

Advanced Probability 1

1.1 Let $X, Y \in L^1(\mathbb{P})$ and let \mathcal{G} be a σ -algebra. Show that

$$\mathbb{E}(X + Y | \mathcal{G}) = \mathbb{E}(X | \mathcal{G}) + \mathbb{E}(Y | \mathcal{G}) \quad \text{almost surely.}$$

Show also that, if Y is \mathcal{G} -measurable and $\mathbb{E}(X1_A) \leq \mathbb{E}(Y1_A)$ for all $A \in \mathcal{G}$, then $\mathbb{E}(X | \mathcal{G}) \leq Y$ almost surely.

1.2 Show that, for any sequence of non-negative random variables $(X_n : n \in \mathbb{N})$ and any σ -algebra \mathcal{G} ,

$$\mathbb{E}(\liminf X_n | \mathcal{G}) \leq \liminf \mathbb{E}(X_n | \mathcal{G}) \quad \text{almost surely.}$$

1.3 Let X and Y be random variables and let $\lambda \in (0, \infty)$. Show that, if X and $Y - X$ are independent exponential random variables of parameter λ , then Y has density $\lambda^2 y e^{-\lambda y}$ on $(0, \infty)$ and $\mathbb{P}(X \leq x | Y) = (x/Y) \wedge 1$ almost surely, for all $x \geq 0$.

1.4 Let X and Y be integrable random variables such that, almost surely,

$$\mathbb{E}(X | Y) = Y \quad \text{and} \quad \mathbb{E}(Y | X) = X.$$

Show that $X = Y$ almost surely. *You may find it helpful to consider the quantity*

$$\mathbb{E}((X - Y)1_{\{X \leq c, Y > c\}}) + \mathbb{E}((X - Y)1_{\{X \leq c, Y \leq c\}}).$$

1.5 Let X be a non-negative random variable and let Y be a version of $\mathbb{E}(X | \mathcal{G})$. Show that $\{X > 0\} \subseteq \{Y > 0\}$ almost surely, that is, $1_{\{X > 0\}} \leq 1_{\{Y > 0\}}$ almost surely. Show further that, for all $A \in \mathcal{G}$, if $\{X > 0\} \subseteq A$ almost surely then $\{Y > 0\} \subseteq A$ almost surely.

2.1 Let $(Y_n : n \in \mathbb{N})$ be a sequence of independent integrable random variables of mean 0. Set $X_0 = 0$ and $X_n = Y_1 + \dots + Y_n$ for $n \geq 1$. Show that $(X_n)_{n \geq 0}$ is a martingale.

2.2 Let $(Z_n : n \in \mathbb{N})$ be a sequence of independent random variables, such that $Z_n \geq 0$ and $\mathbb{E}(Z_n) = 1$ for all n . Set $X_0 = 1$ and $X_n = \prod_{k=1}^n Z_k$ for $n \geq 1$. Show that $(X_n)_{n \geq 0}$ is a martingale.

2.3 Let $(X_n)_{n \geq 0}$ be an integrable process, taking values in a countable set $S \subseteq \mathbb{R}$. Show that $(X_n)_{n \geq 0}$ is a martingale in its natural filtration if and only if, for all n and for all $x_0, \dots, x_n \in S$, whenever the conditioning event has positive probability, we have

$$\mathbb{E}(X_{n+1} | X_0 = x_0, \dots, X_n = x_n) = x_n.$$

2.4 Let $(X_n)_{n \geq 0}$ be a martingale and let f be a convex function on \mathbb{R} such that $f(X_n)$ is integrable for all n . Show that $(f(X_n))_{n \geq 0}$ is a submartingale.

2.5 Let S and T be stopping times and let $X = (X_n)_{n \geq 0}$ be an integrable process. Recall that we define the stopped process X^T by $X_n^T = X_{T \wedge n}$ and we set

$$\mathcal{F}_T = \{A \in \mathcal{F}_\infty : A \cap \{T \leq n\} \in \mathcal{F}_n \text{ for all } n \geq 0\}.$$

Show that $S \wedge T$ is a stopping time. Show also that \mathcal{F}_T is a σ -algebra and that $\mathcal{F}_S \subseteq \mathcal{F}_T$ if $S \leq T$. Show that $X_T 1_{\{T < \infty\}}$ is an \mathcal{F}_T -measurable random variable. Show finally that X^T is an adapted process, and that X^T is an integrable process whenever X is an integrable process.

