Paper 3, Section II

27 I Principles of Statistics

What is meant by an equaliser decision rule? What is meant by an extended Bayes rule? Show that a decision rule that is both an equaliser rule and extended Bayes is minimax.

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with the normal distribution $\mathcal{N}\left(\theta, h^{-1}\right)$, and let $k>0$. It is desired to estimate θ with loss function $L(\theta, a)=1-\exp \left\{-\frac{1}{2} k(a-\theta)^{2}\right\}$.

Suppose the prior distribution is $\theta \sim \mathcal{N}\left(m_{0}, h_{0}^{-1}\right)$. Find the Bayes act and the Bayes loss posterior to observing $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$. What is the Bayes risk of the Bayes rule with respect to this prior distribution?

Show that the rule that estimates θ by $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$ is minimax.

Paper 4, Section II

27 I Principles of Statistics

Consider the double dichotomy, where the loss is 0 for a correct decision and 1 for an incorrect decision. Describe the form of a Bayes decision rule. Assuming the equivalence of normal and extensive form analyses, deduce the Neyman-Pearson lemma.

For a problem with random variable X and real parameter θ, define monotone likelihood ratio (MLR) and monotone test.

Suppose the problem has MLR in a real statistic $T=t(X)$. Let ϕ be a monotone test, with power function $\gamma(\cdot)$, and let ϕ^{\prime} be any other test, with power function $\gamma^{\prime}(\cdot)$. Show that if $\theta_{1}>\theta_{0}$ and $\gamma\left(\theta_{0}\right)>\gamma^{\prime}\left(\theta_{0}\right)$, then $\gamma\left(\theta_{1}\right)>\gamma^{\prime}\left(\theta_{1}\right)$. Deduce that there exists $\theta^{*} \in[-\infty, \infty]$ such that $\gamma(\theta) \leqslant \gamma^{\prime}(\theta)$ for $\theta<\theta^{*}$, and $\gamma(\theta) \geqslant \gamma^{\prime}(\theta)$ for $\theta>\theta^{*}$.

For an arbitrary prior distribution Π with density $\pi(\cdot)$, and an arbitrary value θ^{*}, show that the posterior odds

$$
\frac{\Pi\left(\theta>\theta^{*} \mid X=x\right)}{\Pi\left(\theta \leqslant \theta^{*} \mid X=x\right)}
$$

is a non-decreasing function of $t(x)$.

Paper 1, Section II

281 Principles of Statistics

(i) Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables, having the exponential distribution $\mathcal{E}(\lambda)$ with density $p(x \mid \lambda)=\lambda \exp (-\lambda x)$ for $x, \lambda>0$. Show that $T_{n}=\sum_{i=1}^{n} X_{i}$ is minimal sufficient and complete for λ.
[You may assume uniqueness of Laplace transforms.]
(ii) For given $x>0$, it is desired to estimate the quantity $\phi=\operatorname{Prob}\left(X_{1}>x \mid \lambda\right)$. Compute the Fisher information for ϕ.
(iii) State the Lehmann-Scheffé theorem. Show that the estimator $\tilde{\phi}_{n}$ of ϕ defined by

$$
\tilde{\phi}_{n}= \begin{cases}0, & \text { if } T_{n}<x \\ \left(1-\frac{x}{T_{n}}\right)^{n-1}, & \text { if } T_{n} \geqslant x\end{cases}
$$

is the minimum variance unbiased estimator of ϕ based on $\left(X_{1}, \ldots, X_{n}\right)$. Without doing any computations, state whether or not the variance of $\tilde{\phi}_{n}$ achieves the Cramér-Rao lower bound, justifying your answer briefly.

Let $k \leqslant n$. Show that $\mathbb{E}\left(\tilde{\phi}_{k} \mid T_{n}, \lambda\right)=\tilde{\phi}_{n}$.

Paper 2, Section II

28 I Principles of Statistics

Suppose that the random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has a distribution over \mathbb{R}^{n} depending on a real parameter θ, with everywhere positive density function $p(\mathbf{x} \mid \theta)$. Define the maximum likelihood estimator $\hat{\theta}$, the score variable U, the observed information \hat{j} and the expected (Fisher) information I for the problem of estimating θ from \mathbf{X}.

For the case where the $\left(X_{i}\right)$ are independent and identically distributed, show that, as $n \rightarrow \infty, I^{-1 / 2} U \xrightarrow{d} \mathcal{N}(0,1)$. [You may assume sufficient conditions to allow interchange of integration over the sample space and differentiation with respect to the parameter.] State the asymptotic distribution of $\hat{\theta}$.

The random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is generated according to the rule

$$
X_{i+1}=\theta X_{i}+E_{i}
$$

where $X_{0}=1$ and the $\left(E_{i}\right)$ are independent and identically distributed from the standard normal distribution $\mathcal{N}(0,1)$. Write down the likelihood function for θ based on data $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, find $\hat{\theta}$ and \hat{j} and show that the pair $(\hat{\theta}, \hat{j})$ forms a minimal sufficient statistic.

A Bayesian uses the improper prior density $\pi(\theta) \propto 1$. Show that, in the posterior, $S(\theta-\hat{\theta})$ (where S is a statistic that you should identify) has the same distribution as E_{1}.

