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1/II/27J Principles of Statistics

(a) What is a loss function? What is a decision rule? What is the risk function of a
decision rule? What is the Bayes risk of a decision rule with respect to a prior π?

(b) Let θ 7→ R(θ, d) denote the risk function of decision rule d, and let r(π, d) denote
the Bayes risk of decision rule d with respect to prior π. Suppose that d∗ is a
decision rule and π0 is a prior over the parameter space Θ with the two properties

(i) r(π0, d
∗) = mind r(π0, d)

(ii) supθ R(θ, d∗) = r(π0, d
∗).

Prove that d∗ is minimax.

(c) Suppose now that Θ = A = R, where A is the space of possible actions, and that
the loss function is

L(θ, a) = exp(−λaθ),

where λ is a positive constant. If the law of the observation X given parameter θ
is N(θ, σ2), where σ > 0 is known, show (using (b) or otherwise) that the rule

d∗(x) = x/σ2λ

is minimax.

2/II/27J Principles of Statistics

Let {f(·|θ) : θ ∈ Θ} be a parametric family of densities for observation X. What
does it mean to say that the statistic T ≡ T (X) is sufficient for θ? What does it mean to
say that T is minimal sufficient?

State the Rao–Blackwell theorem. State the Cramér–Rao lower bound for the
variance of an unbiased estimator of a (scalar) parameter, taking care to specify any
assumptions needed.

Let X1, . . . , Xn be a sample from a U(0, θ) distribution, where the positive
parameter θ is unknown. Find a minimal sufficient statistic T for θ. If h(T ) is an unbiased
estimator for θ, find the form of h, and deduce that this estimator is minimum-variance
unbiased. Would it be possible to reach this conclusion using the Cramér–Rao lower
bound?
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3/II/26J Principles of Statistics

Write an essay on the rôle of the Metropolis–Hastings algorithm in computational
Bayesian inference on a parametric model. You may for simplicity assume that the
parameter space is finite. Your essay should:

(a) explain what problem in Bayesian inference the Metropolis–Hastings algorithm is
used to tackle;

(b) fully justify that the algorithm does indeed deliver the required information about
the model;

(c) discuss any implementational issues that need care.

4/II/27J Principles of Statistics

(a) State the strong law of large numbers. State the central limit theorem.

(b) Assuming whatever regularity conditions you require, show that if
θ̂n ≡ θ̂n(X1, . . . , Xn) is the maximum-likelihood estimator of the unknown param-
eter θ based on an independent identically distributed sample of size n, then under
Pθ √

n(θ̂n − θ) → N(0, J(θ)−1) in distribution

as n→∞, where J(θ) is a matrix which you should identify. A rigorous derivation
is not required.

(c) Suppose that X1, X2, . . . are independent binomial Bin(1, θ) random variables. It
is required to test H0 : θ = 1

2 against the alternative H1 : θ ∈ (0, 1). Show that the
construction of a likelihood-ratio test leads us to the statistic

Tn = 2n{θ̂n log θ̂n + (1− θ̂n) log(1− θ̂n) + log 2},

where θ̂n ≡ n−1
∑n

k=1Xk. Stating clearly any result to which you appeal, for large
n, what approximately is the distribution of Tn under H0? Writing θ̂n = 1

2 + Zn,
and assuming that Zn is small, show that

Tn ' 4nZ2
n.

Using this and the central limit theorem, briefly justify the approximate distribution
of Tn given by asymptotic maximum-likelihood theory. What could you say if the
assumption that Zn is small failed?
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