
57

1/II/27I Principles of Statistics

Suppose that X has density f(·|θ) where θ ∈ Θ. What does it mean to say that
statistic T ≡ T (X) is sufficient for θ?

Suppose that θ = (ψ, λ), where ψ is the parameter of interest, and λ is a nuisance
parameter, and that the sufficient statistic T has the form T = (C,S). What does it
mean to say that the statistic S is ancillary? If it is, how (according to the conditionality
principle) do we test hypotheses on ψ? Assuming that the set of possible values for X
is discrete, show that S is ancillary if and only if the density (probability mass function)
f(x|ψ, λ) factorises as

f(x|ψ, λ) = ϕ0(x) ϕC(C(x), S(x), ψ) ϕS(S(x), λ) (∗)

for some functions ϕ0, ϕC , and ϕS with the properties∑
x∈C−1(c)∩S−1(s)

ϕ0(x) = 1 =
∑

s

ϕS(s, λ) =
∑

s

∑
c

ϕC(c, s, ψ)

for all c, s, ψ, and λ.

Suppose now that X1, . . . , Xn are independent observations from a Γ(a, b) distri-
bution, with density

f(x|a, b) = (bx)a−1e−bxbI{x>0}/Γ(a).

Assuming that the criterion (∗) holds also for observations which are not discrete, show
that it is not possible to find (C(X), S(X)) sufficient for (a, b) such that S is ancillary
when b is regarded as a nuisance parameter, and a is the parameter of interest.
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2/II/27I Principles of Statistics

(i) State Wilks’ likelihood ratio test of the null hypothesis H0 : θ ∈ Θ0 against the
alternative H1 : θ ∈ Θ1, where Θ0 ⊂ Θ1. Explain when this test may be used.

(ii) Independent identically-distributed observations X1, . . . , Xn take values in the set
S = {1, . . . ,K}, with common distribution which under the null hypothesis is of
the form

P (X1 = k|θ) = f(k|θ) (k ∈ S)

for some θ ∈ Θ0, where Θ0 is an open subset of some Euclidean space Rd,
d < K − 1. Under the alternative hypothesis, the probability mass function of
the Xi is unrestricted.

Assuming sufficient regularity conditions on f to guarantee the existence and
uniqueness of a maximum-likelihood estimator θ̂n(X1, . . . , Xn) of θ for each n,
show that for large n the Wilks’ likelihood ratio test statistic is approximately of
the form

K∑
j=1

(Nj − nπ̂j)2/Nj ,

where Nj =
∑n

i=1 I{Xi=j}, and π̂j = f(j|θ̂n). What is the asymptotic distribution
of this statistic?

3/II/26I Principles of Statistics

(i) In the context of decision theory, what is a Bayes rule with respect to a given loss
function and prior? What is an extended Bayes rule?

Characterise the Bayes rule with respect to a given prior in terms of the posterior
distribution for the parameter given the observation. When Θ = A = Rd for some
d, and the loss function is L(θ, a) = ‖θ − a‖2, what is the Bayes rule?

(ii) Suppose that A = Θ = R, with loss function L(θ, a) = (θ−a)2 and suppose further
that under Pθ, X ∼ N(θ, 1).

Supposing that a N(0, τ−1) prior is taken over θ, compute the Bayes risk of the
decision rule dλ(X) = λX. Find the posterior distribution of θ given X, and
confirm that its mean is of the form dλ(X) for some value of λ which you should
identify. Hence show that the decision rule d1 is an extended Bayes rule.
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4/II/27I Principles of Statistics

Assuming sufficient regularity conditions on the likelihood f(x|θ) for a univariate
parameter θ ∈ Θ, establish the Cramér–Rao lower bound for the variance of an unbiased
estimator of θ.

If θ̂(X) is an unbiased estimator of θ whose variance attains the Cramér–Rao lower
bound for every value of θ ∈ Θ, show that the likelihood function is an exponential family.
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