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Paper 1, Section II

28J Principles of Statistics
The distribution of a random variable X is obtained from the binomial distribution

B(n; Π) by conditioning on X > 0; here Π ∈ (0, 1) is an unknown probability parameter
and n is known. Show that the distributions of X form an exponential family and identify
the natural sufficient statistic T , natural parameter Φ, and cumulant function k(φ). Using
general properties of the cumulant function, compute the mean and variance of X when
Π = π . Write down an equation for the maximum likelihood estimate Π̂ of Π and explain
why, when Π = π, the distribution of Π̂ is approximately normal N (π, π(1 − π)/n) for
large n.

Suppose we observe X = 1 . It is suggested that, since the condition X > 0 is
then automatically satisfied, general principles of inference require that the inference to
be drawn should be the same as if the distribution of X had been B(n; Π) and we had
observed X = 1 . Comment briefly on this suggestion.

Paper 2, Section II

28J Principles of Statistics
Define the Kolmogorov–Smirnov statistic for testing the null hypothesis that real

random variables X1, . . . ,Xn are independently and identically distributed with specified
continuous, strictly increasing distribution function F , and show that its null distribution
does not depend on F .

A composite hypothesis H0 specifies that, when the unknown positive parameter
Θ takes value θ, the random variables X1, . . . ,Xn arise independently from the uniform
distribution U [0, θ]. Letting J := arg max 16i6nXi, show that, under H0, the statistic
(J,XJ ) is sufficient for Θ. Show further that, given {J = j, Xj = ξ}, the random variables
(Xi : i 6= j) are independent and have the U [0, ξ] distribution. How might you apply the
Kolmogorov–Smirnov test to test the hypothesis H0?
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Paper 3, Section II

27J Principles of Statistics
Define the normal and extensive form solutions of a Bayesian statistical decision

problem involving parameter Θ, random variable X, and loss function L(θ, a). How are
they related? Let R0 = R0(Π) be the Bayes loss of the optimal act when Θ ∼ Π and no
data can be observed. Express the Bayes risk R1 of the optimal statistical decision rule
in terms of R0 and the joint distribution of (Θ,X).

The real parameter Θ has distribution Π, having probability density function π(·).
Consider the problem of specifying a set S ⊆ R such that the loss when Θ = θ is
L(θ, S) = c |S| − 1S(θ), where 1S is the indicator function of S, where c > 0, and where
|S| =

∫
S dx. Show that the “highest density” region S∗ := {θ : π(θ) > c} supplies a Bayes

act for this decision problem, and explain why R0(Π) 6 0.

For the case Θ ∼ N (µ, σ2), find an expression for R0 in terms of the standard
normal distribution function Φ.

Suppose now that c = 0.5 , that Θ ∼ N (0, 1) and that X|Θ ∼ N (Θ, 1/9). Show
that R1 < R0.

Paper 4, Section II

27J Principles of Statistics
Define completeness and bounded completeness of a statistic T in a statistical

experiment.

Random variables X1, X2, X3 are generated as Xi = Θ1/2 Z +(1−Θ)1/2 Yi , where
Z, Y1, Y2, Y3 are independently standard normal N (0, 1), and the parameter Θ takes
values in (0, 1). What is the joint distribution of (X1, X2, X3) when Θ = θ? Write
down its density function, and show that a minimal sufficient statistic for Θ based on
(X1, X2, X3) is T = (T1, T2) := (

∑3
i=1X

2
i , (

∑3
i=1 Xi)

2).

[Hint: You may use that if I is the n× n identity matrix and J is the n× n matrix all of
whose entries are 1, then aI + bJ has determinant an−1(a+nb), and inverse cI + dJ with
c = 1/a , d = −b/(a(a+ nb)).]

What is Eθ(T1)? Is T complete for Θ?

Let S := Prob(X2
1 6 1 | T ). Show that Eθ(S) is a positive constant c which does

not depend on θ, but that S is not identically equal to c . Is T boundedly complete for Θ?
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