Paper 4, Section II

27K Principles of Statistics

For $i=1, \ldots, n$, the pairs $\left(X_{i}, Y_{i}\right)$ have independent bivariate normal distributions, with $\mathbb{E}\left(X_{i}\right)=\mu_{X}, \mathbb{E}\left(Y_{i}\right)=\mu_{Y}, \operatorname{var}\left(X_{i}\right)=\operatorname{var}\left(Y_{i}\right)=\phi$, and $\operatorname{corr}\left(X_{i}, Y_{i}\right)=\rho$. The means μ_{X}, μ_{Y} are known; the parameters $\phi>0$ and $\rho \in(-1,1)$ are unknown.

Show that the joint distribution of all the variables belongs to an exponential family, and identify the natural sufficient statistic, natural parameter, and mean-value parameter. Hence or otherwise, find the maximum likelihood estimator $\hat{\rho}$ of ρ.

Let $U_{i}:=X_{i}+Y_{i}, V_{i}:=X_{i}-Y_{i}$. What is the joint distribution of $\left(U_{i}, V_{i}\right)$?
Show that the distribution of

$$
\frac{(1+\hat{\rho}) /(1-\hat{\rho})}{(1+\rho) /(1-\rho)}
$$

is F_{n}^{n}. Hence describe a $(1-\alpha)$-level confidence interval for ρ. Briefly explain what would change if μ_{X} and μ_{Y} were also unknown.
[Recall that the distribution $F_{\nu_{2}}^{\nu_{1}}$ is that of $\left(W_{1} / \nu_{1}\right) /\left(W_{2} / \nu_{2}\right)$, where, independently for $j=1$ and $j=2, W_{j}$ has the chi-squared distribution with ν_{j} degrees of freedom.]

Paper 3, Section II

27K Principles of Statistics

The parameter vector is $\boldsymbol{\Theta} \equiv\left(\Theta_{1}, \Theta_{2}, \Theta_{3}\right)$, with $\Theta_{i}>0, \Theta_{1}+\Theta_{2}+\Theta_{3}=1$. Given $\boldsymbol{\Theta}=\boldsymbol{\theta} \equiv\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$, the integer random vector $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right)$ has a trinomial distribution, with probability mass function

$$
\begin{equation*}
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{n!}{x_{1}!x_{2}!x_{3}!} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \theta_{3}^{x_{3}}, \quad\left(x_{i} \geqslant 0, \sum_{i=1}^{3} x_{i}=n\right) . \tag{1}
\end{equation*}
$$

Compute the score vector for the parameter $\boldsymbol{\Theta}^{*}:=\left(\Theta_{1}, \Theta_{2}\right)$, and, quoting any relevant general result, use this to determine $\mathbb{E}\left(X_{i}\right)(i=1,2,3)$.

Considering (1) as an exponential family with mean-value parameter $\boldsymbol{\Theta}^{*}$, what is the corresponding natural parameter $\boldsymbol{\Phi} \equiv\left(\Phi_{1}, \Phi_{2}\right)$?

Compute the information matrix I for $\boldsymbol{\Theta}^{*}$, which has (i, j)-entry

$$
I_{i j}=-\mathbb{E}\left(\frac{\partial^{2} l}{\partial \theta_{i} \partial \theta_{j}}\right) \quad(i, j=1,2),
$$

where l denotes the log-likelihood function, based on \boldsymbol{X}, expressed in terms of $\left(\theta_{1}, \theta_{2}\right)$.
Show that the variance of $\log \left(X_{1} / X_{3}\right)$ is asymptotic to $n^{-1}\left(\theta_{1}^{-1}+\theta_{3}^{-1}\right)$ as $n \rightarrow \infty$. [Hint. The information matrix I_{Φ} for $\boldsymbol{\Phi}$ is I^{-1} and the dispersion matrix of the maximum likelihood estimator $\widehat{\boldsymbol{\Phi}}$ behaves, asymptotically (for $n \rightarrow \infty$) as I_{Φ}^{-1}.]

Paper 2, Section II

28K Principles of Statistics

Carefully defining all italicised terms, show that, if a sufficiently general method of inference respects both the Weak Sufficiency Principle and the Conditionality Principle, then it respects the Likelihood Principle.

The position X_{t} of a particle at time $t>0$ has the Normal distribution $\mathcal{N}(0, \phi t)$, where ϕ is the value of an unknown parameter Φ; and the time, T_{x}, at which the particle first reaches position $x \neq 0$ has probability density function

$$
p_{x}(t)=\frac{|x|}{\sqrt{2 \pi \phi t^{3}}} \exp \left(-\frac{x^{2}}{2 \phi t}\right) \quad(t>0) .
$$

Experimenter E_{1} observes X_{τ}, and experimenter E_{2} observes T_{ξ}, where $\tau>0, \xi \neq 0$ are fixed in advance. It turns out that $T_{\xi}=\tau$. What does the Likelihood Principle say about the inferences about Φ to be made by the two experimenters?
E_{1} bases his inference about Φ on the distribution and observed value of X_{τ}^{2} / τ, while E_{2} bases her inference on the distribution and observed value of ξ^{2} / T_{ξ}. Show that these choices respect the Likelihood Principle.

Paper 1, Section II

28K Principles of Statistics

Prove that, if T is complete sufficient for Θ, and S is a function of T, then S is the minimum variance unbiased estimator of $\mathbb{E}(S \mid \Theta)$.

When the parameter Θ takes a value $\theta>0$, observables $\left(X_{1}, \ldots, X_{n}\right)$ arise independently from the exponential distribution $\mathcal{E}(\theta)$, having probability density function

$$
p(x \mid \theta)=\theta e^{-\theta x} \quad(x>0)
$$

Show that the family of distributions

$$
\begin{equation*}
\Theta \sim \operatorname{Gamma}(\alpha, \beta) \quad(\alpha>0, \beta>0), \tag{1}
\end{equation*}
$$

with probability density function

$$
\pi(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} \quad(\theta>0)
$$

is a conjugate family for Bayesian inference about Θ (where $\Gamma(\alpha)$ is the Gamma function).
Show that the expectation of $\Lambda:=\log \Theta$, under prior distribution (1), is $\psi(\alpha)-\log \beta$, where $\psi(\alpha):=(\mathrm{d} / \mathrm{d} \alpha) \log \Gamma(\alpha)$. What is the prior variance of Λ ? Deduce the posterior expectation and variance of Λ, given $\left(X_{1}, \ldots, X_{n}\right)$.

Let $\widetilde{\Lambda}$ denote the limiting form of the posterior expectation of Λ as $\alpha, \beta \downarrow 0$. Show that $\widetilde{\Lambda}$ is the minimum variance unbiased estimator of Λ. What is its variance?

