Paper 4, Section II

27K Principles of Statistics

Assuming only the existence and properties of the univariate normal distribution, define $\mathcal{N}_{p}(\underline{\mu}, \Sigma)$, the multivariate normal distribution with mean (row-)vector $\underline{\mu}$ and dispersion matrix Σ; and $W_{p}(\nu ; \Sigma)$, the Wishart distribution on integer $\nu>1$ degrees of freedom and with scale parameter Σ. Show that, if $\underline{X} \sim \mathcal{N}_{p}(\underline{\mu}, \Sigma), S \sim W_{p}(\nu ; \Sigma)$, and $\underline{b}(1 \times q), A(p \times q)$ are fixed, then $\underline{b}+\underline{X} A \sim \mathcal{N}_{q}(\underline{b}+\underline{\mu} A, \Phi), \overline{A^{\mathrm{T}}} S A \sim W_{p}(\nu ; \Phi)$, where $\Phi=A^{\mathrm{T}} \Sigma A$.

The random $(n \times p)$ matrix X has rows that are independently distributed as $\mathcal{N}_{p}(\underline{\mathrm{M}}, \Sigma)$, where both parameters $\underline{\mathrm{M}}$ and Σ are unknown. Let $\underline{\bar{X}}:=n^{-1} \mathbf{1}^{\mathrm{T}} X$, where $\mathbf{1}$ is the $(n \times 1)$ vector of 1 s ; and $S^{c}:=X^{\mathrm{T}} \Pi X$, with $\Pi:=I_{n}-n^{-1} \mathbf{1 1} \mathbf{1}^{\mathrm{T}}$. State the joint distribution of $\underline{\bar{X}}$ and S^{c} given the parameters.

Now suppose $n>p$ and Σ is positive definite. Hotelling's T^{2} is defined as

$$
T^{2}:=n(\underline{\bar{X}}-\underline{\mathrm{M}})\left(\bar{S}^{c}\right)^{-1}(\underline{\bar{X}}-\underline{\mathrm{M}})^{\mathrm{T}}
$$

where $\bar{S}^{c}:=S^{c} / \nu$ with $\nu:=(n-1)$. Show that, for any values of \underline{M} and Σ,

$$
\left(\frac{\nu-p+1}{\nu p}\right) T^{2} \sim F_{\nu-p+1}^{p}
$$

the F distribution on p and $\nu-p+1$ degrees of freedom.
[You may assume that:

1. If $S \sim W_{p}(\nu ; \Sigma)$ and \mathbf{a} is a fixed $(p \times 1)$ vector, then

$$
\frac{\mathbf{a}^{\mathrm{T}} \Sigma^{-1} \mathbf{a}}{\mathbf{a}^{\mathrm{T}} S^{-1} \mathbf{a}} \sim \chi_{\nu-p+1}^{2}
$$

2. If $V \sim \chi_{p}^{2}, W \sim \chi_{\lambda}^{2}$ are independent, then

$$
\frac{V / p}{W / \lambda} \sim F_{\lambda}^{p}
$$

Paper 3, Section II

27K Principles of Statistics

What is meant by a convex decision problem? State and prove a theorem to the effect that, in a convex decision problem, there is no point in randomising. [You may use standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set $\{1,2\}$. The observable X takes value 1 with probability $2 / 3$ when the parameter $\Theta=1$, and with probability $3 / 4$ when $\Theta=2$. The loss function $L(\theta, a)$ is 0 if $a=\theta$, otherwise 1 . Describe all the non-randomised decision rules, compute their risk functions, and plot these as points in the unit square. Identify an inadmissible non-randomised decision rule, and a decision rule that dominates it.

Show that the minimax rule has risk function $(8 / 17,8 / 17)$, and is Bayes against a prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with this prior distribution be bound to use the minimax rule?

