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0. REVIEW OF MEASURE AND INTEGRATION

This review covers briefly some notions which are discussed in detail in my notes on
Probability and Measure (from now on [PM]), Sections 1 to 3.

0.1. Measurable spaces. Let E be a set. A set € of subsets of E is called a g-algebra on
E if it contains the empty set () and, for all A € € and every sequence (A, : n € N) in &,

E\Aece, |JA.ee

neN

Let € be a g-algebra on E. A pair such as (£, €) is called a measurable space. The elements
of € are called measurable sets. A function u : € — [0, 00] is called a measure on (E, &) if
(D) = 0 and, for every sequence (A, : n € N) of disjoint sets in &,

m (U An) => A

neN neN

A triple such as (E, &, p) is called a measure space.

Given a set F/ which is equipped with a topology, the Borel o-algebra on E is the smallest o-
algebra containing all the open sets. We denote this o-algebra by B(FE) and call its elements

Borel sets. We use this construction most often in the cases where £ is the real line R or
the extended half-line [0, cc]. We write B for B(R).

0.2. Integration of measurable functions. Given measurable spaces (E, &) and (E’, &)
and a function f : E — E', we say that f is measurable if f~*(A) € & whenever A € &'. If
we refer to a measurable function f on (E, &) without specifying its range then, by default,
we take E' = R and & = B. By a non-negative measurable function on E we mean any
function f : E — [0, 00] which is measurable when we use the Borel o-algebra on [0, o0].
Note that we allow the value oo for non-negative measurable functions but not for real-valued
measurable functions. We denote the set of real-valued measurable functions by m¢& and the
set of non-negative measurable functions by m&*.

Theorem 0.2.1. Let (E, &, p) be a measure space. There exists a unique map i : mET —
[0, 0] with the following properties

(a) Al )

(b) Alef + Bg) = afi(f) + Bfilg) for all f,g € mEF and all o, B € [0,00),

(¢) a(fn) — B(f) as n — oo whenever (f, : n € N) is a non-decreasing sequence in
m&T with pointwise limit f.

w(A) forall A€ €,

¢+||

The map i is called the integral with respect to p. From now on, we simply write u
instead of i. We say that f is a simple function if it is a finite linear combination of
indicator functions of measurable sets, with positive coefficients. Thus f is a simple function
if there exist n > 0, and oy, € (0,00) and Ay € € for k =1,...,n, such that

= ZaklAk-
=
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Note that properties (a) and (b) force the integral of such a simple function f to be

u(f) = Z g pb(Ag).-

Note also that property (b) implies that u(f) < u(g) whenever f < g.

Property (c) is called monotone convergence. Given f € méE™', we can define a non-
decreasing sequence of simple functions (f, : n € N) by

fulz) =27"2"f(z)]) An, x€E.

Then f,(x) — f(x) as n — oo for all x € E. So, by monotone convergence, we have
p(f) = lim p(fn).
We have proved the uniqueness statement in Theorem 0.2.1.

For measurable functions f and g, we say that f = g almost everywhere if

p{z € B f(x) # g(x)}) = 0.

It is straightforward to see that, for f € m&™, we have u(f) = 0 if and only if f = 0 almost
everywhere.

Lemma 0.2.2 (Fatou’s lemma). Let (f, : n € N) be a sequence of non-negative measurable
functions. Then

" (hm inf fn> < liminf u(f,).

n—o0

The proof is by applying monotone convergence to the non-decreasing sequence of functions

(inf,>pn fm i n € N).

Given a (real-valued) measurable function f, we say that f is integrable with respect to p
if u(|f]) < oo. We write L'(E, &, u) for the set of such integrable functions, or simply L'
when the choice of measure space is clear. The integral is extended to L' by setting

p(f) = p(f7) = n(f7)
where f* = (£f) V0. Then L' is a vector space and the map p : L' — R is linear.

Theorem 0.2.3 (Dominated convergence). Let (f, : n € N) be a sequence of measurable
functions. Suppose that f,(x) converges as n — oo, with limit f(x), for all x € E. Suppose
further that there exists an integrable function g such that |f,| < g for all n. Then f, is
integrable for all n, and so is f, and p(f,) = u(f) as n — oc.

The proof is by applying Fatou’s lemma to the two sequences of non-negative measurable

functions (g £+ f,, : m € N).
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0.3. Product measure and Fubini’s theorem. Let (Ey, &, p1) and (Es, €9, o) be finite
(or o-finite) measure spaces. The product o-algebra € = €1 ® €, is the o-algebra on Fy X Es
generated by subsets of the form A; x A, for A € & and Ay € E,.

Theorem 0.3.1. There exists a unique measure p = p13 @ ps on & such that, for all Ay € &
and A2 € 82,

(A X Az) = pa(Ar)p2(Az).

Theorem 0.3.2 (Fubini’s theorem). Let f be a non-negative E-measurable function on E.
For xy € Ey, define a function f., on Ey by f., (x2) = f(x1,x2). Then f,, is Eo-measurable
for all x1 € Ey. Hence, we can define a function fi on Ey by fi(x1) = pe(fs,). Then fi is
E1-measurable and puy(f1) = p(f).

By some routine arguments, it is not hard to see that u(f) = (f), where i = ps ® pq and
f is the function on Fy x F; given by f([l?g, x1) = f(x1,22). Hence, with obvious notation, it
follows from Fubini’s theorem that, for any non-negative &-measurable function f, we have
w1(f1) = pe(f2). This is more usually written as

[EI ( EQf(xla@)m(diUz)) p(dzy) = /E2 ( . f(:cl,xQ)ul(d:cl)> fi2(ds).

We refer to [PM, Section 3.6] for more discussion, in particular for the case where the
assumption of non-negativity is replaced by one of integrability.



1. CONDITIONAL EXPECTATION

We say that (Q, F,P) is a probability space if it is a measure space with the property that
P(Q) = 1. Let (2,3, P) be a probability space. The elements of F are called events and P is
called a probability measure. A measurable function X on (€2, F) is called a random variable.
The integral of a random variable X with respect to P is written E(X) and is called the
expectation of X. We use almost surely to mean almost everywhere in this context.

A probability space gives us a mathematical framework in which to model probabilities of
events subject to randomness and average values of random quantities. It is often natural
also to take a partial average, which may be thought of as integrating out some variables
and not others. This is made precise in greatest generality in the notion of conditional
expectation. We first give three motivating examples, then establish the notion in general,
and finally discuss some of its properties.

1.1. Discrete case. Let (G, : n € [N]) be a finite family of disjoint events, whose union is
Q. Set

§G=0(G,:n € [N])={Une/G, : I C[N]}.

For any integrable random variable X, we can define

Y =) E(X|Gn)lg,

ne[N]

where we set E(X|G,) = E(X1g,)/P(G,) when P(G,) > 0 and set E(X|G,) = 0 when
P(G,) = 0. It is easy to check that Y has the following two properties

(a) Y is G-measurable,
(b) Y is integrable and E(X14) = E(Y'1,4) for all A € §.

It is a straightforward exercise to see that this remains true for a countable family of disjoint
events whose union is 2.

1.2. Gaussian case. Let (W, X) be a Gaussian random variable in R?. Set
G=0(W)={{W € B}:Be B}
and set Y = aWW + b, where a,b € R are chosen to satisfy
adE(W)+b=E(X), avarW = cov(W,X).
Then E(X —Y) =0 and
cov(W, X —Y) = cov(W, X) —cov(W,Y) =0

Since W and X — Y are jointly Gaussian, this implies that they are independent. Hence Y
satisfies

(a) Y is G-measurable,
(b) Y is integrable and E(X14) = E(Y1,4) for all A € §.
5



1.3. Conditional density functions. Suppose that U and V' are random variables having
a joint density function fyy (u,v) in R%. Then U has density function fy given by

fu(u) :/fU’V(u,v) dv.
R
The conditional density function fvu(viu) of V' given U is defined by
fviw(lu) = fov(u,v)/fo(u)

where we interpret 0/0 as 0 if necessary. Let h : R — R be a Borel function and suppose
that X = h(V) is integrable. Let

o) = [ B} (ol o
Set G =0(U) and Y = ¢g(U). Then Y satisfies

(a) Y is G-measurable,
(b) Y is integrable and E(X14) =E(Y14) for all A€ G.

To see (b), note that every A € G takes the form A = {U € B}, for some Borel set B. Then,
by Fubini’s theorem,

E(X1,4) = /]1@2 h(v)1g(u) fuv(u,v) dudv

— /R (/Rh(v)fVU(v\u) dv> Jo(u)lp(u) du =E(Y1,).

1.4. Existence and uniqueness. We will use in this subsection the Hilbert space structure
of the set L? of square integrable random variables. See [PM, Section 5] for details.

Theorem 1.4.1. Let X be an integrable random variable and let G C F be a o-algebra.
Then there exists a random variable Y such that

(a) Y is G-measurable,
(b) Y is integrable and BE(X14) = E(Y14) for all A € G.

Moreover, if Y' also satisfies (a) and (b), then Y =Y’ almost surely.

The same statement holds with ‘integrable’ replaced by ‘non-negative’ throughout. We leave
this extension as an exercise. We call Y (a version of ) the conditional expectation of X given
G and write

Y =E(X|9) almost surely.

In the case where § = o(G) for some random variable G, we also write Y = E(X|G) almost
surely. In the case where X = 1, for some event A, we write Y = P(A|9) almost surely.
The preceding three examples show how to construct explicit versions of the conditional
expectation in certain simple cases. In general, we have to live with the indirect approach

provided by the theorem.
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Proof. (Uniqueness.) Suppose that Y satisfies (a) and (b) and that Y’ satisfies (a) and
(b) for another integrable random variable X', with X < X’ almost surely. Consider the
non-negative random variable Z = (Y — Y’)14, where A ={Y > Y’} € §. Then

E(YIA) = E(XIA) < E(X’lA) = E(YIIA) < o0

so E(Z) < 0 and so Z = 0 almost surely, which implies that Y < Y’ almost surely. In the
case X = X', we deduce that Y =Y’ almost surely.

(Ezistence.) Assume for now that X € L?(F). Since L*(§) is complete, it is a closed subspace
of L?(F), so X has an orthogonal projection Y on L?(§), that is, there exists Y € L?(9)
such that E((X —Y)Z) = 0 for all Z € L*(G). In particular, for any A € G, we can take
Z =14 to see that E(X14) =E(Y1,4). Thus Y satisfies (a) and (b).

Assume now that X > 0. Then X,, = X An € L*(F) and 0 < X,, T X as n — co. We
have shown, for each n, that there exists Y,, € L*(G) such that, for all A € G,

E(X,14) =E(Y,14)
and moreover that 0 <Y, <Y, almost surely. Define
Q={we:0<Y,(w) <Y,1(w) for all n}
and set Y, = lim,,_, ¥,,1q,. Then Y is a non-negative G-measurable random variable and,
by monotone convergence, for all A € G,
E(X14) =E(Y,1a).
In particular, since X is integrable, we have E(Y,) = E(X) < 00 s0 Y < 0o almost surely.

