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Paper 4, Section II

27K Principles of Statistics
For i = 1, . . . , n, the pairs (Xi, Yi) have independent bivariate normal distributions,

with E(Xi) = µX , E(Yi) = µY , var(Xi) = var(Yi) = φ, and corr(Xi, Yi) = ρ. The means
µX , µY are known; the parameters φ > 0 and ρ ∈ (−1, 1) are unknown.

Show that the joint distribution of all the variables belongs to an exponential family,
and identify the natural sufficient statistic, natural parameter, and mean-value parameter.
Hence or otherwise, find the maximum likelihood estimator ρ̂ of ρ.

Let Ui := Xi + Yi, Vi := Xi − Yi. What is the joint distribution of (Ui, Vi)?

Show that the distribution of

(1 + ρ̂)/(1− ρ̂)

(1 + ρ)/(1− ρ)

is Fn
n . Hence describe a (1−α)-level confidence interval for ρ. Briefly explain what would

change if µX and µY were also unknown.

[Recall that the distribution F ν1
ν2 is that of (W1/ν1)/(W2/ν2), where, independently for

j = 1 and j = 2, Wj has the chi-squared distribution with νj degrees of freedom.]

Part II, 2012 List of Questions [TURN OVER



78

Paper 3, Section II

27K Principles of Statistics
The parameter vector is Θ ≡ (Θ1,Θ2,Θ3), with Θi > 0, Θ1 + Θ2 + Θ3 = 1.

Given Θ = θ ≡ (θ1, θ2, θ3), the integer random vector X = (X1,X2,X3) has a trinomial
distribution, with probability mass function

p(x | θ) = n!

x1!x2!x3!
θx1
1 θx2

2 θx3
3 ,

(
xi > 0,

3∑

i=1

xi = n

)
. (1)

Compute the score vector for the parameter Θ∗ := (Θ1,Θ2), and, quoting any relevant
general result, use this to determine E(Xi) (i = 1, 2, 3).

Considering (1) as an exponential family with mean-value parameter Θ∗, what is
the corresponding natural parameter Φ ≡ (Φ1,Φ2)?

Compute the information matrix I for Θ∗, which has (i, j)-entry

Iij = −E
(

∂2l

∂θi∂θj

)
(i, j = 1, 2) ,

where l denotes the log-likelihood function, based on X, expressed in terms of (θ1, θ2).

Show that the variance of log(X1/X3) is asymptotic to n−1(θ−1
1 + θ−1

3 ) as n → ∞.
[Hint. The information matrix IΦ for Φ is I−1 and the dispersion matrix of the maximum
likelihood estimator Φ̂ behaves, asymptotically (for n → ∞) as I−1

Φ .]
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Paper 2, Section II

28K Principles of Statistics
Carefully defining all italicised terms, show that, if a sufficiently general method of

inference respects both the Weak Sufficiency Principle and the Conditionality Principle,
then it respects the Likelihood Principle.

The position Xt of a particle at time t > 0 has the Normal distribution N (0, φt),
where φ is the value of an unknown parameter Φ; and the time, Tx, at which the particle
first reaches position x 6= 0 has probability density function

px(t) =
|x|√
2πφt3

exp

(
− x2

2φt

)
(t > 0) .

Experimenter E1 observes Xτ , and experimenter E2 observes Tξ, where τ > 0, ξ 6= 0
are fixed in advance. It turns out that Tξ = τ . What does the Likelihood Principle say
about the inferences about Φ to be made by the two experimenters?

E1 bases his inference about Φ on the distribution and observed value of X2
τ /τ ,

while E2 bases her inference on the distribution and observed value of ξ2/Tξ. Show that
these choices respect the Likelihood Principle.
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Paper 1, Section II

28K Principles of Statistics
Prove that, if T is complete sufficient for Θ, and S is a function of T , then S is the

minimum variance unbiased estimator of E(S |Θ).

When the parameter Θ takes a value θ > 0, observables (X1, . . . ,Xn) arise
independently from the exponential distribution E(θ), having probability density function

p(x | θ) = θe−θx (x > 0) .

Show that the family of distributions

Θ ∼ Gamma (α, β) (α > 0, β > 0) , (1)

with probability density function

π(θ) =
βα

Γ(α)
θα−1e−βθ (θ > 0) ,

is a conjugate family for Bayesian inference about Θ (where Γ(α) is the Gamma function).

Show that the expectation of Λ := log Θ, under prior distribution (1), is ψ(α)−log β,
where ψ(α) := (d/dα) log Γ(α). What is the prior variance of Λ? Deduce the posterior
expectation and variance of Λ, given (X1, . . . ,Xn).

Let Λ̃ denote the limiting form of the posterior expectation of Λ as α, β ↓ 0. Show
that Λ̃ is the minimum variance unbiased estimator of Λ. What is its variance?
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