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Paper 4, Section 11
27K Principles of Statistics

For i =1,...,n, the pairs (X;,Y;) have independent bivariate normal distributions,
with E(X;) = pux, E(Y;) = py, var(X;) = var(Y;) = ¢, and corr(X;,Y;) = p. The means
wx, tby are known; the parameters ¢ > 0 and p € (—1,1) are unknown.

Show that the joint distribution of all the variables belongs to an exponential family,
and identify the natural sufficient statistic, natural parameter, and mean-value parameter.
Hence or otherwise, find the maximum likelihood estimator p of p.

Let U; := X; +Y;, V; ;= X; — Y;. What is the joint distribution of (U;, V;)?
Show that the distribution of

(1+p)/(1—p)
(1+p)/(1=p)

is F'. Hence describe a (1 — «)-level confidence interval for p. Briefly explain what would
change if px and puy were also unknown.

[Recall that the distribution F}} is that of (Wy/v1)/(Wa/v2), where, independently for
j=1and j =2, Wj has the chi-squared distribution with v; degrees of freedom.|
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The parameter vector is @ = (01,02,03), with ©; > 0, ©; + O3 + O3 = 1.
Given © = 0 = (01, 02,03), the integer random vector X = (X7, X, X3) has a trinomial
distribution, with probability mass function

3
n!
p(x|6)= P 07 05° 05° (iEz >0, Y @ = n) : (1)
lxg!as! Pt
Compute the score vector for the parameter @* := (01,03), and, quoting any relevant

general result, use this to determine E(X;) (i = 1,2, 3).

Considering (1) as an exponential family with mean-value parameter ®*, what is
the corresponding natural parameter ® = (®1, $3)7

Compute the information matrix I for ®*, which has (i, j)-entry

9%l ..
Iij =-E (M) (%J = 172)7

where [ denotes the log-likelihood function, based on X, expressed in terms of (61, 65).

Show that the variance of log(X;/X3) is asymptotic to n= (6, + 651) as n — oo,
[Hint. The information matriz Iy for ® is I7" and the dispersion matriz of the mazimum
likelihood estimator ® behaves, asymptotically (for n — oo) as I31.]
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Carefully defining all italicised terms, show that, if a sufficiently general method of
inference respects both the Weak Sufficiency Principle and the Conditionality Principle,
then it respects the Likelihood Principle.

The position X; of a particle at time ¢ > 0 has the Normal distribution A(0, ¢t),
where ¢ is the value of an unknown parameter ®; and the time, T}, at which the particle
first reaches position x # 0 has probability density function

|| z?
2e) = s <_T¢t> (£>0).

Experimenter F; observes X,, and experimenter Fy observes T¢, where 7> 0, £ # 0
are fixed in advance. It turns out that T; = 7. What does the Likelihood Principle say
about the inferences about ® to be made by the two experimenters?

E; bases his inference about ® on the distribution and observed value of X2 /7,
while E5 bases her inference on the distribution and observed value of £2/T¢. Show that
these choices respect the Likelihood Principle.
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Prove that, if T is complete sufficient for ©, and S is a function of T, then S is the
minimum variance unbiased estimator of E(S|©).

When the parameter © takes a value 6 > 0, observables (Xi,...,X,) arise
independently from the exponential distribution £(6), having probability density function

p(x]0)=0e (x>0).
Show that the family of distributions
O ~ Gamma (o, ) (a>0,58>0), (1)

with probability density function
B 1.—80
0) = ——0% e 6>0),
7(0) = g0 (0>0)
is a conjugate family for Bayesian inference about © (where I'(«v) is the Gamma function).

Show that the expectation of A := log O, under prior distribution (1), is ¥ («)—log S,
where ¢(a) := (d/da)logI'(a)). What is the prior variance of A? Deduce the posterior
expectation and variance of A, given (Xi,...,X,).

Let A denote the limiting form of the posterior expectation of A as «, 8 | 0. Show
that A is the minimum variance unbiased estimator of A. What is its variance?
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