Set Y = Yo 1l{y. <oc}- Then Y is a random variable satisfying (a) and (b).

Finally, for a general integrable random variable X, we can apply the preceding construc-
tion to X~ and X to obtain Y~ and Y. Then Y =Y — Y~ satisfies (a) and (b). O

1.5. Properties of conditional expectation. Let X be an integrable random variable
and let § C J be a o-algebra. The following properties follow directly from Theorem 1.4.1
(i) E(E(X]S)) = E(X),
(i) if X is G-measurable, then E(X|G) = X almost surely,
(iii) of X is independent of G, then E(X|G) = E(X) almost surely.
In the proof of Theorem 1.4.1, we showed also
(iv) if X > 0 almost surely, then E(X|G) > 0 almost surely.
Next, for a, 8 € R and any integrable random variable Y, we have

(v) E(aX + BY19) = aE(X|9) + PE(Y|SG) almost surely.

To see this, one checks that the right hand side satisfies the properties (a) and (b) from
Theorem 1.4.1 which characterize the left hand side.

The basic convergence theorems for expectation have counterparts for conditional expec-
tation. Consider a sequence of random variables X, in the limit n — oco. If 0 < X, T X
almost surely, then E(X,|9) 7Y almost surely, for some G-measurable random variable Y’;
so, by monotone convergence, for all A € G,

E(X14) =lmE(X,14) =limE(E(X,|9)14) = E(Y14),
7



which implies that Y = E(X|9) almost surely. We have proved the conditional monotone
convergence theorem:

(vi) if 0 < X,, T X almost surely, then E(X,|9) T E(X|SG) almost surely.

Next, by essentially the same arguments used for the original results, we can deduce condi-
tional forms of Fatou’s lemma and the dominated convergence theorem

(vii) if X,, > 0 for all n, then E(liminf X,,|G) < liminf E(X,,|G) almost surely,
(viii) if X, — X and |X,| <Y for all n, almost surely, for some integrable random
variable Y, then E(X,|9) — E(X|S) almost surely.

There is a conditional form of Jensen’s inequality. Let ¢ : R — (—o00, 00| be a convex
function. Then ¢ is the supremum of a sequence of affine functions

c(z) =sup(apz +b,), =R
neN

Hence, E(c¢(X)|9) is well defined and, almost surely, for all n,
E(c(X)|G) > a,E(X|G) + by.

On taking the supremum over n € N in this inequality, we obtain

(ix) if ¢ : R — (—00, 0] is convex, then E(c(X)|G) > ¢(E(X|9)) almost surely.
In particular, for 1 < p < oo,

IEXI9)I; = E(E(X]S)P) < E(E(X["]9) = E(X?) = [ X},

So we have

(x) [[EX[G)[l, < (| X, for all 1 <p < oco.

For any o-algebra H C G, the random variable Y = E(E(X|9)|H) is H-measurable and
satisfies, for all A € H
E(Y14) = E(E(X|G)14) =E(X14)
so we have the tower property
(xi) if H C G, then E(E(X|9)|H) = E(X|H) almost surely.
We can always take out what is known

(xii) if Y is bounded and G-measurable, then B(Y X|G) = YE(X|S) almost surely.

To see this, consider first the case where Y = 1p for some B € G. Then, for A € G,
E(YE(X|9)14) = E(E(X|9)1anB) = E(X1ang) = E(Y X14),

which implies that E(Y X|9) = YE(X|9) almost surely. The result extends to simple G-
measurable random variables Y by linearity, then to the case X > 0 and any bounded

non-negative G-measurable random variable Y by monotone convergence. The general case
follows by writing X = Xt — X~ and Y =Y+t —-Y~.

Finally,
(xiii) if 0(X,G) is independent of H, then E(X|o(9,H)) = E(X|G) almost surely.
8



For, suppose A € G and B € H, then
E(E(X|o(9,H))1ans) = E(X14np)
= E(E(X|9)14)P(B) = E(E(X[S)1anp)-

The set of such intersections AN B is a m-system generating o (G, ), so the desired formula
follows from [PM, Proposition 3.1.4].

Lemma 1.5.1. Let X € L'. Then the set of random variables Y of the form Y = E(X|9),
where § C F is a o-algebra, is uniformly integrable.

Proof. By [PM, Lemma 6.2.1], given ¢ > 0, we can find § > 0 so that E(]X|14) < ¢
whenever P(A) < §. Then choose A < oo so that E(|X|) < Ad. Suppose Y = E(X|G), then
Y| <E(]X]|9). In particular, E(|Y|) < E(|X]) so
P(JY] > ) < AM'E(]Y]) < 6.
Then
E(Y[1yza) < E(IX[1y2a) <e.
Since A was chosen independently of G, we are done. O

1.6. Regular conditional probability measures. Given an event B of positive proba-

bility, we can define not only the (elementary) conditional expectation E(X|B) but also a
conditional probability measure Pg, given by

P(AN B)

Pgp(A) =P(A|B) = ————=

Then, for all integrable random variables, we have
E(X|B) = Es(X)
where Ep denotes the expectation with respect to Pg.

We would like to extend this idea to conditioning with respect to a o-algebra G. Recall
that, for A € F, we define
P(A[G) = E(14]9).
Then, by linearity of conditional expectation and conditional monotone convergence, we
have, for any sequence of disjoint events (A, : n € N), almost surely,

P (U A, 9) = P(A,9). (1.1)

Although this resembles the property of countable additivity, (P(A|S) : A € F) does not
define a conditional probability measure because the conditional probabilities P(A|S) are
only defined up to almost sure equivalence. We would need to show that we could choose
good versions of P(A|G) for all A € F such that (1.1) held everywhere on €2 for all sequences
of disjoint events (A, : n € N). There are examples which show this cannot always be done.

We say that a map Pg : Q x F — [0, 1] is a regular conditional probability measure of P
given G if

(i) for all A € F, the map w — Pg(w, A) is a version of P(A|9),
(ii) for all w € €, the map A — Pg(w, A) is a probability measure on (2, F).
9



Given such a map Pg, it is straightforward to show that we obtain, for all integrable random
variables X, a version Eg(X) of the conditional expectation E(X|G) by setting

Eg(X)(w) = Eg(w, X)
where Eg(w, .) denotes the expectation with respect to Pg(w, .).

We say that a measurable space (§2, F) is a Borel space if it is isomorphic to a Borel subset
B of [0,1]. That is to say, there is a bijection ¢ : 2 — B such that both ¢ and ¢! are
measurable. It is known that every Borel subset of a Polish space is a Borel space.

Theorem 1.6.1. Assume that (Q,F) is a Borel space. Then for all probability measures P
on (Q,F) and all sub-o-algebras G C F, there exists a reqular conditional probability measure
Pg for P given G.

We will prove a stronger form of this result below, in which the Borel regularity hypothesis
is placed on the range of a random variable instead of on the whole probability space.

Let X be a random variable on (2, F) with values in a measurable space (5,8). We say
that a map puxg: Q x 8 — [0,1] is a reqular conditional distribution of X under P given § if

(i) for all B € 8, the map w +— px g(w, B) is a version of P(X € B|9),
(ii) for all w € 2, the map B +— pux g(w, B) is a probability measure on (5, 8).

Given such a map jux g, it is straightforward to show that, for all measurable functions /" on S
such that F'(X) is integrable, we can define a version px g(F') of the conditional expectation
E(F(X)|9) by setting

pxg(F)(w) = pxgw, F).
where the right-hand side denotes the integral of F' with respect to uxg(w,.). Note that,
if S =0 and X(w) = w then px g is simply a regular conditional probability measure of P
given G.

Theorem 1.6.2. Let X be a random variable with values in a Borel space (S,8). Then, for
all sub-o-algebras G of F, there exists a reqular conditional distribution px g of X under P
given G.

Proof. 1t suffices to consider the case where X is a random variable in a Borel subset By
of [0,1]. Choose then, for each t € [0, 1] a version f(.,t) of P(X < ¢|G). We can and do
insist that, for all w € Q, we have f(w,0) =0 and f(w,1) =1 and f(w,t) € [0,1] for all ¢.
For s <t, we have lyx<q < lyx<s, so f(.,s) < f(.,t) almost surely. For t, | ¢, we have
Lix<t,y — Lyx<s, so f(.,t,) — f(.,t) almost surely, by conditional bounded convergence.
Set

Q={weQ:t— f(wt):QNJ0,1] — [0, 1] is non-decreasing and right-continuous}.
Then P(Qg) = 1. Define, for ¢ € [0, 1],

t, otherwise.

Flw,t) = {hmsuvse(@ flw,s), ifweQy,

Then F(w,0) =0 and F(w,1) =1 and F(w,.) : [0,1] — [0, 1] is non-decreasing and right-
continuous for all w, and F(.,t) is a version of P(X < ¢|§) for all ¢ € [0,1]. Define A\(w,.)
10



to be the Lebesgue—Stieltjes probability measure on [0, 1] with distribution function F(w,.).
Fix A € G and consider the Borel measures A4 and v4 on [0, 1] given by
A(B) =E(M.,B)ls), va(B)=P({X e B}nA).
Then, for all ¢ € [0, 1], we have
Aa([0,1]) = B(F()14) = P({X < £} 1 A4) = va([0, 1)

so A4 = v4 by uniqueness of extension. Hence A(., B) is a version of P(X € B|9) for all
Borel sets B. Set
Ql = {OJ €0: )\(W,BQ) = ]_}
We have A(., By) < 1 and E(\(.,By)) = P(X € By) =1, so P(€,) = 1. Fix zy € By and
define for B C By
Mw, B), ifw e Qy,
Hxg(w, B) = {535(0(3),) otherwise.

Then px g is a regular conditional distribution of X under P for . O

11



2. MARTINGALES IN DISCRETE TIME

2.1. Definitions and simple examples. Let (2, F,P) be a probability space. We assume
that (2, F,P) is equipped with a filtration, that is to say, a sequence (F,,),>¢ of o-algebras
such that, for all n > 0,
gjn g gjnJrl g 3:

Set

Foo =0(F,:n>0).
Then ¥, € F. We allow the possibility that F,, # F. We interpret the parameter n as
time, and the o-algebra JF,, as the extent of our knowledge at time n.

By a random process (in discrete time) we mean a sequence of random variables (X,,),>0.
Each random process X = (X,,),>0 has a natural filtration (FX),>0, given by
FX =0(Xo,..., X,).

