Paper 1, Section II

28J Principles of Statistics

The distribution of a random variable X is obtained from the binomial distribution $\mathcal{B}(n ; \Pi)$ by conditioning on $X>0$; here $\Pi \in(0,1)$ is an unknown probability parameter and n is known. Show that the distributions of X form an exponential family and identify the natural sufficient statistic T, natural parameter Φ, and cumulant function $k(\phi)$. Using general properties of the cumulant function, compute the mean and variance of X when $\Pi=\pi$. Write down an equation for the maximum likelihood estimate $\widehat{\Pi}$ of Π and explain why, when $\Pi=\pi$, the distribution of $\widehat{\Pi}$ is approximately normal $\mathcal{N}(\pi, \pi(1-\pi) / n)$ for large n.

Suppose we observe $X=1$. It is suggested that, since the condition $X>0$ is then automatically satisfied, general principles of inference require that the inference to be drawn should be the same as if the distribution of X had been $\mathcal{B}(n ; \Pi)$ and we had observed $X=1$. Comment briefly on this suggestion.

Paper 2, Section II

28J Principles of Statistics

Define the Kolmogorov-Smirnov statistic for testing the null hypothesis that real random variables X_{1}, \ldots, X_{n} are independently and identically distributed with specified continuous, strictly increasing distribution function F, and show that its null distribution does not depend on F.

A composite hypothesis H_{0} specifies that, when the unknown positive parameter Θ takes value θ, the random variables X_{1}, \ldots, X_{n} arise independently from the uniform distribution $\mathrm{U}[0, \theta]$. Letting $J:=\arg \max _{1 \leqslant i \leqslant n} X_{i}$, show that, under H_{0}, the statistic $\left(J, X_{J}\right)$ is sufficient for Θ. Show further that, given $\left\{J=j, X_{j}=\xi\right\}$, the random variables $\left(X_{i}: i \neq j\right)$ are independent and have the $\mathrm{U}[0, \xi]$ distribution. How might you apply the Kolmogorov-Smirnov test to test the hypothesis H_{0} ?

Paper 3, Section II

27J Principles of Statistics

Define the normal and extensive form solutions of a Bayesian statistical decision problem involving parameter Θ, random variable X, and loss function $L(\theta, a)$. How are they related? Let $R_{0}=R_{0}(\Pi)$ be the Bayes loss of the optimal act when $\Theta \sim \Pi$ and no data can be observed. Express the Bayes risk R_{1} of the optimal statistical decision rule in terms of R_{0} and the joint distribution of (Θ, X).

The real parameter Θ has distribution Π, having probability density function $\pi(\cdot)$. Consider the problem of specifying a set $S \subseteq \mathbb{R}$ such that the loss when $\Theta=\theta$ is $L(\theta, S)=c|S|-\mathbf{1}_{S}(\theta)$, where $\mathbf{1}_{S}$ is the indicator function of S, where $c>0$, and where $|S|=\int_{S} d x$. Show that the "highest density" region $S^{*}:=\{\theta: \pi(\theta) \geqslant c\}$ supplies a Bayes act for this decision problem, and explain why $R_{0}(\Pi) \leqslant 0$.

For the case $\Theta \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, find an expression for R_{0} in terms of the standard normal distribution function Φ.

Suppose now that $c=0.5$, that $\Theta \sim \mathcal{N}(0,1)$ and that $X \mid \Theta \sim \mathcal{N}(\Theta, 1 / 9)$. Show that $R_{1}<R_{0}$.

Paper 4, Section II

$27 J$ Principles of Statistics

Define completeness and bounded completeness of a statistic T in a statistical experiment.

Random variables X_{1}, X_{2}, X_{3} are generated as $X_{i}=\Theta^{1 / 2} Z+(1-\Theta)^{1 / 2} Y_{i}$, where Z, Y_{1}, Y_{2}, Y_{3} are independently standard normal $\mathcal{N}(0,1)$, and the parameter Θ takes values in $(0,1)$. What is the joint distribution of $\left(X_{1}, X_{2}, X_{3}\right)$ when $\Theta=\theta$? Write down its density function, and show that a minimal sufficient statistic for Θ based on $\left(X_{1}, X_{2}, X_{3}\right)$ is $T=\left(T_{1}, T_{2}\right):=\left(\sum_{i=1}^{3} X_{i}^{2},\left(\sum_{i=1}^{3} X_{i}\right)^{2}\right)$.
[Hint: You may use that if I is the $n \times n$ identity matrix and J is the $n \times n$ matrix all of whose entries are 1, then $a I+b J$ has determinant $a^{n-1}(a+n b)$, and inverse $c I+d J$ with $c=1 / a, d=-b /(a(a+n b))$.

What is $\mathbb{E}_{\theta}\left(T_{1}\right)$? Is T complete for Θ ?
Let $S:=\operatorname{Prob}\left(X_{1}^{2} \leqslant 1 \mid T\right)$. Show that $\mathbb{E}_{\theta}(S)$ is a positive constant c which does not depend on θ, but that S is not identically equal to c. Is T boundedly complete for Θ ?

