3005
Counting Processes

F. P. Treasure

March 12, 2003
Counting Processes

This is an account aimed at applied statisticians, not mathematical probabilists.

Notation by example

\(f(t-) \) is shorthand for \(\lim_{\delta \downarrow 0} f(t - \delta) \).

\([a, b]\) is short for the interval \(a \leq x < b \).

\(\mathbb{I}\{A\} = 1 \) if \(A \) is true; \(= 0 \) otherwise.

\(\mathcal{P}\{\ldots\} \) is probability, \(\mathcal{E}\{\ldots\} \) is expectation and \(\mathcal{V}\{\ldots\} \) is variance.

Both \(a := B \) and \(B =: a \) mean that we are defining \(a \) to mean \(B \).

Introduction

Definition

The random variable \(N(t) \) represents a counting process on \([0, \infty]\) if

1. \(N(t) \) is a non-negative integer;
2. \(N(s) \leq N(t) \) for \(s < t \);
3. \(dN(t) = N(t) - N(t-) \) is either \(0 \) or \(1 \);
4. \(\mathcal{E}N(t) < \infty \).

Normally we take \(N(0) = 0 \).

History

The history \(\mathcal{H}_t \) (properly filtration) of a counting process is all that is known at time \(t \). In particular the history includes the values of random variables known up to and including time \(t \). \(\mathcal{H}_{t-} \) represents what is known up to but not including time \(t \).

Intensity Function

The probability (conditional on the history) of \(dN(t) = 1 \) at any time can be written in terms of an intensity \(\lambda(t) \):

\[\mathcal{P}\{N(t+\delta) - N(t-) = 1|\mathcal{H}_{t-}\} \approx \lambda(t)\delta. \]

or, equivalently:

\[\mathcal{P}\{dN(t) = 1|\mathcal{H}_{t-}\} = d\Lambda(t) \]

where

\[\Lambda(t) = \int_0^t \lambda \]

is the integrated intensity.
Predictability

\(\Lambda(t) \) is required to be predictable with respect to \(\mathcal{H}_t \): that is, \(\Lambda(t) \) is known given \(\mathcal{H}_{t-} \). In practice, this means that \(\Lambda(t) \) has to be continuous.

Expectations and Martingales

The probability can be converted into an expectation:

\[
\mathbb{E}\{dN(t) | \mathcal{H}_{t-} \} = d\Lambda(t)
\]

and using the predictability of \(\Lambda \):

\[
\mathbb{E}\{dN(t) - d\Lambda(t) | \mathcal{H}_{t-} \} = 0.
\]

We now define \(M(t) \) by

\[
M(t) = N(t) - \Lambda(t)
\]

and the expectation becomes

\[
\mathbb{E}\{dM(t) | \mathcal{H}_{t-} \} = 0.
\]

showing, as far as we are concerned, that \(M(t) \) is a Martingale.

Compensation

The counting process \(N(t) \) can now be written as a Doob-Meyer decomposition:

\[
N(t) = \Lambda(t) + M(t)
\]

where \(\Lambda(t) \) is the compensator of the process.

Survival Analysis

A single individual

A survival analysis is a time-to-event analysis where an individual can only experience one event. The time-to-event is a random variable \(T \). The counting process \(N(t) \) represents whether or not the event has happened by or at \(t \):

\[
N(t) = I\{T \leq t\}.
\]

The intensity \(\lambda(t) \) is equal to the hazard \(h(t) \) when the individual is at risk of the event and equal to zero when the event has happened. We express this by writing the intensity as

\[
\lambda(t) = Y(t)h(t)
\]

where \(Y(t) \) is an indicator for being at risk:

\[
Y(t) = I\{T \geq t\}.
\]

Note that \(Y(t) = 1 - N(t-) \) for an uncensored individual.
Several individuals

The \(i \)th of a set of \(n \) individuals has a counting process \(N_i(t) \), a compensator \(\Lambda_i(t) \), a Martingale process \(M_i(t) \), and a risk indicator \(Y_i(t) \).

These can all be summed over the \(n \) individuals to give \(N_+(t) \), \(\Lambda_+(t) \), \(M_+(t) \) and \(Y_+(t) \). \(N_+(t) \) is a counting process, \(\Lambda_+(t) \) its compensator and \(M_+(t) \) its Martingale:

\[
N_+(t) = \Lambda_+(t) + M_+(t).
\]

(1)

The compensator can be written in terms of the individual hazards \(h_i(t) \):

\[
\Lambda_+(t) = \int_0^t \sum_{i=1}^n Y_i(u)h_i(u)du.
\]

(2)

Estimating the Integrated Hazard: Nelson-Aalen

The Compensator and the Integrated Hazard

If all individuals are exposed to the same hazard then the expression for the overall compensator reduces to:

\[
\Lambda_+(t) = \int_0^t Y_+(u)h(u)du = \int_0^t Y_+(u)dH(u).
\]

where \(H \) is the integrated hazard.

