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A1/12 B1/15 Principles of Statistics

(i) Explain in detail the minimax and Bayes principles of decision theory.

Show that if d(X) is a Bayes decision rule for a prior density π(θ) and has constant
risk function, then d(X) is minimax.

(ii) Let X1, . . . , Xp be independent random variables, with Xi ∼ N(µi, 1), i = 1, . . . , p.

Consider estimating µ = (µ1, . . . , µp)T by d = (d1, . . . , dp)T , with loss function

L(µ, d) =
p∑

i=1

(µi − di)2 .

What is the risk function of X = (X1, . . . , Xp)T ?

Consider the class of estimators of µ of the form

da(X) =
(
1− a

XTX

)
X ,

indexed by a > 0. Find the risk function of da(X) in terms of E
(
1/XTX

)
, which you

should not attempt to evaluate, and deduce that X is inadmissible. What is the optimal
value of a?

[You may assume Stein’s Lemma, that for suitably behaved real-valued functions h,

E {(Xi − µi)h(X)} = E

{
∂h(X)
∂Xi

}
. ]
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A2/11 B2/16 Principles of Statistics

(i) Let X be a random variable with density function f(x; θ). Consider testing the
simple null hypothesis H0 : θ = θ0 against the simple alternative hypothesis H1 : θ = θ1.

What is the form of the optimal size α classical hypothesis test?

Compare the form of the test with the Bayesian test based on the Bayes factor,
and with the Bayes decision rule under the 0-1 loss function, under which a loss of 1 is
incurred for an incorrect decision and a loss of 0 is incurred for a correct decision.

(ii) What does it mean to say that a family of densities {f(x; θ), θ ∈ Θ} with real
scalar parameter θ is of monotone likelihood ratio?

Suppose X has a distribution from a family which is of monotone likelihood ratio
with respect to a statistic t(X) and that it is required to test H0 : θ 6 θ0 against
H1 : θ > θ0.

State, without proof, a theorem which establishes the existence of a uniformly most
powerful test and describe in detail the form of the test.

Let X1, . . . , Xn be independent, identically distributed U(0, θ), θ > 0. Find a
uniformly most powerful size α test of H0 : θ 6 θ0 against H1 : θ > θ0, and find its power
function. Show that we may construct a different, randomised, size α test with the same
power function for θ > θ0.
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A3/12 B3/15 Principles of Statistics

(i) Describe in detail how to perform the Wald, score and likelihood ratio tests of a
simple null hypothesis H0 : θ = θ0 given a random sample X1, . . . , Xn from a regular one-
parameter density f(x; θ). In each case you should specify the asymptotic null distribution
of the test statistic.

(ii) Let X1, . . . , Xn be an independent, identically distributed sample from a distribu-
tion F , and let θ̂(X1, . . . , Xn) be an estimator of a parameter θ of F .

Explain what is meant by: (a) the empirical distribution function of the sample;
(b) the bootstrap estimator of the bias of θ̂, based on the empirical distribution function.
Explain how a bootstrap estimator of the distribution function of θ̂ − θ may be used to
construct an approximate 1− α confidence interval for θ.

Suppose the parameter of interest is θ = µ2, where µ is the mean of F , and the
estimator is θ̂ = X̄2, where X̄ = n−1

∑n
i=1Xi is the sample mean.

Derive an explicit expression for the bootstrap estimator of the bias of θ̂ and show
that it is biased as an estimator of the true bias of θ̂.

Let θ̂i be the value of the estimator θ̂(X1, . . . , Xi−1, Xi+1, . . . , Xn) computed from
the sample of size n− 1 obtained by deleting Xi and let θ̂. = n−1

∑n
i=1 θ̂i. The jackknife

estimator of the bias of θ̂ is
bJ = (n− 1) (θ̂. − θ̂) .

Derive the jackknife estimator bJ for the case θ̂ = X̄2, and show that, as an estimator of
the true bias of θ̂, it is unbiased.

A4/13 B4/15 Principles of Statistics

(a) Let X1, . . . , Xn be independent, identically distributed random variables from
a one-parameter distribution with density function

f(x; θ) = h(x)g(θ) exp{θt(x)} , x ∈ R.

Explain in detail how you would test

H0 : θ = θ0 against H1 : θ 6= θ0 .

What is the general form of a conjugate prior density for θ in a Bayesian analysis of this
distribution?

(b) Let Y1, Y2 be independent Poisson random variables, with means (1− ψ)λ and
ψλ respectively, with λ known.

Explain why the Conditionality Principle leads to inference about ψ being drawn
from the conditional distribution of Y2, given Y1+Y2. What is this conditional distribution?

(c) Suppose Y1, Y2 have distributions as in (b), but that λ is now unknown.

Explain in detail how you would test H0 : ψ = ψ0 against H1 : ψ 6= ψ0, and describe
the optimality properties of your test.

[Any general results you use should be stated clearly, but need not be proved.]
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