JRN Michaelmas 2025

Advanced Probability 2

- **3.3** Let $(X_n:n\in\mathbb{N})$ be a sequence of independent L^2 random variables. Set $S_n=X_1+\cdots+X_n$ and $\mu_n=\mathbb{E}(S_n)$ and $\sigma_n^2=\mathrm{var}(S_n)$. Show that the sequences $(\mu_n)_{n\geq 1}$ and $(\sigma_n^2)_{n\geq 1}$ converge in \mathbb{R} if and only if there exists a random variable S such that $S_n\to S$ almost surely and in L^2 .
- **3.4** Let $(X_n)_{n\geq 0}$ be a Markov chain with state-space S and transition matrix P. Let $f: S \to \mathbb{R}$ be a bounded function. Show that $(f(X_n))_{n\geq 0}$ is a submartingale for all possible initial states $X_0 = x$ if and only if f is subharmonic, that is to say $f \leq Pf$.
- **3.5** Your winnings per unit stake on game n are ε_n , where $\varepsilon_1, \varepsilon_2, \ldots$ are independent random variables with

$$\mathbb{P}(\varepsilon_n = 1) = p, \quad \mathbb{P}(\varepsilon_n = -1) = q,$$

where $p \in (1/2, 1)$ and q = 1 - p. Your stake C_n on game n must lie between 0 and Z_{n-1} , where Z_{n-1} is your fortune at time n-1. Your object is to maximize the expected 'interest rate' $\mathbb{E}\log(Z_N/Z_0)$, where N is a given integer representing the length of the game, and Z_0 , your fortune at time 0, is a given constant. Let $\mathcal{F}_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n)$. Show that if C is any previsible strategy, that is C_n is \mathcal{F}_{n-1} -measurable for all n, then $\log Z_n - n\alpha$ is a supermartingale, where

$$\alpha = p \log p + q \log q + \log 2$$

so that $\mathbb{E}\log(Z_N/Z_0) \leq N\alpha$, but that, for a certain strategy, $\log Z_n - n\alpha$ is a martingale. What is the best strategy?

3.6 ABRACADABRA. At each of times $1, 2, 3, \ldots$, a monkey types a capital letter at random, independently of past letters, with all 26 capital letters equally likely. Just before each time $n = 1, 2, \ldots$, a new gambler arrives. He bets \$1 that the nth letter will be A. If he loses, he leaves. If he wins, he receives \$26, all of which he bets on the event that the (n + 1)th letter is B. If he loses, he leaves. If he wins, he receives \$26^2, all of which he bets on the event that the (n + 2)th letter is R, and so on through the sequence ABRACADABRA. Let T be the first time at which the monkey completes the word ABRACADABRA. Using a martingale argument, show that

$$\mathbb{E}(T) = 26^{11} + 26^4 + 26.$$

3.7 Wald's identities. Let $(S_n)_{n\geq 0}$ be a random walk in \mathbb{R} , starting from 0, with steps of mean μ and variance $\sigma^2 \in (0, \infty)$. Fix $a, b \in \mathbb{R}$ with a < 0 < b and set

$$T = \inf\{n \ge 0 : S_n \le a \text{ or } S_n \ge b\}.$$

Show that $\mathbb{E}(T) < \infty$ and $\mathbb{E}(S_T) = \mu \mathbb{E}(T)$. Show further that, in the case $\mu = 0$, we have $\mathbb{E}(S_T^2) = \sigma^2 \mathbb{E}(T)$. Show also that, for any $\lambda \in \mathbb{R}$ such that $\mathbb{E}(e^{\lambda S_1}) = 1$, we have $\mathbb{E}(e^{\lambda S_T}) = 1$. Suppose now that $(S_n)_{n \geq 0}$ satisfies $\mathbb{P}(S_1 = 1) = p$ and $\mathbb{P}(S_1 = -1) = 1 - p$ for some $p \in (0,1)$, and that a and b are integers. Deduce from the above identities the values of $\mathbb{E}(T)$ and $\mathbb{P}(S_T = a)$.

1

3.8 Azuma-Hoeffding inequality. Let Y be a random variable of mean zero, such that $|Y| \leq c$ for some constant $c < \infty$. Use the convexity of $y \mapsto e^{\theta y}$ on [-c, c] to show that, for all $\theta \in \mathbb{R}$,

$$\mathbb{E}(e^{\theta Y}) \le \cosh \theta c \le e^{\theta^2 c^2/2}.$$

Now let $(M_n)_{n\geq 0}$ be a martingale, starting from 0, such that $|M_n-M_{n-1}|\leq c_n$ for all $n\geq 1$, for some constants $c_n<\infty$. Set $v_n=c_1^2+\cdots+c_n^2$. Show that, for all $\theta\in\mathbb{R}$,

$$\mathbb{E}(e^{\theta M_n}) \le e^{\theta^2 v_n/2}.$$

Show further that, for all $x \geq 0$,

$$\mathbb{P}\left(\sup_{k\le n} M_k \ge x\right) \le e^{-x^2/(2v_n)}.$$

3.9 Let f be a Lipschitz function on [0,1] of constant K. Thus, for all $x,y \in [0,1]$,

$$|f(x) - f(y)| \le K|x - y|.$$

Set $D_n = \{k2^{-n} : k = 0, 1, \dots, 2^n\}$ and denote by f_n the simplest piecewise linear function agreeing with f on D_n . Then f_n has a derivative on $[0,1] \setminus D_n$ which we denote by f'_n . Set $M_n = f'_n 1_{[0,1] \setminus D_n}$. Show that M_n converges almost everywhere and in L^1 and deduce that there is a bounded Borel function f' on [0,1] such that

$$f(x) = f(0) + \int_0^x f'(t)dt.$$

- **4.1** Show that the σ -algebra on $C([0,\infty),\mathbb{R})$ generated by the coordinate functions is the same as its Borel σ -algebra for the topology of uniform convergence on compacts.
- **4.2** Let S and T be stopping times and let $(X_t)_{t\geq 0}$ be a cadlag adapted process, associated to a continuous-time filtration $(\mathcal{F}_t)_{t\geq 0}$. Show that $S \wedge T$ is a stopping time, that \mathcal{F}_T is a σ -algebra, and that $\mathcal{F}_S \subseteq \mathcal{F}_T$ if $S \leq T$. Show also that $X_T 1_{\{T < \infty\}}$ is an \mathcal{F}_T -measurable random variable.
- **4.3** Let T be an exponential random variable of parameter 1. Set $X_t = e^t 1_{t < T}$. Describe the natural filtration of $(X_t)_{t \ge 0}$. Show that $\mathbb{E}(X_t 1_{\{T > r\}}) = \mathbb{E}(X_s 1_{\{T > r\}})$ for $r \le s \le t$, and hence deduce that $(X_t)_{t \ge 0}$ is a cadlag martingale. Determine whether $(X_t)_{t \ge 0}$ is uniformly integrable.
- **4.4** Let T be a random variable in $[0, \infty)$ having a positive and continuous density function f on $[0, \infty)$. Define the hazard function A on $[0, \infty)$ by

$$A(t) = \int_0^t \frac{f(s)ds}{1 - F(s)}$$

where F is the distribution function of T. Show that A(T) is an exponential random variable of parameter 1. Set $X_t = 1_{\{t \geq T\}} - A(T \wedge t)$. Show that $(X_t)_{t \geq 0}$ is a cadlag martingale.

4.5 Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration, satisfying the usual conditions, and let $(\xi_t)_{t\geq 0}$ be an adapted integrable process such that $\mathbb{E}(\xi_t|\mathcal{F}_s) = \xi_s$ almost surely, for all $s, t \geq 0$ with $s \leq t$. Show that there is a cadlag martingale $(X_t)_{t\geq 0}$ such that $\xi_t = X_t$ almost surely, for all $t \geq 0$. You may use any theorem from the lecture notes.