Then FX models what we know about X by time n. We say that (X,),>o is adapted (to
(Fn)n>o0) if X, is F-measurable for all n > 0. It is equivalent to require that FX C 3, for
all n. In this section we consider only real-valued or non-negative random processes. We say
that (X,,)n>0 is integrable if X,, is an integrable random variable for all n > 0.

A martingale is an adapted integrable random process (X,,),>o such that, for all n > 0,
E(X,41]F,) = X, almost surely.

If equality is replaced in this condition by <, then we call X a supermartingale. On the
other hand, if equality is replaced by >, then we call X a submartingale. Note that every
process which is a martingale with respect to the given filtration (5,,),>0 is also a martingale
with respect to its natural filtration.

Here are two simple ways in which martingales can arise. Throughout these notes, we will
label as Propositions, certain statements whose justification should be straightforward and
which are left as exercises.

Proposition 2.1.1. Let (Y, : n > 1) be a sequence of independent integrable random vari-
ables of mean 0. Set Xo = 0 and X,, = Y1+ -+ 4+ Y, forn > 1. Then (X,)n>0 is a
martingale.

Proposition 2.1.2. Let (Z, : n > 1) be a sequence of independent non-negative random
variables of mean 1. Set Xo = 1 and X,, = [[,_, Zx for n > 1. Then (X,)n>0 s @
martingale.

2.2. Optional stopping. We say that a random variable
T:0—{0,1,2,... }U{oo}
is a stopping time if {T' < n} € &, for all n > 0. For a stopping time 7', we set
Fr={AecFo:An{T <n} €T, for all n > 0}.

It is easy to check that, if T'(w) = n for all w, then T is a stopping time and Fr = F,,. Given
a process X, we define

Xr(w) = Xpey(w) whenever T(w) < oo
12



and we define the stopped process X' by
X! (w) = Xr@an(w), n>0.
Proposition 2.2.1. Let S and T be stopping times and let X be an adapted process. Then

(a) SAT is a stopping time,

(b) Fr is a o-algebra,

(c) if S <T, then Fg C Fr,

(d) Xrlreo is an Fp-measurable random variable,
(e) X7 is adapted,

(f) if X is integrable, then XT is integrable.

Theorem 2.2.2 (Optional stopping theorem). Let X be a martingale and let T be a bounded
stopping time. Then E(Xr) = E(X).

Proof. Fix n > 0 such that T' < n. Then

T-1 n—1
Xr=Xo+ Y (Xpp1 — Xp) = Xo+ > (X1 — Xi) Ljpery- (2.1)
k=0 k=0

Since T is a stopping time, we have {k < T — 1} = {T < k}¢ € Fi. Then, since X is a
martingale,
E((Xpt1 — Xp)lgper-1y) = 0.

The result follows on taking expectations in (2.1). O

The property that E(X7) = E(Xj) for bounded stopping times characterizes martingales
in the class of adapted integrable processes. This is left as an exercise.

A similar argument proves the following more comprehensive result on the relationship
between supermartingales and stopping times. On replacing < everywhere in the statement
and the proof below by = or >, we obtain corresponding results for martingales and sub-
martingales. Alternatively, these may be deduced from the given result using the facts that
(X3)n>0 is a submartingale if and only if (—X,,),>0 is a supermartingale, and (X,,),>0 is a
martingale if and only if it is both a supermartingale and a submartingale.

Theorem 2.2.3. Let X be an adapted integrable process. Then the following are equivalent

(a) X is a supermartingale,
(b) for all bounded stopping times T and all stopping times S,
E(X7r|Fs) < Xsar  almost surely,

(c) for all stopping times T, the stopped process XT is a supermartingale,
(d) for all bounded stopping times T and all stopping times S < T,

E(X7) < E(Xg).

Proof. For S > 0 and T' < n, we have

Xr=Xsar+ Y (Xpw1 — Xi) = Xonr + Y _(Xie1 — Xi) Loper (2.2)
S<k<T k=0
13



Suppose that X is a supermartingale and that S and T" are stopping times, with 7" < n. Let
AeTJg. Then AN{S <k} e TFyand {T >k} € Fy, so

E((Xg1 — Xi)ls<k<rla) < 0.
Hence, on multiplying (2.2) by 14 and taking expectations, we obtain
E(Xr14) < E(Xsarla).

Since Xgar is Fg-measurable, this shows that E(X7|Fs) < Xgar almost surely. We have
shown that (a) implies (b).

It is obvious that (b) implies (¢) and (d) and that (c) implies (a).

Let m <nand A€ F,,. Set T =mly+nlse. Then T is a stopping time and 7" < n. We
note that

E(X,14) — E(X,,14) = E(X,) — E(X7).

It follows that (d) implies (a). O

2.3. Doob’s upcrossing inequality. Let X be a random process and let a,b € R with
a < b Fix w € Q. By an upcrossing of [a,b] by X(w), we mean an interval of times
{j.7+1,...,k} such that X;(w) < a and X(w) > b. Write U,[a, b](w) for the number of
disjoint upcrossings contained in {0,1,...,n} and write Ula, b](w) for the total number of
disjoint upcrossings. Then, as n — oo, we have

Unla,b] 1 Ula, .
Theorem 2.3.1 (Doob’s upcrossing inequality). Let X be a supermartingale. Then
(b— a)E(Ula,b]) < supE((X, — a)").
n>0

Proof. Set Ty = 0 and define recursively for k£ > 0
SkJrl = mf{m >Tp: X, < CL}, Tk+1 = 1nf{m > SkJrl X, > b}

Note that, if Ty < oo, then {Sk, Sk +1,..., T} is an upcrossing of [a, b] by X, and indeed T
is the time of completion of the kth disjoint upcrossing. Note that U,[a,b] < n. For m <n,
we have
{Unla,b] =m} ={T,,, <n < T}

and, on this event,

Xp, —Xs, >2b—a, ifk<m,

X1 — Xsan = {Xn—Xsk >X,—a, fk=m+1and S, <n,

0, otherwise.

Hence, on summing over k < n, we obtain

> (Xginn = Xspnn) = (b= a)Un[a,b] — (X, — a) ™.

k=1
Since X is a supermartingale and Ty An and S An are bounded stopping times with Sy < T},
by optional stopping,

E(XTk/\n) < E(XSk/\n)
Hence, on taking expectations, we obtain
(b~ (U, fa.b]) < E((X, —a)") (2.3
14



and the claimed inequality follows by monotone convergence. 0

2.4. Doob’s maximal inequalities. Define, for a random process X,

Xy = sup [ Xyl.

k<n
In the next two theorems, we see that the martingale (or submartingale) property allows us
to obtain estimates on this supremum in terms of expectations for X, itself.

Theorem 2.4.1 (Doob’s maximal inequality). Let X be a martingale or non-negative sub-
martingale. Then, for all X > 0,

AB(X; > ) < E(|X[1xsoy) < B(X,0).

Proof. It X is a martingale, then | X| is a non-negative submartingale. It therefore suffices
to consider the case where X is non-negative. Set

T =inf{k >0: X; > A} An.
Then T is a stopping time and 7' < n so, by optional stopping,
E(X,) > E(X7) = E(Xrlix:>a) + E(X7lixecny) = AP(X) > A) + E(X, 1ix:<ny)-
Hence
XP(X; > \) < E(X,Lixzon) < E(X).
O

Theorem 2.4.2 (Doob’s LP-inequality). Let X be a martingale or non-negative submartin-
gale. Then, for allp > 1 and q =p/(p — 1),

X2 e < allXallp-

Proof. If X is a martingale, then |X| is a non-negative submartingale. So it suffices to
consider the case where X is non-negative. Fix k& < oco. By Fubini’s theorem, Doob’s
maximal inequality, and Holder’s inequality,

k

k
E[(X: Ak =E / PN xisay dA = / PN TIP(XE > N) d)
0 0

k k
S/ pAp72E<Xn].{X:2>\})d/\ =E (Xn/ p)\p21{X22)\}d>\)
0 0
= qE(Xn (X5 AP < gl Xl [1(X5 AR g = gl Xallp |15 A R

Hence || X} A k||, < ¢||X,ll, and the result follows by monotone convergence on letting
kE — oo. O

Doob’s maximal and L? inequalities have versions which apply, under the same hypotheses,
to the full supremum
X* =sup |X,|.
n>0
Since X 1 X*, on letting n — oo, we obtain, for all A > 0,
AP(X™* > \) = nh_}rgo AP(X) > A) < sg%EﬂXn]).
15



We can then replace AP(X* > \) by AP(X* > \) by taking limits from the right in .
Similarly, for p € (1, 00), by monotone convergence,

[ X" ]lp < gsup || Xallp-
n>0

2.5. Doob’s martingale convergence theorems. We say that a random process X is
LP-bounded if

sup || Xn||, < oo.
n>0

We say that X is uniformly integrable if

supE (| X, [1x,>a1) = 0 as A — oo.
n>0

By Holder’s inequality, if X is LP-bounded for some p > 1, then X is uniformly integrable.
On the other hand, if X is uniformly integrable, then X is L!-bounded.

Theorem 2.5.1 (Almost sure martingale convergence theorem). Let X be an L'-bounded
supermartingale. Then there exists an integrable F.-measurable random variable X, such
that X,, — X almost surely as n — oo.

Proof. For a sequence of real numbers (z,),>0, as n — 00, either z,, converges (in R), or
x, — +o00o, or liminf z,, < limsupz,. In the second case, we have liminf |z,| = co. In the
third case, since the rationals are dense, there exist a,b € QQ such that liminfx, <a < b <

lim sup z,,. Set
Qo = Qoo N ( N Qa,b>

a,beQ, a<b
where
Qs = {liminf | X, | < oo}, Qup ={Ula,b] < co}.
Then X, (w) converges for all w € y. By Fatou’s lemma and Doob’s upcrossing inequality,
for all a < b,
E(liminf|X,|) <liminfE|X,|, (b— a)E(Ula,b]) < |a|] + sup E|X,,|.

n>0
So, since (X,,),>0 is L'-bounded, we have P()y) = 1. Define

n—oo
Then X, — X almost surely, X, is F-measurable and |X | < liminf |X,| so X, is
integrable. 0

Note, in particular, that every bounded martingale and every non-negative supermartingale
is L'-bounded and hence, by the theorem, converges almost surely. This provides some nice
short cuts. For example, a simple symmetric random walk in Z stopped on leaving a finite
interval is (by optional stopping) a bounded martingale, and hence converges almost surely.

It can only do this by leaving the interval, so almost surely it does so.
16



Theorem 2.5.2 (L' martingale convergence theorem). Let (X,,),>0 be a uniformly integrable
martingale. Then there exists a random variable Xo, € LY (Fs) such that X,, — X, as
n — oo almost surely and in L. Moreover, X,, = E(X,|F,) almost surely for all n > 0.
Moreover, for allY € LY(F.), on choosing a version X, of E(Y|F,) for all n, we obtain a
uniformly integrable martingale (X,,)n>0 such that X,, — Y almost surely and in L.