Estimation

The decomposition (1) expressed in differentials becomes

\[
dN_+(t) = Y_+(t)dH(t) + dM_+(t).
\]

\(N_+(t) \) and \(Y_+(t) \) are the data. Conditional on the history \(\mathcal{H}_t^- \), \(dM_+(t) \) has zero expectation. So an estimate of \(H \) can be obtained by setting \(dM_+(t) \) equal to zero:

\[
d\hat{H}(t) = \frac{dN_+(t)}{Y_+(t)} \]

(3)

where the RHS is taken to be zero if \(Y_+(t) \) is zero.

Definition of the Nelson-Aalen estimator

Let the \(n \) distinct, uncensored, event times from a set of \(n \) individuals be \(a_1, \ldots, a_j, \ldots, a_n \) with \(a_{j-1} < a_j \). The estimated integrated hazard from (3) is

\[
\hat{H}(t) = \int_0^t \frac{dN_+(u)}{Y_+(u)}.
\]
The numerator of the integrand, \(dN_+ (t) \) is zero unless \(t = a_j \) for some \(j \). \(Y_+ (a_j) \) is the number in the risk set at \(a_j \), conventionally written as \(r_j \).

The Nelson-Aalen estimator is therefore:

\[
\hat{H}(t) = \sum_{j: a_j \leq t} \frac{1}{r_j}.
\]

Censored data

Censored individuals are not an problem for the Nelson-Aalen estimator.

If an individual is censored between two failure times \(a_{j-1} \) and \(a_j \) then that individual is counted in the risk sets up to and including the set at \(a_{j-1} \) but not in any subsequent ones.

If an individual is censored at a failure time \(a_j \) then that individual is included in the risk set for \(a_j \) but not any later ones.

Exercises

Exercise 1: Show that:

\[
\sum_i \hat{H}(X_i) = \sum_i N_i (X_i).
\]

(Interpretation in words: show that the sum of the estimated integrated hazards at time of event or censoring is equal to the number of observed events.)

Exercise 2: (Harder) Show that the expected sum over the integrated hazards (actual not estimated) at the time of event or censoring is equal to the expected number of observed events.

Hint: start with a single individual with fixed censoring time \(c \). The event is only observed if the event time \(T \) is less than or equal to \(c \). You need to show for that individual that \(E H(X) = P\{T \leq c\} \) (where \(X = \min(T, c) \)) and then generalize.

Nelson-Aalen: variance and confidence limits

Variance and standard error

Locally, \(dN(t) \) can be treated as a Poisson variable with mean and variance \(d\Lambda(t) \). The estimated variance of \(dN(t) \) is therefore equal to \(d\hat{\Lambda}(t) \) which is itself just \(dN(t) \).

The estimated variance of \(d\hat{H}(t) \) is therefore given by:

\[
\hat{V}\{d\hat{H}(t)\} = \hat{V} \left\{ \frac{dN(t)}{Y_+(t)} \right\} = \frac{dN(t)}{[Y_+(t)]^2}.
\]

Integration is a sum of independent increments, so:

\[
\hat{V}\{\hat{H}(t)\} = \int_0^t \frac{dN(t)}{[Y_+(t)]^2} = \sum_{j: a_j \leq t} \frac{1}{r_j^2} =: [s(t)]^2
\]

where \(s(t) \) is the standard error (estimated standard deviation).
Confidence interval and transformation

A $1 - \alpha$ confidence interval for $H(t)$ can be constructed:

$$
\left[\hat{H}(t) - \Phi^{-1}(1 - \alpha/2)s(t), \hat{H}(t) + \Phi^{-1}(1 - \alpha/2)s(t) \right]
$$

where Φ is the standard Normal distribution function.

It is better, however, to find a confidence interval for $\log H(t)$ and transform back.

Exercise 3: Use the useful approximation (law of propagation of errors) for finding the variance of a function of a random variable:

$$
\mathcal{V}\{u(X)\} \simeq [u'(E X)]^2 \mathcal{V}X
$$

to obtain the estimate of variance:

$$
\hat{\mathcal{V}}\{\log \hat{H}(t)\} = [s(t)/\hat{H}(t)]^2
$$

(with $s(t)$ defined as above) and the confidence interval for $H(t)$:

$$
\left[\hat{H}(t) \exp\{-\Phi^{-1}(1 - \alpha/2)s(t)/\hat{H}(t)\}, \hat{H}(t) \exp\{+\Phi^{-1}(1 - \alpha/2)s(t)/\hat{H}(t)\} \right].
$$

Nelson-Aalen: handling ties

Ties in the data

Although mathematically $dN(a_j)$ cannot equal 2 (or more), in practice we do not measure time with infinite precision and so we do see ties in the data.

