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3.3 Let (Xn : n ∈ N) be a sequence of independent L2 random variables. Set Sn =
X1 + · · · + Xn and µn = E(Sn) and σ2

n = var(Sn). Show that the sequences (µn)n≥1 and
(σ2

n)n≥1 converge in R if and only if there exists a random variable S such that Sn → S
almost surely and in L2.

3.4 Let (Xn)n≥0 be a Markov chain with state-space S and transition matrix P . Let
f : S → R be a bounded function. Show that (f(Xn))n≥0 is a submartingale for all possible
initial states X0 = x if and only if f is subharmonic, that is to say f ≤ Pf .

3.5 Your winnings per unit stake on game n are εn, where ε1, ε2, . . . are independent random
variables with

P(εn = 1) = p, P(εn = −1) = q,

where p ∈ (1/2, 1) and q = 1 − p. Your stake Cn on game n must lie between 0 and Zn−1,
where Zn−1 is your fortune at time n− 1. Your object is to maximize the expected ‘interest
rate’ E log(ZN/Z0), where N is a given integer representing the length of the game, and
Z0, your fortune at time 0, is a given constant. Let Fn = σ(ε1, . . . , εn). Show that if C
is any previsible strategy, that is Cn is Fn−1-measurable for all n, then logZn − nα is a
supermartingale, where

α = p log p+ q log q + log 2,

so that E log(ZN/Z0) ≤ Nα, but that, for a certain strategy, logZn − nα is a martingale.
What is the best strategy?

3.6 ABRACADABRA. At each of times 1, 2, 3, . . . , a monkey types a capital letter at ran-
dom, independently of past letters, with all 26 capital letters equally likely. Just before each
time n = 1, 2, . . . , a new gambler arrives. He bets $1 that the nth letter will be A. If he loses,
he leaves. If he wins, he receives $26, all of which he bets on the event that the (n + 1)th
letter is B. If he loses, he leaves. If he wins, he receives $262, all of which he bets on the
event that the (n+ 2)th letter is R, and so on through the sequence ABRACADABRA. Let
T be the first time at which the monkey completes the word ABRACADABRA. Using a
martingale argument, show that

E(T ) = 2611 + 264 + 26.

3.7 Wald’s identities. Let (Sn)n≥0 be a random walk in R, starting from 0, with steps of
mean µ and variance σ2 ∈ (0,∞). Fix a, b ∈ R with a < 0 < b and set

T = inf{n ≥ 0 : Sn ≤ a or Sn ≥ b}.
Show that E(T ) < ∞ and E(ST ) = µE(T ). Show further that, in the case µ = 0, we
have E(S2

T ) = σ2E(T ). Show also that, for any λ ∈ R such that E(eλS1) = 1, we have
E(eλST ) = 1. Suppose now that (Sn)n≥0 satisfies P(S1 = 1) = p and P(S1 = −1) = 1− p for
some p ∈ (0, 1), and that a and b are integers. Deduce from the above identities the values
of E(T ) and P(ST = a).
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3.8 Azuma–Hoeffding inequality. Let Y be a random variable of mean zero, such that |Y | ≤ c
for some constant c < ∞. Use the convexity of y 7→ eθy on [−c, c] to show that, for all θ ∈ R,

E(eθY ) ≤ cosh θc ≤ eθ
2c2/2.

Now let (Mn)n≥0 be a martingale, starting from 0, such that |Mn−Mn−1| ≤ cn for all n ≥ 1,
for some constants cn < ∞. Set vn = c21 + · · ·+ c2n. Show that, for all θ ∈ R,

E(eθMn) ≤ eθ
2vn/2.

Show further that, for all x ≥ 0,

P
(
sup
k≤n

Mk ≥ x

)
≤ e−x2/(2vn).

3.9 Let f be a Lipschitz function on [0, 1] of constant K. Thus, for all x, y ∈ [0, 1],

|f(x)− f(y)| ≤ K|x− y|.
Set Dn = {k2−n : k = 0, 1, . . . , 2n} and denote by fn the simplest piecewise linear function
agreeing with f on Dn. Then fn has a derivative on [0, 1] \Dn which we denote by f ′

n. Set
Mn = f ′

n1[0,1]\Dn . Show that Mn converges almost everywhere and in L1 and deduce that
there is a bounded Borel function f ′ on [0, 1] such that

f(x) = f(0) +

∫ x

0

f ′(t)dt.

4.1 Show that the σ-algebra on C([0,∞),R) generated by the coordinate functions is the
same as its Borel σ-algebra for the topology of uniform convergence on compacts.

4.2 Let S and T be stopping times and let (Xt)t≥0 be a cadlag adapted process, associated
to a continuous-time filtration (Ft)t≥0. Show that S ∧ T is a stopping time, that FT is a
σ-algebra, and that FS ⊆ FT if S ≤ T . Show also that XT1{T<∞} is an FT -measurable
random variable.

4.3 Let T be an exponential random variable of parameter 1. Set Xt = et1t<T . Describe
the natural filtration of (Xt)t≥0. Show that E(Xt1{T>r}) = E(Xs1{T>r}) for r ≤ s ≤ t, and
hence deduce that (Xt)t≥0 is a cadlag martingale. Determine whether (Xt)t≥0 is uniformly
integrable.

4.4 Let T be a random variable in [0,∞) having a positive and continuous density function
f on [0,∞). Define the hazard function A on [0,∞) by

A(t) =

∫ t

0

f(s)ds

1− F (s)

where F is the distribution function of T . Show that A(T ) is an exponential random variable
of parameter 1. Set Xt = 1{t≥T} − A(T ∧ t). Show that (Xt)t≥0 is a cadlag martingale.

4.5 Let (Ft)t≥0 be a filtration, satisfying the usual conditions, and let (ξt)t≥0 be an adapted
integrable process such that E(ξt|Fs) = ξs almost surely, for all s, t ≥ 0 with s ≤ t. Show
that there is a cadlag martingale (Xt)t≥0 such that ξt = Xt almost surely, for all t ≥ 0. You
may use any theorem from the lecture notes.
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