Proof. Let (X,)n>0 be a uniformly integrable martingale. By the almost sure martingale
convergence theorem, there exists X, € L'(F,) such that X,, — X, almost surely. Since
X is uniformly integrable, it follows that X,, — X, in L', by [PM, Theorems 2.5.1 and
6.2.3]. Next, for m > n,

“Xn - E(XOO|3FR)H1 = ”E(Xm - X00|3rn)||1 < ”Xm - XOOHI'
Let m — oo to deduce X,, = E(X|F,,) almost surely.

Suppose now that Y € L'(F,,) and let X,, be a version of E(Y|F,,) for all n. Then (X,,),>0
is a martingale by the tower property and is uniformly integrable by Lemma 1.5.1. Hence
there exists X, € L'(F,) such that X,, — X, almost surely and in L'. For all n > 0 and
all A € &, we have

m—00

Now X,Y € L'(F,) and U, F, is a m-system generating F,. Hence, by [PM, Proposition
3.1.4], Xo =Y almost surely. O

This theorem can be seen as setting up a bijection between the set of uniformly integrable
martingales and L'(F.), given by X + X, provided that we identify martingales and
random variables which agree almost surely.

Theorem 2.5.3 (L? martingale convergence theorem). Let p € (1,00). Let (X, )n>0 be
an LP-bounded martingale. Then there exists a random variable X € LP(Fy) such that
X, = X as n — 00 almost surely and in LP. Moreover, X,, = E(X|F,) almost surely for
all n > 0. Moreover, for all Y € LP(F), on choosing a version X, of E(Y|F,) for all n,
we obtain an LP-bounded martingale (X,,)n>0 such that X,, — Y almost surely and in LP.

Proof. Let (X,,)n>0 be an LP-bounded martingale. By the almost sure martingale conver-
gence theorem, there exists X, € L'(F,) such that X,, — X, almost surely. By Doob’s
LP-inequality,

X7l < gsup X, < oc.

Since | X,, — Xo|? < (2X*)? for all n, it follows by dominated convergence that X, — X
in LP. Then X,, = E(X,|F,) almost surely for all n > 0, as in the L' case.

Suppose now that Y € LP(F) and let X,, be a version of E(Y'|F,) for all n. Then (X,,),>0
is a martingale by the tower property and

[ Xallp = IE[Fa)llp < 1Yl

for all n, so (X,,)n>0 is LP-bounded. Hence there exists X, € L(Fy) such that X,, — X

almost surely and in LP. Finally, we must have X, = Y almost surely, as in the L! case. [
17



In the next result, we dispense with the filtration (F,),>¢ and suppose given instead a

backward filtration (ﬁ"n)nzo, that is to say, a sequence of g-algebras &, such that, for all
n >0,

9: 2 An 2 §:n+1-
We write Fs for the o-algebra given by
Fo =) Fn
n>0

Theorem 2.5.4 (Backward martingale convergence theorem). For all Y € LY(F), we have
E(Y|F,) = E(Y|F) as n — oo, almost surely and in L',

Proof. Write X,, = ]E(Y|§'“n) for all n > 0. Fix n > 0. By the tower property, (X, _x)o<k<n is
a martingale for the filtration (f;rn_k)ogﬁn. For a < b, the number U, [a, b] of upcrossings of
la,b] by (Xk)o<k<n equals the number of upcrossings of [—b, —a| by (—X,,_x)o<k<n. Hence,
from (2.3), we obtain

(b— a)E(Us[a,b]) < E((Xo— b))
and so, by monotone convergence,
(b—a)E(Ula,b]) <E((Xo—b)") <E|Y|+|b] < cc.
Also, we have
E(liminf | X,|) <liminf E|X,| < E|Y| < co.

Hence the argument used in the proof of the almost sure martingale convergence theorem
applies to show that P(£2y) = 1, where

Qo = {X,, converges as n — 0o}.

Set
Xoo = 1g, lim X,,.

n—00

~

Then X, € L'(F) and X,, — X, almost surely. Now (X,,),>0 is uniformly integrable by
Lemma 1.5.1, so X,, — X also in L'. Finally, for all A € F., we have

E((Xo —E(Y|F))14) = lim E((X,, —Y)14) =0
n—oo
and this implies that X, = E(Y|F.) almost surely. O

Recall that, for a stopping time 7" and a random process X, Xr has been defined only
on the event {T" < oo}. Given an almost sure limit X, for X, we define X7 = X on
{T = oo}. Then the optional stopping theorem extends to all stopping times for uniformly
integrable martingales.

Theorem 2.5.5. Let X be a uniformly integrable martingale and let T be any stopping time.
Then E(X7) = E(Xy). Moreover, for all stopping times S and T, we have

E(X7|Fs) = Xoar almost surely.
18



Proof. By the L' martingale convergence theorem, there exists X,, € L'(F,) such that
X, — X, as n — oo, almost surely and in L', and X,, = E(X,|F,) almost surely, for all
n. Hence X7 is well defined and X7,,, — X7 almost surely as n — oo.

Consider, for each n > 0, the bounded stopping time T' A n. By the optional stopping
theorem and Theorem 2.2.3

E(Xran) = E(Xo), E(X7a|TFs) = Xsaran almost surely. (2.4)
Since Frpa, € F,,, by Theorem 2.2.3 and the tower property,
XT/\n - E(Xn|g:T/\n> - E(XOO|37T/\7L)

Then, by Lemma 1.5.1, the random process (Xran)n>0 is uniformly integrable. So Xza, —
Xr in L' and so also E(X7a,|Fs) — E(X7|Fs) in L. Hence we can let n — oo in (2.4) to
obtain the claimed identities. O
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3. APPLICATIONS OF MARTINGALE THEORY

3.1. Sums of independent random variables. We use martingale arguments to analyse
some aspects of the behaviour of the partial sums

of a sequence (X,,),>1 of independent random variables. We will have more to say about

such sums in Theorem 6.1.1 and Theorem 7.9.2

Theorem 3.1.1 (Strong law of large numbers). Let (X,,),>1 be a sequence of independent,
identically distributed, integrable random variables. Set u = E(X;y). Then S,/n — p as
n — oo almost surely and in L'

Proof. Define for n > 1

~

Fo=08m -m>n), T,=0c(Xp:m>n+1), T=N>1T,.

Then F, = o(Sn, T,) and (f;rn)nzl is a backward filtration. Since o(X7,.S,) is independent
of T, we have E(X;|F,) = E(X;]|S,) almost surely for all n. For k& < n and all Borel sets
B, we have E(Xj1(s,cpy) = E(Xil¢s,eny) by symmetry, so E(X;|S,) = E(X;|S,) almost
surely. But

E(X1|Sn) + -+ - + E(X,|Sn) = E(S,|S,) =S,  almost surely
so we must have

E(X1]|F,) = E(Xy|S,) = S,/n  almost surely.

Then, by the backward martingale convergence theorem,

S,/n —Y almost surely and in L'

for some random variable Y. Then Y is T-measurable so, by Kolmogorov’s zero-one law
[PM, Theorem 2.6.1], Y is constant almost surely. Hence

Y =E(Y) = lim E(S,/n) = p almost surely.
n—oo
U

Since almost sure convergence implies convergence in probability [PM, Theorem 2.5.1], the
following is an immediate corollary.

Corollary 3.1.2 (Weak law of large numbers). Let (X,,)n,>1 be a sequence of independent,
identically distributed, integrable random variables. Set y = E(X;). Then P(|S,/n — u| >
g) =0 asn — oo for all e > 0.

3.2. Non-negative martingales and change of measure. Given a random variable X,
with X > 0 and E(X) = 1, we can define a new probability measure P on F by

P(A) =E(X14), Aed.

Moreover, by [PM, Proposition 3.1.4], given P, this equation determines X uniquely, up to

almost sure modification. We say that P has a density with respect to P and X s a version

of the density.
20



Let (F,)n>0 be a filtration which generates F. Let (X,,),>0 be an adapted random process,
with X,, > 0 and E(X,) = 1 for all n. We can define for each n a probability measure P, on
F, by 3

P.(A) =E(X,14), A€F,.
Since we require X,, to be F,,-measurable, this equation determines X,, uniquely, up to almost
sure modification.

Proposition 3.2.1. The measures P, are consistent, that is @n+l|?n =P, for all n, if and
only if (Xp)n>0 is a martingale. Moreover, there is a measure P on F, which has a density
with respect to P, such that Plg, = P, for all n, if and only if (X,)nso is a uniformly
integrable martingale.

The following is an important result of measure theory.

Theorem 3.2.2 (Radon—Nikodym theorem). Let u and v be o-finite measures on a mea-
surable space (E,E). Then the following are equivalent

(a) v(A) =0 for all A € € such that u(A) =0,
(b) there exists a measurable function f on E such that f >0 and

v(A) = pu(fla), A€E.

The function f, which is unique up to modification u-almost everywhere, is called (a version
of ) the Radon-Nikodym derivative of v with respect to p. We write

d
f= d—y almost everywhere.
14

We will give a proof, using the L'-martingale convergence theorem, for the case where &
is countably generated. Thus, we assume further that there is a sequence (G, : n € N) of
subsets of E which generates €. This holds, for example, whenever € is the Borel o-algebra
of a topology with countable basis. A further martingale argument, which we omit, allows
to deduce the general case.

Proof. Tt is obvious that (b) implies (a). Assume then that (a) holds. There is a countable
partition of E by measurable sets on which both p and v are finite. It will suffice to show
that (b) holds on each of these sets, so we reduce without loss to the case where p and v are
finite.

The case where v(E) = 0 is clear. Assume then that v(E) > 0. Then also u(E) > 0,
by (a). Write Q = E and § = € and consider the probability measures P = u/u(E) and
P = v/v(E) on (Q,9). It will suffice to show that there is a random variable X > 0 such
that P(A) = E(X1,4) for all A € 7.

Set F,, = 0(Gg : k < n). There exist m € N and a partition of Q2 by events Ay,..., A,
such that &, = 0(Ay,..., Ap). Set

Xn = Z CleAj
j=1

where a; = P(A;)/P(4;) if P(A;) > 0 and a; = 0 otherwise. Then X,, > 0, X,, is -

measurable and, using (a), we have P(A) = E(X,14) for all A € F,,. Observe that (F,)n>0 is
21



a filtration and (X, ),>0 is a non-negative martingale. We will show that (X,,)n>0 is uniformly
integrable. Then, by the L' martingale convergence theorem, there exists a random variable
X > 0 such that E(X14) = E(X,14) for all A € F,,. Define a probability measure Q on F
by Q(A) = E(X1,4). Then Q = P on U, F,, which is a m-system generating F. Hence Q = P
on F, by uniqueness of extension [PM, Theorem 1.7.1], which implies (b).

It remains to show that (X,),>o is uniformly integrable. Given ¢ > 0 we can find § > 0
such that P(B) < ¢ for all B € F with P(B) < d. For, if not, there would be a sequence of
sets B, € F with P(B,,) < 27" and P(B,,) > ¢ for all n. Then

P(ﬂn UmZn Bm) = 0, P(ﬂn UmZn Bm) Z 13
which contradicts (a). Set A = 1/§, then P(X,, > A\) < E(X,,)/A =1/X = for all n, so

E(anXn>)\) = ]P)(Xn > )\) <e.

Hence (X,,),>0 is uniformly integrable. O

3.3. Markov chains. Let S be a countable set. We identify each measure p on S with its
mass function (p, : z € S), where p, = pu({z}). Then, for each function f on S, the integral
is conveniently written as the matrix product

p(f) = nf = taf
zeS
where we consider 1 as a row vector and identify f with the column vector (f, : z € S) given
by f. = f(z). A transition matriz on S is a matrix P = (p,, : z,y € S) such that each row
(psy 1y € S) is a probability measure.

Let (X,)n>0 be a random process with values in S. We say that (X,,),>0 is a Markov chain
with transition matrix P if, for all n > 0, all z,y € S and all A € F¥ with A C {X,, = z}
and P(A) > 0,

P(Xn-‘rl = y|A) = Dzy- (31)
We sometimes wish to work with a given filtration (F,),>o and the more restrictive notion
of (F,)n>0-Markov chain, where we insist both that (X,,),>0 is adapted to (F,),>0 and that
(3.1) holds for all A € &, with A C {X,, =z} and P(A4) > 0.

Proposition 3.3.1. Let (X,,)n>0 be a random process with values in S. The following are
equivalent

(a) (Xy)n>0 @5 a Markov chain with initial distribution p and transition matric P,
(b) for all n and all xo,z4,...,x, € S,

P(XO =29, X1 =T1,..., X, = xn) = MzoPzroz1 - - - Prpn_12n-

Proposition 3.3.2 (Strong Markov property). Let (X,)n>0 be an (F,)n>0-Markov chain
with transition matrix P and let T be a stopping time. Set X, = Xrip and F, = Fry.
Then, conditional on {T < oo}, (Xn)n>0 i a (Fn)n>0-Markov chain with transition matric

P.

Theorem 3.3.3. Let S* denote the set of sequences x = (x, : n > 0) in S and define
X, : 8" = S by X, (x) =z, Set8 =o(Xy:k>0). Let P be a transition matriz on S.
Then, for each x € S, there is a unique probability measure p, on (S*,8%) such that (X, )n>0

1s a Markov chain with transition matrix P and starting from x.
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Proof. By Proposition 3.3.1, the values of any such measure p, are determined on the 7-
system A = U2 0(Xg : 0 < k < n). Since A generates 8*, it follows that p, is unique.
There exists a probability space (2, F,P) on which is defined a sequence (U, : n € N) of
independent U|0, 1] random variables. There exists a measurable function F': [0,1] x § — S
such that P(F'(U,z) = y) = pgy for U ~ U[0,1] and all z,y € S. Set X, = = and define
(X )n>o recursively by X, 1 = F(U,11,X,,). We can then check that (X,,),>0 is a Markov
chain with transition matrix P, so its law u, on (5%, 8%) is a measure with the desired
property. [l

An example of a Markov chain in Z¢ is the simple symmetric random walk, whose transition
matrix is given by
_ [ 1/@2d), iz —y[=1,
Pey = 0, otherwise.
The following result shows a simple instance of a general relationship between Markov pro-

cesses and martingales. We will see a second instance of this for Brownian motion in Theorem
7.5.1.

Theorem 3.3.4. Let (X,,)n>0 be a random process with values in S. Then the following are
equivalent

(a) (Xy)n>0 s an (F,)n>0-Markov chain with transition matriz P,
(b) for all bounded functions f on S the following process is a martingale

i
L

M = f(Xa) = f(Xo) = ) (P — 1) f(Xa).

>
I

Proof. We have
Moy = M = f(Xu) = f(Xa) = (P = DF(X0) = f(Xns1) = PF(X).

The claimed equivalence follows on taking conditional expectations on F,,. O

A bounded function f on S is said to be harmonic if Pf = f, that is to say, if
pryfy:fxa xes.
yes

Note that, if f is a bounded harmonic function, then (f(X,)),>0 is a bounded martingale.
Then, by Doob’s convergence theorems, f(X,) converges almost surely and in L? for all
p < 0o. More generally, for D C S, a bounded function f on S is harmonic in D if

pryfy:fxa reD.

yeSs

Theorem 3.3.5 (Dirichlet problem for Markov chains). Let D C S and set 0D = S\ D.
Let f be a bounded function defined on 0D. Set

T=inf{n>0:X, € 0D}
and define a function u on S by

u(r) = B (f(X1)11<o00})-
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Then u is bounded, w is harmonic in D, and uw = f on 0D. Moreover, if P,(T < o00) =1
for all x € D, then u is the unique bounded extension of f which is harmonic in D.

Proof. 1t is clear that u is bounded and v = f on 9D. For all z,y € S with p,, > 0, under
PP,, conditional on {X; =y}, (X,41)n>0 has distribution P,. So, for z € D,

u(@) =3 pryuly)
yes

showing that u is harmonic in D. On the other hand, suppose that ¢ is a bounded function,
harmonic in D and such that ¢ = f on 0D. Then M = MY is a martingale and T is a
stopping time, so M7 is also a martingale by optional stopping. But Mrx, = g(Xran). So,
if P,(T < 00) =1 for all x € D, then

Mpp, — f(Xr) almost surely

so, by bounded convergence, for all x € D,
9(x) = Ep(My) = Eo(Mran) — Eo(f(X1)) = u(z).
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4. RANDOM PROCESSES IN CONTINUOUS TIME

4.1. Definitions. A continuous random process is a family of random variables (X;);> such
that, for all w € Q, the path t — X;(w) : [0,00) — R is continuous.

A function = : [0,00) — R is said to be cadlag if it is right-continuous with left limits,
that is to say, for all t > 0
Ts—xy as s —twith s >t

and, for all £ > 0, there exists x;_ € R such that
Te — Ty as s — t with s < t.

A cadlag random process is a family of random variables (X;);>o such that, for all w € Q,
the path ¢t — X;(w) : [0,00) — R is cadlag.

The space of continuous on [0, 00) is denoted by C([0, c0),R), while the space of cadlag
functions on [0,00) is denoted by D([0,00),R). We equip both these spaces with the o-
algebra generated by the coordinate functions o(x +— z; : t > 0). A continuous random
process (X;);>o can then be considered as a random variable X in C([0, 00),R) given by

X(w) = (t— Xi(w) : t>0).

A cadlag random process can be thought of as a random variable in D(]0,00),R). The
finite-dimensional distributions of a continuous or cadlag process X are the laws py, 4, on
R™ given by

ptyo1n(A) =P( Xy, ..., Xp,) € A), A€ BR")
where n € N and ty,...,t, € [0,00) with t; < --- <t,. The cylinder sets {(X4,,...,Xs,) €
A} form a generating m-system, so their probabilities uniquely determine the law of X. We
make analogous definitions when R is replaced by a general topological space.

4.2. Kolmogorov’s criterion. This result allows us to prove pathwise Holder continuity
for a random process starting from LP-Holder continuity, by giving up 1/p in the exponent.

Theorem 4.2.1 (Kolmogorov’s criterion — simple version). Let 5 € (0,1] and p € (1/5, 00)
be given. Let (X¢)ico,1) be a continuous random process such that, for some constant C' < oo
and all s,t € [0,1],

1Xs — Xellp < Cls —t)°.
Then, for all o € (0,8 — 1/p), there exists a random variable K, € LP such that, almost
surely, for all s,t € [0, 1],

| Xs — Xi| < Kols —t]°.

In fact the following more elaborate formulation is more useful, especially in constructing
continuous random processes, such as Brownian motion. We will actually use a version in
which [0, 1] is replaced by [0, 00), and which can be deduced by piecing together continuous
processes on each interval [n,n + 1]. This is left as an exercise.

Theorem 4.2.2 (Kolmogorov’s criterion — strong version). Let p € (1,00) and 8 € (%, 1].

Let I be a dense subset of [0,1] and let (&)1 be a family of random variables such that, for
some constant C < 00,

165 — &l < C]s—t|5, for all s,t € 1. (4.1)
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Then there exists a continuous random process (Xi)iejo,1) such that
X, =& almost surely, for allt € I.

Moreover (Xi)icp,] may be chosen so that, for all a € [0, 8 — 113), there exists K, € LP such
that
| Xs — Xi| < Kuls—t|*,  forall s,t €[0,1].

Proof. For n > 0, write
D,={k27":keZ"}, D=U,D, D,=D,N[0,1), D=DnN][0,1].
By taking limits in L?, we can extend (&) to all parameter values t € D and so that (4.1)
holds for all s, € DUI. Forn > 0and a € [0, 5 — %), define non-negative random variables
by
Kn = sup |§t+2—" - §t|7 Ka =2 Z 2naKn‘

teEDy, n>0
Then
E(K?) SE D [Gyan — &P <2CP(27)

teDy
SO

IKall, <2372 K, ), < 20 30 27 G0t < o,
n>0 n>0
For s,t € D with s < t, choose m > 0 so that 271 <t — s < 27™. The interval [s,t) can
be expressed as the finite disjoint union of intervals of the form [r,r + 27"), where r € D,
and n > m + 1 and where no three intervals have the same length. Hence

|£t_£s| §2 Z Kn
n>m+1
and so
‘gt — €S| < 9 Kn2(m+1)a < Ka-
(t - S>a n>m+1
Now define
X, (w) = {lims%t,seD &(w) if Ky(w) < oo for all a € [0, 5 — %),
0 otherwise.
Then (X})scp,] is a continuous random process with the claimed properties. O

4.3. Martingales in continuous time. We assume in this section that our probability
space (€, F,P) is equipped with a continuous-time filtration, that is, a family of o-algebras
(Fi)i>0 such that

FCFCTF, s<t.
Define for t > 0

?t+:m5>t9:5, 3:0020'(9:,5:1‘:20), N:{AGFOO]P)(A):O}
The filtration (F;):>o is said to satisfy the usual conditions if N C Fy and F; = F;, for
all t. A continuous adapted integrable random process (X;);>o is said to be a continuous
martingale if, for all s,t > 0 with s <,

E(X|Fs) = Xs almost surely.
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We define analogously the notion of a cadlag martingale. If equality is replaced in this
condition by < or >, we obtain notions of supermartingale and submartingale respectively.

