Hypothesis Tests and Confidence Regions Using the Likelihood

F. P. Treasure

13-May-05
3020a

Maximum Likelihood:
The likelihood function for a model parameterised by \(\theta \) (a vector in a \(p \)-dimensional space \(\Theta \)) given observed data vector \(x \) is \(L(\theta | x) \) which we abbreviate to \(L(\theta) \).
The log-likelihood \(S(\theta) \) is defined by \(S(\theta) := \log L(\theta) \).

The value of \(\theta \) which maximizes \(S(\theta) \) is \(\hat{\theta} \) and is the maximum likelihood estimate of \(\theta \):

\[
S(\hat{\theta}) = \max_{\theta \in \Theta} S(\theta) .
\]

\(\hat{\theta} \) is normally found by solving the score equations \(S'(\hat{\theta}) = 0 \), where a prime denotes differentiation.

If \(\theta \) is constrained to a \(q \)-dimensional subspace \(\Theta_0 \) of \(\Theta \) then the value of \(\theta \) maximizing \(S(\theta) \) in that subspace is \(\tilde{\theta} \):

\[
S(\tilde{\theta}) = \max_{\theta \in \Theta_0} S(\theta)
\]

and \(\tilde{\theta} \) can generally be found using Lagrange multipliers.

Hypothesis tests
The (non-negative) difference \(S(\hat{\theta}) - S(\tilde{\theta}) \) is the reduction in the log-likelihood due to constraining the space from \(\Theta \) to \(\Theta_0 \). If the data does not support \(\theta \in \Theta_0 \) then we would expect \(S(\hat{\theta}) - S(\tilde{\theta}) \) to be relatively large and vice-versa.

Wilks’s lemma tells us that:

\[
2 \left[S(\tilde{\theta}) - S(\hat{\theta}) \right] \sim \text{chisquare} (p - q)
\]

(provided \(\theta \in \Theta_0 \)) and so we can compare \(2 \left[S(\tilde{\theta}) - S(\hat{\theta}) \right] \) with the chisquare \((p - q)\) distribution and obtain a size \(\alpha \) hypothesis test for the null hypothesis \(\theta \in \Theta_0 \):

accept hypothesis \(\theta \in \Theta_0 \) if \(S(\tilde{\theta}) - S(\hat{\theta}) \leq \frac{1}{2} C_{p-q,1-\alpha} \) \hspace{1cm} (1)

where \(C_{m,\gamma} \) is the \(\gamma \)th quantile of a chisquare\((m)\) distribution.
Confidence Regions and Intervals

A p-dimensional $1-\alpha$ confidence region can be constructed by letting Θ_0 consist of the single point θ_0 and including θ_0 in the confidence region if the hypothesis test $\theta \in \Theta_0$—equivalently: $\theta = \theta_0$—is not rejected by rule (1). The confidence region is therefore (noting here that $q = 0$ and $\hat{\theta} = \theta_0$):

$$\left\{ \theta_0 : S(\hat{\theta}) - S(\theta_0) \leq \frac{1}{2} C_{p-q,1-\alpha} \right\}.$$

A confidence interval is a one-dimensional confidence region and is obtained when either θ is one-dimensional ($p = 1$) or we are interested in a single component of θ. In the latter case we partition θ as $\theta = [\beta \psi]^T$ where β is a scalar (parameter of interest) and ψ is $(p-1)$-dimensional (the nuisance parameters). The maximum likelihood estimate $\hat{\theta}$ is now $[\hat{\beta} \hat{\psi}]^T$. The symbols ψ and $\hat{\psi}$ can be ignored if θ is one-dimensional.

The confidence interval will be of form $L \leq \beta_0 \leq U$ and is given by:

$$\left\{ \beta_0 : S(\hat{\beta}, \hat{\psi}) - S(\beta_0, \hat{\psi}) \leq \frac{1}{2} C_{1,1-\alpha} \right\}$$

where $\hat{\psi}$ is defined by $S(\beta_0, \hat{\psi}) = \max_{[\beta \psi]^T \in \Theta, \beta = \beta_0} S(\beta, \psi)$.

Other Tests Based on the Likelihood

The above tests and confidence regions are based on the difference in log-likelihoods and are referred to as likelihood-ratio tests etc. They are (in my view) the best ones to use. For historical and computational reasons two other approaches are commonly seen. They are based on approximating the log-likelihood function by a quadratic and are both asymptotically equivalent to likelihood-ratio methods. The tests are in practice only as good as the quadratic approximation (usually good enough)

I shall present the approximate methods using the simplest case: a hypothesis test for a single scalar parameter (that is: $p = 1$ and $q = 0$). In theoretical work the expectation $E S''(\theta)$ is often used instead of the observed $S''(\theta)$: this is rarely practicable (and arguably not desirable) in survival analysis.

The Wald Test

The log-likelihood is approximated by a quadratic at $\beta = \hat{\beta}$. The statistic for testing the null hypothesis that $\beta = \beta_0$ is

$$- \left(\hat{\beta} - \beta_0 \right)^2 S''(\hat{\beta})$$

which is compared with the chisquare(1) distribution. Many computer programs report the reciprocal of the square root of $S''(\hat{\beta})$ as the estimated standard deviation of $\hat{\beta}$ (the 'standard error').
The **Score Test**

The log-likelihood is approximated by a quadratic at $\beta = \beta_0$. This has the huge computational advantage that the log-likelihood does not have to be maximized. The test statistic is:

$$ \frac{[S'(\beta_0)]^2}{-S''(\beta_0)}, $$

again, compared with the chi-square(1) distribution.

Exercise (hard(ish)): show that the score test applied to a proportional hazards model of a two group comparison gives the log-rank test. Hint: ignore the denominator in both (2) and the log-rank statistic as they merely normalise the variance to unity – concentrate on showing the numerators are proportional.

References
