1/II/27I Principles of Statistics

An angler starts fishing at time 0 . Fish bite in a Poisson Process of rate Λ per hour, so that, if $\Lambda=\lambda$, the number N_{t} of fish he catches in the first t hours has the Poisson distribution $\mathcal{P}(\lambda t)$, while T_{n}, the time in hours until his nth bite, has the Gamma distribution $\Gamma(n, \lambda)$, with density function

$$
p(t \mid \lambda)=\frac{\lambda^{n}}{(n-1)!} t^{n-1} e^{-\lambda t} \quad(t>0)
$$

Bystander B_{1} plans to watch for 3 hours, and to record the number N_{3} of fish caught. Bystander B_{2} plans to observe until the 10 th bite, and to record T_{10}, the number of hours until this occurs.

For B_{1}, show that $\widetilde{\Lambda}_{1}:=N_{3} / 3$ is an unbiased estimator of Λ whose variance function achieves the Cramér-Rao lower bound.

Find an unbiased estimator of Λ for B_{2}, of the form $\widetilde{\Lambda}_{2}=k / T_{10}$. Does it achieve the Cramér-Rao lower bound? Is it minimum-variance-unbiased? Justify your answers.

In fact, the 10 th fish bites after exactly 3 hours. For each of B_{1} and B_{2}, write down the likelihood function for Λ based their observations. What does the Likelihood Principle have to say about the inferences to be drawn by B_{1} and B_{2}, and why? Compute the estimates $\widetilde{\lambda}_{1}$ and $\widetilde{\lambda}_{2}$ produced by applying $\widetilde{\Lambda}_{1}$ and $\widetilde{\Lambda}_{2}$ to the observed data. Does the method of minimum-variance-unbiased estimation respect the Likelihood Principle?

2/II/27I Principles of Statistics

Under hypothesis $H_{i}(i=0,1)$, a real-valued observable X, taking values in \mathcal{X}, has density function $p_{i}(\cdot)$. Define the Type I error α and the Type II error β of a test $\phi: \mathcal{X} \rightarrow[0,1]$ of the null hypothesis H_{0} against the alternative hypothesis H_{1}. What are the size and power of the test in terms of α and β ?

Show that, for $0<c<\infty, \phi$ minimises $c \alpha+\beta$ among all possible tests if and only if it satisfies

$$
\begin{aligned}
& p_{1}(x)>c p_{0}(x) \Rightarrow \phi(x)=1, \\
& p_{1}(x)<c p_{0}(x) \Rightarrow \phi(x)=0 .
\end{aligned}
$$

What does this imply about the admissibility of such a test?
Given the value θ of a parameter variable $\Theta \in[0,1)$, the observable X has density function

$$
p(x \mid \theta)=\frac{2(x-\theta)}{(1-\theta)^{2}} \quad(\theta \leqslant x \leqslant 1)
$$

For fixed $\theta \in(0,1)$, describe all the likelihood ratio tests of $H_{0}: \Theta=0$ against $H_{\theta}: \Theta=\theta$.

For fixed $k \in(0,1)$, let ϕ_{k} be the test that rejects H_{0} if and only if $X \geqslant k$. Is ϕ_{k} admissible as a test of H_{0} against H_{θ} for every $\theta \in(0,1)$? Is it uniformly most powerful for its size for testing H_{0} against the composite hypothesis $H_{1}: \Theta \in(0,1)$? Is it admissible as a test of H_{0} against H_{1} ?

3/II/26I Principles of Statistics

Define the notion of exponential family $(E F)$, and show that, for data arising as a random sample of size n from an exponential family, there exists a sufficient statistic whose dimension stays bounded as $n \rightarrow \infty$.

The log-density of a normal distribution $\mathcal{N}(\mu, v)$ can be expressed in the form

$$
\log p(x \mid \phi)=\phi_{1} x+\phi_{2} x^{2}-k(\phi)
$$

where $\phi=\left(\phi_{1}, \phi_{2}\right)$ is the value of an unknown parameter $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$. Determine the function k, and the natural parameter-space \mathbb{F}. What is the mean-value parameter $\mathrm{H}=\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ in terms of Φ ?

Determine the maximum likelihood estimator $\widehat{\Phi}_{1}$ of Φ_{1} based on a random sample $\left(X_{1}, \ldots, X_{n}\right)$, and give its asymptotic distribution for $n \rightarrow \infty$.

How would these answers be affected if the variance of X were known to have value v_{0} ?

4/II/27I Principles of Statistics

Define sufficient statistic, and state the factorisation criterion for determining whether a statistic is sufficient. Show that a Bayesian posterior distribution depends on the data only through the value of a sufficient statistic.

Given the value μ of an unknown parameter M, observables X_{1}, \ldots, X_{n} are independent and identically distributed with distribution $\mathcal{N}(\mu, 1)$. Show that the statistic $\bar{X}:=n^{-1} \sum_{i=1}^{n} X_{i}$ is sufficient for M.

If the prior distribution is $\mathrm{M} \sim \mathcal{N}\left(0, \tau^{2}\right)$, determine the posterior distribution of M and the predictive distribution of \bar{X}.

In fact, there are two hypotheses as to the value of M . Under hypothesis H_{0}, M takes the known value 0 ; under H_{1}, M is unknown, with prior distribution $\mathcal{N}\left(0, \tau^{2}\right)$. Explain why the Bayes factor for choosing between H_{0} and H_{1} depends only on \bar{X}, and determine its value for data $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$.

The frequentist 5%-level test of H_{0} against H_{1} rejects H_{0} when $|\bar{X}| \geqslant 1.96 / \sqrt{n}$. What is the Bayes factor for the critical case $|\bar{x}|=1.96 / \sqrt{n}$? How does this behave as $n \rightarrow \infty$? Comment on the similarities or differences in behaviour between the frequentist and Bayesian tests.