Recall that we write, for n > 0,
D, = {k’2_n ke Z+}, D= UnZODTr
Define, for a cadlag random process X,

X*=sup|X,|, X®™*=sup|X,|.
0 teDn,

The cadlag property implies that
XMW 5 X* asn — 00

while, if (X})¢>0 is a cadlag martingale, then (X;):ep, is a discrete-time martingale, for the
filtration (F;);ep, , and similarly for supermartingales and submartingales. Thus, on applying
Doob’s inequalities to (X¢)ep, and passing to the limit we obtain the following results.

Theorem 4.3.1 (Doob’s maximal inequality). Let X be a cadlag martingale or non-negative
submartingale. Then, for all X > 0,
NP(X™ > A) < sup E(|X, ).
>0

Theorem 4.3.2 (Doob’s LP-inequality). Let X be a cadlag martingale or non-negative sub-
martingale. Then, for allp > 1 and ¢ =p/(p — 1),

X"l < gsup [ Xil,.
t>0

Similarly, the cadlag property implies that every upcrossing of a non-trivial interval by
(X¢)e>0 corresponds, eventually as n — 0o, to an upcrossing by (X;)ep,. This leads to the
following estimate.

Theorem 4.3.3 (Doob’s upcrossing inequality). Let X be a cadlag supermartingale and let
a,b e R with a <b. Then
(b—a)E(Ula, b)) < supE((X; —a)")

t>0

where Ula, b] is the total number of disjoint upcrossings of [a,b] by X.

Then, arguing as in the discrete-time case, we obtain continuous-time versions of each
martingale convergence theorem, where the notions of LP-bounded and uniformly integrable
are adapted in the obvious way.

Theorem 4.3.4 (Almost sure martingale convergence theorem). Let X be an L'-bounded
cadlag supermartingale. Then there exists an integrable F ., -measurable random variable X
such that X; — X almost surely as t — oo.

The following result shows, in particular, that, under the usual conditions on (F;);>o,

martingales are naturally cadlag.
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Theorem 4.3.5 (L' martingale convergence theorem). Let (X;)i>o be a uniformly integrable
cadlag martingale. Then there exists a random variable Xo, € LY (Fs) such that X; — X
as t — oo almost surely and in L'. Moreover, X; = E(Xy|F;) almost surely for all t > 0.
Moreover, if (Fi)i>o0 satisfies the usual conditions, then, for all Y € LY (F,.), there exists a
uniformly integrable cadlag martingale (Xy)i>o such that Xy, = E(Y|F;) almost surely for all
t, and X; — Y almost surely and in L'.

Proof. The proofs of the first two assertions are straightforward adaptations of the corre-
sponding discrete-time proofs. We give details only for the final assertion. Suppose that
(F)t>0 satisfies the usual conditions and that Y € L'(F). Choose a version & of E(Y|F;)
for all ¢ € D. Then (&)ep is uniformly integrable and (&;)sep, is a discrete-time martingale
for all n > 0. Set £* = sup,¢p |&| and write u[a, b] for the total number of disjoint upcrossings
of [a,b] by (&)tep. Set

Q=20"N [ Qs
a,beQ, a<bd
where
O ={ <oo}, Qup={ula,b] < oo}.
By the arguments leading to Theorems 4.3.1 and 4.3.3, we obtain the estimates
P& > \) SE|Y],  (b—a)E(ula,b]) < E|Y] +

which then imply that P(€) = 1. Define for ¢ > 0

Xt = lim fslﬂ().

s—t, s>t, s€D

The usual conditions ensure that (X;);>o is adapted to (F;)i>o. It is straightforward to check
that (X¢)i>0 is cadlag and X; = E(Y|F;) almost surely for all ¢ > 0, so (X;):>o is a uniformly
integrable cadlag martingale. Moreover, X; converges, with limit X, say, as ¢t — oo, and
then X, =Y almost surely by the same argument used for the discrete-time case. 0

Theorem 4.3.6 (L” martingale convergence theorem). Let p € (1,00). Let (Xi)i>0 be an
LP-bounded cadlag martingale. Then there exists a random variable X, € LP(F ) such that
X; = Xo as t — oo almost surely and in LP. Moreover, X; = B(Xo|F:) almost surely for
allt > 0. Moreover, if (Ft)i>0 satisfies the usual conditions, then, for all Y € LP(F), there
exists an LP-bounded cadlag martingale (X;)i>o such that Xy = E(Y'|F}) almost surely for all
t, and Xy — Y almost surely and wn LP.

We say that a random variable
T:Q —[0,00]
is a stopping time if {T <t} € F, for all t > 0. For a stopping time T', we set
Fr={AeFo: An{T <t} € F forallt > 0}.
Given a cadlag random process X, we define X and the stopped process X* by
Xr(w) = Xpw) (W), X[(w) = Xp@n(w)
where we leave Xr(w) undefined if T'(w) = oo and X;(w) fails to converge as t — oc.

Proposition 4.3.7. Let S and T be stopping times and let X be a cadlag adapted process.

Then
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(a) SAT is a stopping time,

(b) Fr is a o-algebra,

(c) if ST, then Fs C Fr,

(d) Xrlreoo is an Fp-measurable random variable,
(e) XT is adapted.

Theorem 4.3.8. Let X be a cadlag adapted integrable process. Then the following are
equivalent

(a) X is a martingale,
(b) for all bounded stopping times T and all stopping times S, Xp is integrable and

E(X7|Fs) = Xsar almost surely,

(c) for all stopping times T, the stopped process XT is a martingale,
(d) for all bounded stopping times T, Xr is integrable and

E(Xr) = E(X)).
Moreover, if X is uniformly integrable, then (b) and (d) hold for all stopping times T

Proof. Suppose (a) holds. Let S and T be stopping times, with 7" bounded, T' < t say. Let
A€ Fg. For n >0, set

S, =2""[2"S|, T,=27"[2"T].
Then S,, and T, are stopping times and S,, | S and T,, | T as n — oo. Since (X;);>0 is right
continuous, X7, — Xp almost surely as n — oo. By Theorem 2.2.3, X1, = E(X,1|57,)
so (X7, : n > 0) is uniformly integrable and so X7, — X7 in L'. In particular, Xy is
integrable. Similarly Xg A7, — Xgar in L'. By Theorem 2.2.3 again,

E(X7,14) = E(Xs, a7, 14)-

On letting n — oo, we deduce that (b) holds. For the rest of the proof we argue as in the
discrete-time case. O
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5. WEAK CONVERGENCE

5.1. Definitions and characterizations. Let (u, : n € N) be a sequence of probability
measures on a metric space E, and let p be another probability measure on E. We say
that p, converges to p weakly on E and write u, — p weakly on E if p,(f) — p(f) for all
bounded continuous functions f on E. Here is a general result, which we will not prove, on
characterizations of weak convergence.

Theorem 5.1.1. The following are equivalent

(a) pn — 1 weakly on E,

(b) limsup,, i, (C) < u(C) for all closed sets C,

(¢) liminf, p,(G) > w(G) for all open sets G,

(d) lim, g, (A) = u(A) for all Borel sets A with u(0A) = 0.

Here is a result of similar type for the case F = R.

Theorem 5.1.2. Let p, and p be probability measures on R. Denote by F,, and F' the
corresponding distribution functions. The following are equivalent

(a) pn — 1 weakly on R,

(b) Fn(x) = F(x) for all z € R such that F(z—) = F(x),

(¢) on some probability space (2, F,P), for all n, there exist random variables X and
Xy, with laws p and p, respectively, such that X, — X almost surely.

Proof. Suppose that (a) holds. Fix z € R with F(x—) = F(x). Given € > 0, choose § > 0 so
that F'(x —9) > F(z) —e and F(x +9) < F(z)+¢e. For some continuous functions f and g,

]-(—oo,:r:—é] < f < 1(—00,:1:] < g < ]-(—oo,x+5]~

Then p,(f) < Fo(z) < p,(g) for all n. Also u(f) > F(z) — e and p(g) < F(x) +e. We use
(a) to see that liminf, F,(z) > F(z) — ¢ and limsup,, F,,(z) < F(x) + . Since € > 0 was
arbitrary, we deduce that (b) holds.

Suppose now that (b) holds. Take (©,F,P) = ((0,1),B((0,1)),dz). Consider for w € Q

the intervals
Iw)={zeR:Flx)>w}, Jw) ={reR:F(z—)<w}

and set X (w) = inf I(w) and Y (w) = sup J(w). Since F is right-continuous, X (w) € I(w) so
X(w) <z if and only if w < F(z). Hence X is a random variable and IP’( < x) = F(x).
Since F'(z—) is left-continuous, Y (w) € J(w) so Y(w) > z if and only if w > F(z—).
Similarly, we construct X,, and Y,, starting from F,,. Fix a € R such that F(a) = F(a—) and
F.(a) = F,(a—) for all n. Then F,(a) — F(a). If X(w) > a then w > F(a) so w > F,(a)
eventually, and so X,,(w) > a eventually. Since the set of such a is dense (as its complement
is countable), this implies that liminf X,,(w) > X(w). On the other hand, if Y (w) < a then
w < F(a—) so w < F,(a—) eventually, and so Y, (w) < a eventually. Hence we see that
limsup Y, (w) < Y(w). But Y,(w) = X, (w) for all n and Y (w) = X(w) except possibly at
countably many w. So limsup X,, < X almost surely, and so X,, — X almost surely. Hence
(c) holds.

Finally, if (c) holds, then (a) follows by bounded convergence. O
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5.2. Prohorov’s theorem. A sequence of probability measures (u, : n € N) on a metric
space E is said to be tight if, for all € > 0, there exists a compact set K such that u,,(E\K) <
¢ for all n.

Theorem 5.2.1 (Prohorov’s theorem). Let E be a separable metric space and let (p, : n € N)
be a tight sequence of probability measures on E. Then there exists a subsequence (ny) and
a probability measure jv on E such that i, — p weakly on E.