2.6 Let $(X_n)_{n \geq 0}$ be a martingale and let T be a stopping time. Show that, under each one of the following conditions, X_T is integrable and $\mathbb{E}(X_T) = \mathbb{E}(X_0)$:

- (a) $T \leq n$ for some $n \geq 0$,
- (b) there is a constant $C < \infty$ such that $|X_n| \leq C$ for all $n \leq T$ almost surely,
- (c) $\mathbb{E}(T) < \infty$ and there is a constant $C < \infty$ such that $|X_{n+1} - X_n| \leq C$ for all $n < T$ almost surely.

2.7 Let $X \in L^2(\mathbb{P})$ and set $X_n = \mathbb{E}(X|\mathcal{F}_n)$, where $(\mathcal{F}_n)_{n \geq 0}$ is a given filtration. Show that, for all $m \leq n$,

$$\|X_m\|_2^2 + \|X_m - X_n\|_2^2 = \|X_n\|_2^2.$$

Hence show there exists $Y \in L^2(\mathbb{P})$ such that $X_n \rightarrow Y$ in L^2 . Show further that $Y = X$ almost surely if and only if X is \mathcal{F}_∞ -measurable, where $\mathcal{F}_\infty = \sigma(\mathcal{F}_n : n \geq 0)$.

2.8 Let $(X_n)_{n \geq 0}$ be a martingale, starting from 0. Show that $(X_n)_{n \geq 0}$ is bounded in L^2 if and only if $\sum_n \|X_{n+1} - X_n\|_2^2 < \infty$.

2.9 Let X_1, X_2, \dots be independent with $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = 1/2$ for all n . Show that the series $\sum_n X_n/n$ converges almost surely.

2.10 Let X_1, X_2, \dots be independent with $\mathbb{P}(X_n = -1/p_n) = p_n$ and $\mathbb{P}(X_n = 1/q_n) = q_n$, where $p_n = 1/n^2$ and $p_n + q_n = 1$. Set $S_n = X_1 + \dots + X_n$. Show that S_n/n converges almost surely as $n \rightarrow \infty$. Show also that $(S_n)_{n \geq 0}$ is a martingale but $S_n \rightarrow \infty$ almost surely as $n \rightarrow \infty$.

3.1 Pólya's urn. At time 0, an urn contains two balls, one black, the other white. Suppose we repeatedly choose a ball at random from the urn and replace it together with a new ball of the same colour. Then, after n steps, there are $n+2$ balls in the urn, of which $B_n + 1$ are black, where B_n is the number of steps in which a black ball was chosen. Let $M_n = (B_n + 1)/(n + 2)$ the proportion of black balls in the urn after n steps. Show that $(M_n)_{n \geq 0}$ is a martingale, relative to a filtration which you should specify. Show also that

$$\mathbb{P}(B_n = k) = (n+1)^{-1}, \quad k = 0, 1, \dots, n.$$

Deduce that there is a random variable Θ such that $M_n \rightarrow \Theta$ almost surely and find the distribution of Θ . For $\theta \in [0, 1]$, set

$$N_n^\theta = \frac{(n+1)!}{B_n!(n-B_n)!} \theta^{B_n} (1-\theta)^{n-B_n}.$$

Show that $(N_n^\theta)_{n \geq 0}$ is a martingale.

3.2 Bayes' urn. A random number Θ is chosen uniformly in $[0, 1]$, and a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let B_n be the number of heads in n tosses. Show that the process $(B_n)_{n \geq 0}$ has the same distribution as the process $(B_n)_{n \geq 0}$ in Example 3.1. Show that N_n^θ is a conditional density function of Θ given B_1, \dots, B_n .