbol{X} = \boldsymbol{x}$?

Using these results, describe clearly how Gibbs sampling combined with Rao-Blackwellisation could be applied to estimate the posterior joint distribution of Θ , given X = x.

Part II, 2013