Proof for the case E = R. Write F,, for the distribution function of u,. By a diagonal argu-
ment and by passing to a subsequence, it suffices to consider the case where F),(x) converges,
with limit g(x) say, for all rationals x. Then g is non-decreasing on the rationals, so has a
non-decreasing extension G to R, and G has at most countably many discontinuities. It is
easy to check that, if G is continuous at z € R, then F,(x) — G(z). Set F(z) = G(z+).
Then F is non-decreasing and right-continuous and F,,(x) — F(z) at every point of conti-
nuity = of F. By tightness, for every € > 0, there exists R < oo such that F,,(—R) < ¢ and
F.(R) > 1— ¢ for all n. It follows that F(z) — 0 as x = —ooc and F(z) — 1 as x — 00, o
F'is a distribution function. The result now follows from Proposition 5.1.2. U

5.3. Weak convergence and characteristic functions. For a probability measure x on
R?, we define the characteristic function ¢ by

o(u) :/ ey (dr), u e R
Rd

Lemma 5.3.1. Let p be a probability measure on R with characteristic function ¢. Then

i 20 <0 [ (1= Reouyan
0
for all X € (0,00), where C = (1 —sin1)™! < oo.
Proof. 1t is elementary to check that, for all t > 1,
Ct ! /t(l —cosv)dv > 1.
By a substitution, we deduce that, for ;11 yeR,

1/
Lyza < C)\/ (1 — cosuy)du.
0

Then, by Fubini’s theorem,

1/A /A
ol =0 <O [ [0 = cosup)dup(ay) = X [ (1= Reofu)in
[l

Theorem 5.3.2. Let (u, : n € N) be a sequence of probability measures on R and let pu be
another probability measure on R?. Write ¢,, and ¢ for the characteristic functions of i,
and p respectively. Then the following are equivalent

(a) pn — p weakly on RY,
(b) ¢n(u) = d(u), for all u € RY.
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Proof for d = 1. It is clear that (a) implies (b). Suppose then that (b) holds. Since ¢ is a
characteristic function, it is continuous at 0, with ¢(0) = 1. So, given € > 0, we can find
A < oo such that

CA /01/)\(1 — Re¢(u))du < ¢/2.

By bounded convergence we have

1/ /A
/ (1 —Reop(u))du — / (1 —Reo(u))du
0 0
as n — 00. So, for n sufficiently large,

pn(lyl = A) <e.
Hence the sequence (u, : n € N) is tight. By Prohorov’s theorem, there is at least one weak
limit point v.

Fix a bounded continuous function f on R and suppose for a contradiction that g, (f) 4
w(f). Then there is a subsequence (ny) such that |, (f)—u(f)| > € for all k, for some £ > 0.
But then, by the argument just given, we may choose (ng) so that moreover p,, converges
weakly on R, with limit v say. Then ¢, (u) — ¥ (u) for all u, where 1 is the characteristic
function of v. But then ¢ = ¢ so v = pu, by uniqueness of characteristic functions [PM,
Theorem 7.7.1], so fin, (f) — p(f), which is impossible. It follows that u, — u weakly on
R. O

The argument just given in fact establishes the following stronger result (in the case d = 1).

Theorem 5.3.3 (Lévy’s continuity theorem). Let (u, : n € N) be a sequence of probability
measures on R, Let u, have characteristic function ¢, and suppose that ¢,(u) — ¢(u)
for all w € R?, for some function ¢ which is continuous at 0. Then ¢ is the characteristic
function of a probability measure p and p, — p weakly on RY.
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6. LARGE DEVIATIONS

Whilst it is often the typical behaviour of a random variable that is of interest, sometimes
we wish to know about the probabilities of rare events, say when the consequences of those
events are particularly significant. Suppose we are given a family of probability measures
(in, = m € N), on some metric space (S, d) say, which concentrates near some point m € S,
in the sense that, for all € > 0, as n — oo,

pn({x € S :d(x,m) >e}) = 0.

We may be able to show that, for suitable subsets A C S\ {m}, the probabilities u,(A) in
fact decay exponentially in n at some computable rate I(A) > 0 depending on A. Thus we
would have, in some sense, as n — oo

fin(A) 2 e,

A precise way to state such an exponential rate of decay is by the limit
1
—log pun(A) = —I(A).
n

Such a limit, with precise conditions on A, is called a large deviations principle for (1, )n>1.
We will explore such ideas in the case where p,, is the distribution of the sample mean of n
independent identically distributed integrable random variables.

6.1. Cramér’s theorem.

Theorem 6.1.1 (Cramér’s theorem). Let (X, : n € N) be a sequence of independent,
tdentically distributed, integrable real-valued random variables. Set

and define the cumulant generating function ¢ and its Legendre transform * by
v) =g E(),  4*(2) = sup(rz = ().
Then, for all a > m, we have

lim ! log P(S,,/n > a) = —¢™(a)

n—oo N
As is usually the case for large deviations, we will use separate arguments to prove the
upper bound
1
limsup —log P(S,,/n > a) < —¢*(a)
n—oo T
and then a complementary lower bound

lim inf ! log P(S,/n > a) > —¢*(a).

n—oo N

Before starting on the proof, we discuss some examples. Consider first the case where X;
has N (0, 1) distribution. Then ¥(\) = A?/2 and so ¢*(x) = x?/2. So, by Cramér’s Theorem,

for all a > 0,

a2

1
lim —logP(S,/n>a)=——.
A, 8PS/ 2 a) = =
Since S, /n has N(0,1/n) distribution, it is straightforward to check this directly.
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Consider next the case where X; has exponential distribution of parameter 1. Then

E(X;) =1 and
E(e*) = /OO R { L/(1=X), ifx<1,
0

00, otherwise.

By a simple computation, we find that ¢¥*(x) = 2 — 1 — logz. Then, by Cramér’s Theorem,
for all a > 1,
1
— S )= (g1
nh_)rgo - log P(S,,/n > a) (a—1—loga).

Since var(X;) = 1, by the central limit theorem, (S,, — n)/y/n converges in distribution to
N(0,1). Thus, for all a € R,

<1 2
lim P(S,, > n+ayn) = / ——e ",
a V2T

n—oo

This agrees exactly, modulo adjusting for the mean, with the corresponding limit for the
first example. Note however that the large deviations for S,, in the two examples show quite
different behaviour.

For a third example, suppose that X; has density oc 1/(1 + 2*). Then E(e**) = oo for
all A #£ 0, so
BN = ool ¢ (x) =0,
Cramér’s theorem then expresses that, for all a > 0, P(S,/n > a) does not decay at any
positive exponential rate in n.

Finally, consider the case where X; is uniformly distributed on [—1,1]. Then E(X;) =0

and )

1 sinh A
)\Xl — Az —
E(e**t) = 5 / e dx 3

-1

SO

sinh A , coshA 1

We can then show that ¢ is a homeomorphism [0, 00) — [0,1) and ¢* is a homeomorphism
[0,1) — [0,00). Hence 9*(1) = oo and Cramér’s theorem shows that P(S,/n > 1) decays
faster than any exponential rate in n. This is of course obvious because P(S,/n > 1) =0
for all n.

Proof of the upper bound. Fix a > m and note that, for all n > 1 and all A\ > 0,

P(S, > an) < P(e*S" > Ain) < ¢ MR () = g~ (a—b()n
SO
log P(S, > an) < —(Aa — ¥ (A)n
and so, on optimizing over A > 0, we obtain
log P(S,, > an) < —¢*(a)n.
Hence we have
lim sup 1 logP(S,, > an) < —¢*(a).

n—oo N
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Proof of the lower bound. We exclude the trivial case where P(X; = m) = 1, for which the
lower bound can be verified easily. Define A € [0, co] by

A =inf{\>0:E(e*") = co}.

We exclude for now the case A = 0. Write u for the law of X;. For A € [0, A), we can define
a tilted distribution py on R by

pa(de) = XV p(da).

By differentiation of E(e**!) under the integral sign, we see that 1) has derivatives of all
orders on [0, A), and a computation shows that

P'(A) = /Rwu,\(dw), YP"(N\) = var(uy) > 0.

We define M € (m, o] by
— /
M = Jim ¥/().
Then ¢' : [0,A) — [m, M) is a homeomorphism. Also, for x € [m, M), the map A\ — \x —
¥(A) achieves a unique maximum at A\* = \*(x), where ¢/(\*) = x. So ¢*(x) = Az — (\*)

and v¥* is continuous on [m, M).

Consider first the case where a € [m, M). Fixe > 0 and set b=a+¢ and c = a +2¢. We
can and do choose € > 0 so that ¢ < M. Then b = ¢'(\) for some A € [0,A). Fix n > 1 and
define a new probability measure Py by

dPy = M =vngp,

Under P, the random variables X1, ..., X,, are independent and integrable, with distribution
iy and mean b. Consider the event

A, ={|Sn/n—0b| <e} ={an < S, < en}.
Then
P(S, > an) > P(A,) = Ey(e Aty ) > g Aentvnp, (4 )]
Now P)(A4,) — 1 as n — oo by the weak law of large numbers, so log Py(A,) — 0, and so

lim infllog P(S, > an) > —Ac+ (X)) > =™ (c).

n—oo M

On letting ¢ — 0, we have ¢ — a, so ¥*(c) — ¥*(a) by continuity. Hence we obtain the
claimed lower bound.

Consider next the case where a € [M,00) and A = co. This can only happen if P(X; <
a) = 1 (exercise). Set p = P(X; = a). Then p € [0,1] and E(e**1=%) — p as A — oo by
bounded convergence, so

Y(\) — Aa = log E(e**1 =) — logp.
Hence ¢*(a) > —log p. Now, for all n > 1, we have P(S,, > an) = p", so
logP(S,, > an) = nlogp > —ny*(a).

Hence the lower bound holds also in this case.
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There remain two cases, firstly where A € (0,00) and a € [M,00) and secondly where
A = 0. We consider these cases together. Fix K < oo and (repurposing the subscript
notation) consider the conditioned distribution py given by

prc () o< Lg<gypi(de)
and, for fixed n > 1, the conditioned probability measure P, given by

d]P)K 68 1{X1§K,...XHSK}dIED~

Then, under Pg, the random variables Xi,..., X, are independent and integrable, with
distribution pg. Set mxg = Ex(X;) and define for A > 0 and a > my,

vk (A) = logEx (™), ¢ic(a) = iglg(m — Yr (X))

Then mg T m and Yx(\) T () as K — oo for all A > 0. Since Ex(e*1) < oo for all
A > 0, by the cases already considered, for all a > m, we have

lim inf lIP’K(Sn > an) > —Y(a).

n—oo M

Since P(S,, > an) > Pk(S, > an), it now suffices to show that ¢} (a) | ©*(a) as K — oo.

By choosing K sufficiently large, we can ensure that Px(X; > a) > 0 so a < Mg and so
Vi(a) = Aga = Yr(Xg)

where A}, > 0 is determined by 9% (\i) = a. Since ¢} (\) is increasing in both K and A, we

must have A} | A\* for some \* > 0. Now

Ak
breN) = v \) + [ U (NdA > e (X) + mi (X — A7)

A*
so, in the limit K — oo,

Vi(a) S Aga =Y (X) = mr(Ag = ") = Na — (A7) <9*(a).
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7. BROWNIAN MOTION

Brownian motion is named after a botanist who observed an apparently random but con-
tinuous motion when looking at pollen grains under a microscope. The mathematical object
now called Brownian motion was rigorously defined by Wiener, though it was understood at
some level earlier by Bachelier as a model for the evolution of stock prices, and in physics
by Einstein and Smoluchowski, where it played an important role in establishing the atomic
theory of matter.

