Paper 1, Section II

28K Principles of Statistics

Define admissible, Bayes, minimax decision rules.
A random vector $X=\left(X_{1}, X_{2}, X_{3}\right)^{\mathrm{T}}$ has independent components, where X_{i} has the normal distribution $\mathcal{N}\left(\theta_{i}, 1\right)$ when the parameter vector Θ takes the value $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\mathrm{T}}$. It is required to estimate Θ by a point $a \in \mathbb{R}^{3}$, with loss function $L(\theta, a)=\|a-\theta\|^{2}$. What is the risk function of the maximum-likelihood estimator $\widehat{\Theta}:=X$? Show that $\widehat{\Theta}$ is dominated by the estimator $\widetilde{\Theta}:=\left(1-\|X\|^{-2}\right) X$.

Paper 2, Section II

28K Principles of Statistics

Random variables X_{1}, \ldots, X_{n} are independent and identically distributed from the normal distribution with unknown mean M and unknown precision (inverse variance) H. Show that the likelihood function, for data $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, is

$$
L_{n}(\mu, h) \propto h^{n / 2} \exp \left(-\frac{1}{2} h\left\{n(\bar{x}-\mu)^{2}+S\right\}\right)
$$

where $\bar{x}:=n^{-1} \sum_{i} x_{i}$ and $S:=\sum_{i}\left(x_{i}-\bar{x}\right)^{2}$.
A bivariate prior distribution for (M, H) is specified, in terms of hyperparameters $\left(\alpha_{0}, \beta_{0}, m_{0}, \lambda_{0}\right)$, as follows. The marginal distribution of H is $\Gamma\left(\alpha_{0}, \beta_{0}\right)$, with density

$$
\pi(h) \propto h^{\alpha_{0}-1} e^{-\beta_{0} h} \quad(h>0)
$$

and the conditional distribution of M , given $H=h$, is normal with mean m_{0} and precision $\lambda_{0} h$.

Show that the conditional prior distribution of H, given $\mathrm{M}=\mu$, is

$$
H \left\lvert\, \mathrm{M}=\mu \quad \sim \quad \Gamma\left(\alpha_{0}+\frac{1}{2}, \beta_{0}+\frac{1}{2} \lambda_{0}\left(\mu-m_{0}\right)^{2}\right)\right.
$$

Show that the posterior joint distribution of (M, H), given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, has the same form as the prior, with updated hyperparameters ($\alpha_{n}, \beta_{n}, m_{n}, \lambda_{n}$) which you should express in terms of the prior hyperparameters and the data.
[You may use the identity

$$
p(t-a)^{2}+q(t-b)^{2}=(t-\delta)^{2}+p q(a-b)^{2}
$$

where $p+q=1$ and $\delta=p a+q b$.]
Explain how you could implement Gibbs sampling to generate a random sample from the posterior joint distribution.

Paper 3, Section II

27K Principles of Statistics

Random variables X_{1}, X_{2}, \ldots are independent and identically distributed from the exponential distribution $\mathcal{E}(\theta)$, with density function

$$
p_{X}(x \mid \theta)=\theta e^{-\theta x} \quad(x>0)
$$

when the parameter Θ takes value $\theta>0$. The following experiment is performed. First X_{1} is observed. Thereafter, if $X_{1}=x_{1}, \ldots, X_{i}=x_{i}$ have been observed ($i \geqslant 1$), a coin having probability $\alpha\left(x_{i}\right)$ of landing heads is tossed, where $\alpha: \mathbb{R} \rightarrow(0,1)$ is a known function and the coin toss is independent of the X 's and previous tosses. If it lands heads, no further observations are made; if tails, X_{i+1} is observed.

Let N be the total number of X^{\prime} s observed, and $\mathbf{X}:=\left(X_{1}, \ldots, X_{N}\right)$. Write down the likelihood function for Θ based on data $\mathbf{X}=\left(x_{1}, \ldots, x_{n}\right)$, and identify a minimal sufficient statistic. What does the likelihood principle have to say about inference from this experiment?

Now consider the experiment that only records $Y:=X_{N}$. Show that the density function of Y has the form

$$
p_{Y}(y \mid \theta)=\exp \{a(y)-k(\theta)-\theta y\} .
$$

Assuming the function $a(\cdot)$ is twice differentiable and that both $p_{Y}(y \mid \theta)$ and $\partial p_{Y}(y \mid \theta) / \partial y$ vanish at 0 and ∞, show that $a^{\prime}(Y)$ is an unbiased estimator of Θ, and find its variance.

Stating clearly any general results you use, deduce that

$$
-k^{\prime \prime}(\theta) \mathbb{E}_{\theta}\left\{a^{\prime \prime}(Y)\right\} \geqslant 1
$$

Paper 4, Section II

27K Principles of Statistics

What does it mean to say that a $(1 \times p)$ random vector ξ has a multivariate normal distribution?

Suppose $\xi=(X, Y)$ has the bivariate normal distribution with mean vector $\mu=\left(\mu_{X}, \mu_{Y}\right)$, and dispersion matrix

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{X X} & \sigma_{X Y} \\
\sigma_{X Y} & \sigma_{Y Y}
\end{array}\right)
$$

Show that, with $\beta:=\sigma_{X Y} / \sigma_{X X}, Y-\beta X$ is independent of X, and thus that the conditional distribution of Y given X is normal with mean $\mu_{Y}+\beta\left(X-\mu_{X}\right)$ and variance $\sigma_{Y Y \cdot X}:=\sigma_{Y Y}-\sigma_{X Y}^{2} / \sigma_{X X}$.

For $i=1, \ldots, n, \xi_{i}=\left(X_{i}, Y_{i}\right)$ are independent and identically distributed with the above distribution, where all elements of μ and Σ are unknown. Let

$$
S=\left(\begin{array}{cc}
S_{X X} & S_{X Y} \\
S_{X Y} & S_{Y Y}
\end{array}\right):=\sum_{i=1}^{n}\left(\xi_{i}-\bar{\xi}\right)^{\mathrm{T}}\left(\xi_{i}-\bar{\xi}\right)
$$

where $\bar{\xi}:=n^{-1} \sum_{i=1}^{n} \xi_{i}$.
The sample correlation coefficient is $r:=S_{X Y} / \sqrt{S_{X X} S_{Y Y}}$. Show that the distribution of r depends only on the population correlation coefficient $\rho:=\sigma_{X Y} / \sqrt{\sigma_{X X} \sigma_{Y Y}}$.

Student's t-statistic (on $n-2$ degrees of freedom) for testing the null hypothesis $H_{0}: \beta=0$ is

$$
t:=\frac{\widehat{\beta}}{\sqrt{S_{Y Y \cdot X} /(n-2) S_{X X}}}
$$

where $\widehat{\beta}:=S_{X Y} / S_{X X}$ and $S_{Y Y \cdot X}:=S_{Y Y}-S_{X Y}^{2} / S_{X X}$. Its density when H_{0} is true is

$$
p(t)=C\left(1+\frac{t^{2}}{n-2}\right)^{-\frac{1}{2}(n-1)}
$$

where C is a constant that need not be specified.
Express t in terms of r, and hence derive the density of r when $\rho=0$.
How could you use the sample correlation r to test the hypothesis $\rho=0$?

