A1/12 B1/15 Principles of Statistics

(i) A public health official is seeking a rational policy of vaccination against a relatively mild ailment which causes absence from work. Surveys suggest that 60% of the population are already immune, but accurate tests to detect vulnerability in any individual are too costly for mass screening. A simple skin test has been developed, but is not completely reliable. A person who is immune to the ailment will have a negligible reaction to the skin test with probability 0.4, a moderate reaction with probability 0.5 and a strong reaction with probability 0.1. For a person who is vulnerable to the ailment the corresponding probabilities are 0.1, 0.4 and 0.5. It is estimated that the money-equivalent of workhours lost from failing to vaccinate a vulnerable person is 20, that the unnecessary cost of vaccinating an immune person is 8, and that there is no cost associated with vaccinating a vulnerable person or failing to vaccinate or not. What is the Bayes decision rule that the health official should adopt?

(ii) A collection of I students each sit J exams. The ability of the *i*th student is represented by θ_i and the performance of the *i*th student on the *j*th exam is measured by X_{ij} . Assume that, given $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_I)$, an appropriate model is that the variables $\{X_{ij}, 1 \leq i \leq I, 1 \leq j \leq J\}$ are independent, and

$$X_{ij} \sim N(\theta_i, \tau^{-1}),$$

for a known positive constant τ . It is reasonable to assume, a priori, that the θ_i are independent with

$$\theta_i \sim N(\mu, \zeta^{-1}),$$

where μ and ζ are population parameters, known from experience with previous cohorts of students.

Compute the posterior distribution of $\boldsymbol{\theta}$ given the observed exam marks vector $\mathbf{X} = \{X_{ij}, 1 \leq i \leq I, 1 \leq j \leq J\}.$

Suppose now that τ is also unknown, but assumed to have a Gamma(α_0, β_0) distribution, for known α_0, β_0 . Compute the posterior distribution of τ given θ and **X**. Find, up to a normalisation constant, the form of the marginal density of θ given **X**.

A2/11 B2/16 Principles of Statistics

(i) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

(ii) Let Y_1, Y_2 be independent random variables, both uniformly distributed on $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$. Find a minimal sufficient statistic for θ . Let $Y_{(1)} = \min\{Y_1, Y_2\}$, $Y_{(2)} = \max\{Y_1, Y_2\}$. Show that $R = Y_{(2)} - Y_{(1)}$ is ancilliary and explain why the Conditionality Principle would lead to inference about θ being drawn from the conditional distribution of $\frac{1}{2}\{Y_{(1)} + Y_{(2)}\}$ given R. Find the form of this conditional distribution.

Part II 2003

A3/12 B3/15 **Principles of Statistics**

(i) Let X_1, \ldots, X_n be independent, identically distributed random variables, with the exponential density $f(x; \theta) = \theta e^{-\theta x}, x > 0$.

Obtain the maximum likelihood estimator $\hat{\theta}$ of θ . What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$?

What is the minimum variance unbiased estimator of θ ? Justify your answer carefully.

(ii) Explain briefly what is meant by the *profile log-likelihood* for a scalar parameter of interest γ , in the presence of a nuisance parameter ξ . Describe how you would test a null hypothesis of the form H_0 : $\gamma = \gamma_0$ using the profile log-likelihood ratio statistic.

In a reliability study, lifetimes T_1, \ldots, T_n are independent and exponentially distributed, with means of the form $E(T_i) = \exp(\beta + \xi z_i)$ where β, ξ are unknown and z_1, \ldots, z_n are known constants. Inference is required for the mean lifetime, $\exp(\beta + \xi z_0)$, for covariate value z_0 .

Find, as explicitly as possible, the profile log-likelihood for $\gamma \equiv \beta + \xi z_0$, with nuisance parameter ξ .

Show that, under H_0 : $\gamma = \gamma_0$, the profile log-likelihood ratio statistic has a distribution which does not depend on the value of ξ . How might the parametric bootstrap be used to obtain a test of H_0 of exact size α ?

[*Hint: if* Y *is exponentially distributed with mean* 1, *then* μ Y *is exponentially distributed with mean* μ .]

A4/13 B4/15 Principles of Statistics

Write an account, with appropriate examples, of inference in multiparameter exponential families. Your account should include a discussion of natural statistics and their properties and of various conditional tests on natural parameters.

Part II 2003