Paper 1, Section II

28K Principles of Statistics

When the real parameter Θ takes value θ, variables X_{1}, X_{2}, \ldots arise independently from a distribution P_{θ} having density function $p_{\theta}(x)$ with respect to an underlying measure μ. Define the score variable $U_{n}(\theta)$ and the information function $I_{n}(\theta)$ for estimation of Θ based on $\boldsymbol{X}^{n}:=\left(X_{1}, \ldots, X_{n}\right)$, and relate $I_{n}(\theta)$ to $i(\theta):=I_{1}(\theta)$.

State and prove the Cramér-Rao inequality for the variance of an unbiased estimator of Θ. Under what conditions does this inequality become an equality? What is the form of the estimator in this case? [You may assume $\mathbb{E}_{\theta}\left\{U_{n}(\theta)\right\}=0, \operatorname{var}_{\theta}\left\{U_{n}(\theta)\right\}=I_{n}(\theta)$, and any further required regularity conditions, without comment.]

Let $\widehat{\Theta}_{n}$ be the maximum likelihood estimator of Θ based on \boldsymbol{X}^{n}. What is the asymptotic distribution of $n^{\frac{1}{2}}\left(\widehat{\Theta}_{n}-\Theta\right)$ when $\Theta=\theta$?

Suppose that, for each $n, \widehat{\Theta}_{n}$ is unbiased for Θ, and the variance of $n^{\frac{1}{2}}\left(\widehat{\Theta}_{n}-\Theta\right)$ is exactly equal to its asymptotic variance. By considering the estimator $\alpha \widehat{\Theta}_{k}+(1-\alpha) \widehat{\Theta}_{n}$, or otherwise, show that, for $k<n, \operatorname{cov}_{\theta}\left(\widehat{\Theta}_{k}, \widehat{\Theta}_{n}\right)=\operatorname{var}_{\theta}\left(\widehat{\Theta}_{n}\right)$.

Paper 2, Section II

28K Principles of Statistics

Describe the Weak Sufficiency Principle (WSP) and the Strong Sufficiency Principle (SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter Φ has a prior distribution which is normal with mean 0 and precision (inverse variance) h_{Φ}. Given $\Phi=\phi$, further parameters $\Theta:=\left(\Theta_{i}: i=1, \ldots, I\right)$ have independent normal distributions with mean ϕ and precision h_{Θ}. Finally, given both $\Phi=\phi$ and $\boldsymbol{\Theta}=\boldsymbol{\theta}:=\left(\theta_{1}, \ldots, \theta_{I}\right)$, observables $\boldsymbol{X}:=\left(X_{i j}: i=1, \ldots, I ; j=1, \ldots, J\right)$ are independent, $X_{i j}$ being normal with mean θ_{i}, and precision h_{X}. The precision parameters $\left(h_{\Phi}, h_{\Theta}, h_{X}\right)$ are all fixed and known. Let $\overline{\boldsymbol{X}}:=\left(\bar{X}_{1}, \ldots, \bar{X}_{I}\right)$, where $\bar{X}_{i}:=\sum_{j=1}^{J} X_{i j} / J$. Show, directly from the definition of sufficiency, that $\overline{\boldsymbol{X}}$ is sufficient for $(\Phi, \boldsymbol{\Theta})$. [You may assume without proof that, if Y_{1}, \ldots, Y_{n} have independent normal distributions with the same variance, and $\bar{Y}:=n^{-1} \sum_{i=1}^{n} Y_{i}$, then the vector $\left(Y_{1}-\bar{Y}, \ldots, Y_{n}-\bar{Y}\right)$ is independent of \bar{Y}.]

For data-values $\boldsymbol{x}:=\left(x_{i j}: i=1, \ldots, I ; j=1, \ldots, J\right)$, determine the joint distribution, Π_{ϕ} say, of $\boldsymbol{\Theta}$, given $\boldsymbol{X}=\boldsymbol{x}$ and $\Phi=\phi$. What is the distribution of Φ, given $\boldsymbol{\Theta}=\boldsymbol{\theta}$ and $\boldsymbol{X}=\boldsymbol{x}$?

Using these results, describe clearly how Gibbs sampling combined with RaoBlackwellisation could be applied to estimate the posterior joint distribution of $\boldsymbol{\Theta}$, given $\boldsymbol{X}=\boldsymbol{x}$.