These ties cause peculiar difficulties with the Nelson-Aalen method. To avoid complicated notation, we demonstrate by example.

First method

A natural way to deal with, say, 2 individuals having events at a_j is to write that bit of the summation thus:

$$
\cdots + \frac{1}{r_{j+1}} + \frac{2}{r_j} + \frac{1}{r_{j+1}} \cdots \tag{4}
$$

A difficulty with this approach is that the estimate $\hat{H}(t)$ for $t > a_j$ is not the same as would be obtained by substituting two distinct event times $a_j - \Delta, a_j + \Delta$ for the two tied times and letting $\Delta \downarrow 0$.

Second method

The inconsistency in the limit of the first method makes some statisticians prefer to replace (4) by

\[\cdots + \frac{1}{r_{j+1}} + \frac{1}{r_j} + \frac{1}{r_j - 1} + \frac{1}{r_{j+1}} \cdots. \] (5)

so although the two events are apparently simultaneous we treat one as in fact happening before the other.

Exercise 4: Taking there to be \(d_j \) tied events at each time \(a_j \), convert (5) to a proper formula (i.e. a summation over \(j \)).

Exercise 5: Why do we not have the same problem with ties when using the Kaplan-Meier estimator?

Nelson-Aalen and Kaplan-Meier

We write (temporarily) the Nelson-Aalen estimator of the integrated hazard as \(\hat{H}_{NA}(t) \) and the Kaplan-Meier estimator of the survivor function as \(\hat{S}_{KM}(t) \).

We can obtain the ‘Nelson-Aalen’ estimator of the survivor function and the ‘Kaplan-Meier’ estimate of the integrated hazard by

\[\hat{S}_{NA}(t) = \exp\{-\hat{H}_{NA}(t)\} \]

and

\[\hat{H}_{KM}(t) = -\log\{\hat{S}_{KM}(t)\} \]

respectively.

For reasonably sized risk sets \(\hat{H}_{NA}(t) \) and \(\hat{H}_{KM}(t) \) are close to each other: the difference is small relative to the width of the confidence interval. (Likewise \(\hat{S}_{NA}(t) \) and \(\hat{S}_{KM}(t) \)).

Exercise 6: Convince yourself, for large risk sets, that \(\hat{H}_{NA}(t) \) is nearly equal to \(\hat{H}_{KM}(t) \).

Nelson-Aalen and proportional hazards

Reminder of proportional hazards

A proportional hazards model relates the hazard \(h_i(t) \) seen by the \(i \)th individual to a vector of explanatory variables \(z^{(i)} \) by

\[h_i(t) = \phi(z^{(i)}, \beta)h_0(t) \]

where \(\beta \) is a vector of parameters and \(h_0 \) is the baseline hazard function. The function \(\phi \) is usually of the form \(\phi(z^{(i)}, \beta) = \exp(\beta^T z^{(i)}) \).

The essence of proportional hazards modelling is that \(\beta \) can be estimated without needing to estimate \(h_0(t) \).
Estimation of the baseline integrated hazard

There are occasions when an estimate of \(\int_0^t h_0 \) would be useful. We can use a method very similar to that used to derive the Nelson-Aalen estimator. Here, again, is equation (2) for the compensator:

\[
\Lambda_+(t) = \int_0^t \sum_{i=1}^n Y_i(u)h_i(u)du.
\]

which in the proportional hazards formulation becomes:

\[
\Lambda_+(t) = \int_0^t \sum_{i=1}^n Y_i(u)\phi(z^{(i)}, \beta)h_0(u)du.
\]

As in the derivation of the Nelson-Aalen estimator, we estimate \(d\Lambda_+\) by \(dN_+\), so we have

\[
d\hat{\Lambda}_+(t) = \sum_{i=1}^n Y_i(u)\phi(z^{(i)}, \hat{\beta})d\hat{H}_0(t) = dN_+(t)
\]

where I have replaced \(\beta \) by its estimate \(\hat{\beta} \).

Rearranging the RH equality and integrating, we obtain

\[
\hat{H}_0(t) = \int_0^t \frac{dN_+(u)}{\sum_{i=1}^n Y_i(u)\phi(z^{(i)}, \hat{\beta})}
\]

as an estimator of the baseline integrated hazard.

References

In (exponentially) increasing order of difficulty:

