Advanced Probability 3

5.1 Assuming Prohorov's theorem, prove that if $(\mu_n : n \in \mathbb{N})$ is a tight sequence of finite measures on \mathbb{R} and if

$$\sup_{n}\mu_n(\mathbb{R})<\infty$$

then there is a subsequence (n_k) and a finite measure μ on \mathbb{R} such that $\mu_{n_k} \to \mu$ weakly.

- **5.2** Weak law of large numbers. Let $(X_n : n \in \mathbb{N})$ be a sequence of independent, identically distributed, integrable random variables. Set $S_n = X_1 + \cdots + X_n$. Use characteristic functions to show that $S_n/n \to \mathbb{E}(X_1)$ weakly.
- **5.3** Let $(X_n : n \in \mathbb{N})$ be a sequence of random variables and suppose that $X_n \to X$ weakly. Show that, if X is almost surely constant, then also X_n converges to X in probability. Is the condition that X is almost surely constant necessary?
- **6.1** Let $(X_t)_{t\geq 0}$ be a Poisson process of rate 1. Show that, for all $a\geq 1$,

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}(X_t \ge at) = -a \log a + a - 1.$$

6.2 Let μ be a probability distribution on \mathbb{R} . Define for $\lambda \geq 0$

$$M(\lambda) = \int_{\mathbb{R}} e^{\lambda x} \mu(dx), \quad \psi(\lambda) = \log M(\lambda), \quad \Lambda = \inf\{\lambda \ge 0 : M(\lambda) = \infty\}.$$

Consider for $\lambda \in [0, \Lambda)$ the probability distribution μ_{λ} on \mathbb{R} given by

$$\mu_{\lambda}(dx) \propto e^{\lambda x} \mu(dx).$$

For $a \in \mathbb{R}$ such that $\mu([a, \infty)) > 0$, show that in the case $\Lambda = \infty$ we have $\mu_{\lambda}([a, \infty)) \to 1$ as $\lambda \to \infty$.

Show, in the case $\Lambda > 0$, that M has a continuous derivative on $[0,\Lambda)$ and is twice differentiable on $(0,\Lambda)$, with

$$\psi'(\lambda) = \int_{\mathbb{R}} x \mu_{\lambda}(dx), \quad \psi''(\lambda) = \text{var}(\mu_{\lambda}).$$

6.3 Let μ be a probability distribution on \mathbb{R} and assume that $\mu((-\infty, 0]) > 0$. For $K \ge 0$, define a conditioned distribution μ_K on \mathbb{R} by

$$\mu_K(dx) \propto 1_{\{x \leq K\}} \mu(dx).$$

Show that we can define, on some probability space, random variables X and $(X_K : K \ge 0)$ such that $X \sim \mu$ and $X_K \sim \mu_K$ for all K, with $X_K \uparrow X$ almost surely as $K \to \infty$.

- **7.1** Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^d starting from 0. Let $\sigma \in (0,\infty)$ and let U be an orthogonal $d \times d$ -matrix. Show that
 - (a) $(\sigma X_{\sigma^{-2}t})_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d starting from 0,

- (b) $(UX_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d starting from 0.
- **7.2** Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} starting from 0. Show that the processes $(X_t)_{t>0}$ and $(tX_{1/t})_{t>0}$ have the same distribution on $C((0,\infty),\mathbb{R})$. Deduce that $X_t/t\to 0$ almost surely as $t\to\infty$.
- **7.3** Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} starting from 0. Set $Q_t = X_t^2 t$. Show that $(X_t)_{t\geq 0}$ and $(Q_t)_{t\geq 0}$ are continuous martingales. Define for $a \in \mathbb{R}$

$$T_a = \inf\{t \ge 0 : X_t = a\}.$$

Show that T_a is a stopping time. For a, b > 0, show that $\mathbb{P}(T_{-a} < T_b) = b/(a+b)$ and find $\mathbb{E}(T_{-a} \wedge T_b)$.

7.4 Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} starting from 0. Show that, for a>0 and $t\geq 0$,

$$\mathbb{P}(T_a \le t) = 2\mathbb{P}(X_t \ge a).$$

Hence show that $T_a < \infty$ almost surely and find a density function for T_a .

7.5 Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} starting from 0. Show that, almost surely,

$$\limsup_{t\to 0} X_t/t = -\liminf_{t\to 0} X_t/t = \infty.$$

For a > 0, set

$$L = \sup\{t > 0 : X_t = at\}.$$

Show that L has the same distribution as T_a^{-1} . Define

$$S = \sup\{t \le 1 : X_t = 0\}, \quad T = \inf\{t \ge 1 : X_t = 0\}.$$

Show that S and T^{-1} have the same distribution. Hence show that

$$\mathbb{P}(S \le t) = (2/\pi) \arcsin \sqrt{t}.$$

- **7.6** Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} starting from 0. Find the joint distribution of $(X_t, \max_{s\leq t} X_s)$.
- 7.7 Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^3 . You may assume that $B_t\neq 0$ for all t>0 almost surely. Set $R_t=1/|X_t|$. Show that
 - (i) $(R_t: t \ge 1)$ is bounded in L^2 ,
 - (ii) $\mathbb{E}(R_t) \to 0 \text{ as } t \to \infty$,
 - (iii) R_t is a supermartingale.

Deduce that $|X_t| \to \infty$ almost surely as $t \to \infty$.

7.8 Let A be a non-empty open subset of the unit sphere in \mathbb{R}^d and consider the cone

$$C=\{ty:t\in(0,1),y\in A\}.$$

Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^d starting from 0 and set

$$T = \inf\{t \ge 0 : X_t \in C\}.$$

Use the Brownian scaling property to show that $\mathbb{P}(T < t)$ is non-increasing in t > 0. Deduce that T = 0 almost surely.