3002
Sample Size Theory

F. P. Treasure

November 9, 1999
Sample Size Theory

Hypotheses
A test statistic U is being used to distinguish between the null hypothesis (H_0) and the alternate hypothesis (H_1).

Under H_0, U has a Normal(μ_0, σ^2_0) distribution.
Under H_1, U has a Normal(μ_1, σ^2_1) distribution.

In general, μ_0, μ_1, σ^2_0 and σ^2_1 all depend on n, the total number of individuals in the sample. In particular, σ^2_0 and σ^2_1 decrease as n increases.

We suppose without losing generality that $\mu_0 < \mu_1$.

Test Characteristics

We require the (two-sided) probability of rejecting H_0 when H_0 is true to be α (the test’s size).

We also require the probability of rejecting H_0 when H_1 is true to be greater than or equal to $1 - \beta$ (the test’s power).

The test will be of form: reject H_0 in favour of H_1 if $U > C$, where C is the critical value.

The Critical Value

The size of the test determines the critical value. We require:

$$P(U > C \mid H_0) = \alpha/2.$$

We use H_0 to convert U to a standard Normal distribution, obtaining the equivalent requirement:

$$P\left(\frac{U - \mu_0}{\sigma_0} > \frac{C - \mu_0}{\sigma_0} \mid H_0\right) = \alpha/2.$$

and so (see ‘Notes on Standard Normal Distribution’ below)

$$1 - \Phi\left(\frac{C - \mu_0}{\sigma_0}\right) = \alpha/2$$

or

$$C = \mu_0 + \sigma_0 \Phi^{-1}(1 - \alpha/2)$$

Power

The critical value determines the power of the test. We require:

$$P(U > C \mid H_1) > 1 - \beta$$
which in terms of a standard Normal distribution is

\[P\left(\frac{U - \mu_1}{\sigma_1} > \frac{C - \mu_1}{\sigma_1} \mid H_1 \right) \geq 1 - \beta. \]

giving

\[C \leq \mu_1 - \sigma_1 \Phi^{-1}(1 - \beta). \]

Sample Size

The two expressions for \(C \) can be combined, eliminating \(C \) to give:

\[\sigma_0 \Phi^{-1}(1 - \alpha/2) + \sigma_1 \Phi^{-1}(1 - \beta) \leq \mu_1 - \mu_0. \]

The left hand side of this inequality normally decreases with \(n \) much more rapidly than the right hand side. The sample size is therefore derived as the lowest integral value of \(n \) such that the inequality is satisfied.

Notes on Standard Normal Distribution

If \(Z \) has a Normal distribution with mean zero and variance unity (that is, \(Z \) has a Standard Normal Distribution) then the distribution function \(\Phi \) is defined by

\[\Phi(z) := P(Z \leq z). \]

\(\Phi \) has an inverse \(\Phi^{-1} \):

\[P(Z \leq \Phi^{-1}(p)) = p. \]

We state the following useful results:

\[P(Z \leq z) = 1 - \Phi(z) \]

and (through symmetry):

\[\Phi^{-1}(1 - p) = -\Phi^{-1}(p). \]