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Paper 1, Section II

28K Principles of Statistics
Define admissible, Bayes, minimax decision rules.

A random vector X = (X1,X2,X3)
T has independent components, whereXi has the

normal distribution N (θi, 1) when the parameter vector Θ takes the value θ = (θ1, θ2, θ3)
T.

It is required to estimate Θ by a point a ∈ R3, with loss function L(θ, a) = ‖a − θ‖2.
What is the risk function of the maximum-likelihood estimator Θ̂ := X? Show that Θ̂ is
dominated by the estimator Θ̃ := (1− ‖X‖−2)X.

Paper 2, Section II

28K Principles of Statistics
Random variables X1, . . . ,Xn are independent and identically distributed from the

normal distribution with unknown mean M and unknown precision (inverse variance) H.
Show that the likelihood function, for data X1 = x1, . . . ,Xn = xn, is

Ln(µ, h) ∝ hn/2 exp
(
−1

2h
{
n (x− µ)2 + S

})
,

where x := n−1
∑

i xi and S :=
∑

i(xi − x)2.

A bivariate prior distribution for (M,H) is specified, in terms of hyperparameters
(α0, β0,m0, λ0), as follows. The marginal distribution of H is Γ(α0, β0), with density

π(h) ∝ hα0−1e−β0h (h > 0) ,

and the conditional distribution of M, given H = h, is normal with mean m0 and precision
λ0h.

Show that the conditional prior distribution of H, given M = µ, is

H | M = µ ∼ Γ
(
α0 +

1
2 , β0 +

1
2λ0 (µ−m0)

2
)
.

Show that the posterior joint distribution of (M,H), given X1 = x1, . . . ,Xn = xn,
has the same form as the prior, with updated hyperparameters (αn, βn,mn, λn) which you
should express in terms of the prior hyperparameters and the data.

[You may use the identity

p(t− a)2 + q(t− b)2 = (t− δ)2 + pq(a− b)2 ,

where p+ q = 1 and δ = pa+ qb.]

Explain how you could implement Gibbs sampling to generate a random sample
from the posterior joint distribution.
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Paper 3, Section II

27K Principles of Statistics
Random variables X1,X2, . . . are independent and identically distributed from the

exponential distribution E(θ), with density function

pX(x | θ) = θe−θx (x > 0) ,

when the parameter Θ takes value θ > 0. The following experiment is performed. First X1

is observed. Thereafter, if X1 = x1, . . . ,Xi = xi have been observed (i > 1), a coin having
probability α(xi) of landing heads is tossed, where α : R → (0, 1) is a known function and
the coin toss is independent of the X’s and previous tosses. If it lands heads, no further
observations are made; if tails, Xi+1 is observed.

Let N be the total number of X’s observed, and X := (X1, . . . ,XN ). Write down
the likelihood function for Θ based on data X = (x1, . . . , xn), and identify a minimal
sufficient statistic. What does the likelihood principle have to say about inference from
this experiment?

Now consider the experiment that only records Y := XN . Show that the density
function of Y has the form

pY (y | θ) = exp{a(y)− k(θ)− θy} .

Assuming the function a(·) is twice differentiable and that both pY (y | θ) and ∂pY (y | θ)/∂y
vanish at 0 and ∞, show that a′(Y ) is an unbiased estimator of Θ, and find its variance.

Stating clearly any general results you use, deduce that

−k′′(θ)Eθ{a′′(Y )} > 1 .
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Paper 4, Section II

27K Principles of Statistics
What does it mean to say that a (1× p) random vector ξ has a multivariate normal

distribution?

Suppose ξ = (X,Y ) has the bivariate normal distribution with mean vector
µ = (µX , µY ), and dispersion matrix

Σ =

(
σXX σXY

σXY σY Y

)
.

Show that, with β := σXY /σXX , Y − βX is independent of X, and thus that the
conditional distribution of Y given X is normal with mean µY + β(X − µX) and variance
σY Y ·X := σY Y − σ2

XY /σXX .

For i = 1, . . . , n, ξi = (Xi, Yi) are independent and identically distributed with the
above distribution, where all elements of µ and Σ are unknown. Let

S =

(
SXX SXY

SXY SY Y

)
:=

n∑

i=1

(ξi − ξ)T(ξi − ξ) ,

where ξ := n−1
∑n

i=1 ξi.

The sample correlation coefficient is r := SXY /
√
SXXSY Y . Show that the distribu-

tion of r depends only on the population correlation coefficient ρ := σXY /
√
σXXσY Y .

Student’s t-statistic (on n − 2 degrees of freedom) for testing the null hypothesis
H0 : β = 0 is

t :=
β̂√

SY Y ·X/(n− 2)SXX

,

where β̂ := SXY /SXX and SY Y ·X := SY Y − S2
XY /SXX . Its density when H0 is true is

p(t) = C

(
1 +

t2

n− 2

)−1
2 (n−1)

,

where C is a constant that need not be specified.

Express t in terms of r, and hence derive the density of r when ρ = 0.

How could you use the sample correlation r to test the hypothesis ρ = 0?
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