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A1/12 B1/15 Principles of Statistics

(i) What are the main approaches by which prior distributions are specified in
Bayesian inference?

Define the risk function of a decision rule d. Given a prior distribution, define what
is meant by a Bayes decision rule and explain how this is obtained from the posterior
distribution.

(ii) Dashing late into King’s Cross, I discover that Harry must have already boarded
the Hogwarts Express. I must therefore make my own way onto platform nine and three-
quarters. Unusually, there are two guards on duty, and I will ask one of them for directions.
It is safe to assume that one guard is a Wizard, who will certainly be able to direct me,
and the other a Muggle, who will certainly not. But which is which? Before choosing one
of them to ask for directions to platform nine and three-quarters, I have just enough time
to ask one of them “Are you a Wizard?”, and on the basis of their answer I must make
my choice of which guard to ask for directions. I know that a Wizard will answer this
question truthfully, but that a Muggle will, with probability 1

3 , answer it untruthfully.

Failure to catch the Hogwarts Express results in a loss which I measure as 1000
galleons, there being no loss associated with catching up with Harry on the train.

Write down an exhaustive set of non-randomised decision rules for my problem and,
by drawing the associated risk set, determine my minimax decision rule.

My prior probability is 2
3 that the guard I ask “Are you a Wizard?” is indeed a

Wizard. What is my Bayes decision rule?

Part II



42

A2/11 B2/16 Principles of Statistics

(i) Let X1, . . . , Xn be independent, identically-distributed N(µ, µ2) random variables,
µ > 0.

Find a minimal sufficient statistic for µ.

Let T1 = n−1
∑n
i=1Xi and T2 =

√
n−1

∑n
i=1X

2
i . Write down the distribution of

Xi/µ, and hence show that Z = T1/T2 is ancillary. Explain briefly why the Conditionality
Principle would lead to inference about µ being drawn from the conditional distribution
of T2 given Z.

What is the maximum likelihood estimator of µ?

(ii) Describe briefly the Bayesian approach to predictive inference.

Let Z1, . . . , Zn be independent, identically-distributed N(µ, σ2) random variables,
with µ, σ2 both unknown. Derive the maximum likelihood estimators µ̂, σ̂2 of µ, σ2 based
on Z1, . . . , Zn, and state, without proof, their joint distribution.

Suppose that it is required to construct a prediction interval
I1−α ≡ I1−α(Z1, . . . , Zn) for a future, independent, random variable Z0 with the same
N(µ, σ2) distribution, such that

P (Z0 ∈ I1−α) = 1− α,

with the probability over the joint distribution of Z0, Z1, . . . , Zn. Let

I1−α(Z1, . . . , Zn;σ2) =
[
Z̄n − zα/2σ

√
1 + 1/n, Z̄n + zα/2σ

√
1 + 1/n

]
,

where Z̄n = n−1
∑n
i=1 Zi, and Φ(zβ) = 1−β, with Φ the distribution function of N(0, 1).

Show that P (Z0 ∈ I1−α(Z1, . . . , Zn;σ2)) = 1− α.

By considering the distribution of (Z0 − Z̄n)/
(
σ̂
√

n+1
n−1

)
, or otherwise, show that

P (Z0 ∈ I1−α(Z1, . . . , Zn; σ̂2)) < 1− α,

and show how to construct an interval I1−γ(Z1, . . . , Zn; σ̂2) with

P (Z0 ∈ I1−γ(Z1, . . . , Zn; σ̂2)) = 1− α.

[Hint: if Y has the t-distribution with m degrees of freedom and t
(m)
β is defined by

P (Y < t
(m)
β ) = 1− β then tβ > zβ for β < 1

2 .
]
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A3/12 B3/15 Principles of Statistics

(i) Explain what is meant by a uniformly most powerful unbiased test of a null
hypothesis against an alternative.

Let Y1, . . . , Yn be independent, identically distributed N(µ, σ2) random variables,
with σ2 known. Explain how to construct a uniformly most powerful unbiased size α test
of the null hypothesis that µ = 0 against the alternative that µ 6= 0.

(ii) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

Let the distribution of Y1, . . . , Yn be as in (i) above, and suppose we wish to test,
as in (i), µ = 0 against the alternative µ 6= 0. Suppose we assume a N(0, τ2) prior for µ
under the alternative. Find the form of the Bayes factor B, and show that, for fixed n, B
→∞ as τ →∞.

A4/13 B4/15 Principles of Statistics

Write an account, with appropriate examples, of one of the following:

(a) Inference in multi-parameter exponential families;

(b) Asymptotic properties of maximum-likelihood estimators and their use in hypoth-
esis testing;

(c) Bootstrap inference.
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