7.1. Definition. Let (X;);>0 be a random process with state-space R%. We say that (X;);>o
is a Brownian motion if

(i) for all s,¢ > 0, the random variable X, — X, is Gaussian, of mean 0 and variance
t1, and is independent of F¥ = o(X, : u < s),
(ii) for all w € ©Q, the map t — X;(w) : [0, 00) — R? is continuous.

We will show that such processes exist and that they provide a universal weak scaling limit
for random walks in R? with steps of finite variance. In particular, Brownian motion is a
scaling limit of the simple symmetric random walk in Z¢. We may expect then that Brownian
motion inherits some properties of simple symmetric random walks.

First it will be useful to consider some reformulations of the definition. Condition (i)
states that, for all s > 0, all ¢ > 0, any Borel set B C R? and any A € FX

s 7

P({Xst — Xs € B} N A) = P(A) / (2mt) 2 WP/ ) gy
B
By a monotone class argument, it is equivalent to the following statement expressed in terms
of conditional expectation: for all s,¢ > 0, and for all bounded measurable functions f on
R?, almost surely,

]E(f<Xs+t)|$§) = P f(X5)
where (P;);>o is the heat semigroup, given by Pyf = f and, for ¢t > 0,

Ps(e) = [ ol flo)dy. (r.)

Here p(t,z,.) is the Gaussian probability density function on R? of mean z and variance t1,
given by

plt,,y) = (2mt) % vP/eD,
In the case where X, = x for some x € R%, we call (X;);>9 a Brownian motion starting from
x. Then condition (i) may also be expressed in terms of the finite-dimensional distributions

of (Xi)i>o as follows: for all n € N and all ¢y,...,¢, > 0 with ¢; < --- < ¢, for any Borel
set B C (R%)",

P((Xy,...,Xs,) € B) = / HP(Si,fEi—l,ﬂfz’)dwi
Bi=1

where xg = x, to = 0 and s; = t; — t;_1. Note that (X;);>o is a Brownian motion starting
from z if and only if X; = x + B; with (B;);>0 a Brownian motion starting from 0. Also
(X{)¢>0 is a Brownian motion in R? starting from 0 if and only if X; = (X},..., X&) with
(XHi>0, - - (X0 independent Brownian motions in R starting from 0.
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For a Brownian motion (X;);>¢ in R starting from z, for all s,¢ > 0 and all 4,5 =1,...,d,
E(X;) ==, cov(X! X])=E(X!X])=(sAt)d;. (7.2)

Recall that Gaussian distributions are determined by their means and covariances. Hence,
given that (X;);>¢ is a continuous Gaussian process, the simple properties (7.2) determine the
finite-dimensional distributions (X):>o and hence characterize (X;):>0 as a Brownian motion.
This provides a convenient way to identify certain linear transformations of Brownian motion
as Brownian motions themselves.

7.2. Wiener’s theorem. Write W for the set of continuous paths C([0, 00), R?). For ¢ > 0,
define the coordinate function x, : Wy — R? by x,(w) = w(t). We equip Wy with the o-
algebra Wy = o(z; : t > 0). Given any continuous random process (X;);>o with state-space
R?, we can define a measurable map X : Q — W, and a probability measure g on (Wy, W,)
by
X(w)(t) = Xa(w), w(A) =P(X € A).

Then p is called the law of (X});>0 on W,. The measure p, identified in the next theorem is
called Wiener measure starting from x.

Theorem 7.2.1 (Wiener’s theorem). For all d > 1 and all x € R?, there exists a unique
probability measure p, on (Wy, Wq) such that the coordinate process (xi)i>o is a Brownian
motion starting from x.

Proof. Conditions (i) and (ii) determine the finite-dimensional distributions of any such
measure i, so there can be at most one. To prove existence, it will suffice to construct,
on some probability space (§2,F,P), a one-dimensional Brownian motion (X;):;>o starting
from 0. Then, for d = 1 and = € R, the law p, of (z + X;)i>0 on (Wi, W) is a measure
with the required property, and, for d > 2 and x = (z1,...,24) € R?, the product measure
P = gy & -+ @ iy, on (Wy, Wy) has the required property.

For N > 0, set

Dy ={k2™":ke€Z"}, D= |]Dy.
N=0
There exists a probability space (2, F,P) on which there is defined a family of independent
N(0,1) random variables (Y; : t € D). For t € Dy = Z*, set §& = Y1 + --- + Y;. Define
recursively, for N > 0 and t € Dy, \ Dy,

&+ &s
g =78
where r =t — 2= WV+D) g = ¢ 4 2-(N+1) and Z, = 2-V42)/2Y,. Then the random variables
(& : t € D) are jointly Gaussian and of mean 0. Note that the increments (§,.1 — & : ¢t € Dy)
are independent and of variance 1.

+ Z

Suppose inductively for N > 0 that the increments (§,,o-~ —&; : t € Dy ) are independent
and of variance 27V, Consider the increments (&, (vi1) —& : t € Dyyq). Fixt € Dyy1 \Dy
and note that, for 7 and s as above,

_58_51”

58_51”
gt_r_ 2

2

+Zt7 fs _gt =
38
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Now

var (%) =2~ W+ — var(Z,)

SO
Var(gt - ér) - Var(gs - £t> = 2_(N+1)7 COV(& - 57“7 gs - gt) = 0.
On the other hand, for any u,v € Dy with (u,v] N (r,s] = 0,

COV(& - 67"751} - gu) = COV(fs - 5t75v - fu) =0

(N+1

Hence & — &, and & — & are independent and of variance 2~ ), and are moreover inde-

pendent of &, — &, for any such u,v. The induction proceeds.

It follows that (& );ep has independent increments and, for all s, € D with s < ¢, the
random variable & — & is N(0,¢ — s). Choose p > 2 and set C}, = E(|§[P). Then C, < oo
and

E(& — &) = Gyt — s)™.
Hence, by Kolmogorov’s criterion, there is a continuous process (X;);>o starting from 0 such
that X; = & for all £ € D almost surely.

Let s > 0 and t > 0, and choose sequences (s(k))g>1 and (£(k))r>1 in D such that s(k) — s
and t(k) — t with s(k) > s and t(k) > 0 for all k. Note that, since X is continuous, F¥ is
generated by the m-system consisting of sets of the form

A={(X,,...,X;,) e B}, BeBR"), si1,...5,€[0,s]ND, n>1.

Set AO = {(fsl,...,fsn) € B} and note that 1A = 1A0 and Xs(k:) = fs(k) and Xs(k)+t(k) =
Es(k)+(k) almost surely. In particular P(A) = IP(Ay). Then, for any continuous bounded
function f on R,

E(f (Xsw)rem) — X)) 1a) = E(f (Esryrem) — Esi))140) = P(Ao) /Rp(t(k‘), 0,9)f(y)dy

so, on letting k — oo, we obtain, by bounded convergence,
B (Xoss = X)L0) = P(A) | p(t.0.) )y

It follows that X,y — X ~ N(0,¢) and is independent of . Hence (X;);>0 is a Brownian
motion. ]

7.3. Symmetries of Brownian motion. In the study of Brownian motion, we can take
advantage of the following symmetries.

Proposition 7.3.1. Let (X;)i>o be a Brownian motion in R starting from 0. Let o € (0, 00)
and let U be an orthogonal d x d-matrixz. Then

(a) (0X,-2;)¢>0 s a Brownian motion in R? starting from 0,
(b) (UX})¢>0 s a Brownian motion in R starting from 0.

We call (a) the scaling property and we call (b) rotation invariance.
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7.4. Brownian motion in a given filtration. Suppose given a filtration (F;);>¢ on (2, F, P).
Let (X;);>0 be a random process with state-space R?. We say that (X;);>0 is an (F;)s>o0-
Brownian motion if

(1) (Xt)e0 is (Fp)e>o-adapted,
(ii) for all s,¢ > 0, the random variable X, — X is Gaussian, of mean 0 and variance
t1, and is independent of F;,
(iii) for all w € Q, the map t — X;(w) : [0, 00) — R? is continuous.

Then every (F;);>o-Brownian motion is a Brownian motion, in the sense used above, and
every Brownian motion is an (F);>o-Brownian motion. By specifying that (X;);>o is an
(F1)i>0-Brownian motion we can express conveniently certain independence statements be-
tween (X};);>o and other random variables defined on the same probability space.

Theorem 7.4.1 (Strong Markov property). Let (Xi)i>0 be an (F)i>0-Brownian motion and
let T be a stopping time. Then, conditional on {T < oo}, the process (Xrit)i>o i an
(Fr4t)t>0-Brownian motion.

Proof. 1t is clear that (X7.4¢)i>0 is continuous on {T" < oo}. Also Xry¢ is Fry-measurable
on {7 < oo} for all t > 0, so (Xpit)e>0 18 (Frit)iso-adapted on {T" < oco}. Let f be a
bounded continuous function on R?. Let s > 0 and ¢ > 0 and let m € N and A € Fr, with
ACHAT < m}. Fixn > 1 and set T, = 27"[2"T']. For k € {0,1,...,m2"}, set t;, = k27"
and consider the event
Ay =AN{T € (t, — 27", t;]}.
Then Ay, € Fy, 45 and T;, =t on Ay, so
E(f(XTTL+s+t)1Ak) - E(f(th-i-S-‘rt)lAk) = ]E(Ptf(th-‘rS)lAk) - E(Ptf(XTn"'S)lAk)

On summing over k, we obtain

]E(f(XTn+t)1A) - E(Pt_sf(XT7z+5>1A)'
Then, by bounded convergence, on letting n — oo, we deduce that

E(f(Xris4e)1a) = E(Pf(Xris)1a).
Since m and A were arbitrary, this implies that, almost surely on {7" < oo},

E(f<XT+s+t)|?T+S) - Ptf(XT+S)
so, conditional on {T" < oo}, (X74¢)i>0 is an (Fry)i>o-Brownian motion. O

The following result allows us to compute conditional expectations for Brownian motion
in terms of Wiener measure. It is particularly useful in conjunction with the strong Markov

property.

Theorem 7.4.2. Let (X;)i>0 be an (Fi)i>o-Brownian motion and let F' be a bounded mea-
surable function on Wy. Define a function f on R? by

fa) = /W F(w)pa(dw).

Then f is measurable and, almost surely,
E(F(X)[F0) = f(Xo)-
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Proof. Consider the m-system A on W, consisting of sets of the form
B={weWy:wy€ By,wy, —wy,_, € By fork=1,...,n}

where n e Nand 0 =ty < t; < --- < t, and By, By, ..., B, are Borel sets in R?. Then A
generates W,. Consider the case where F' = 1g for some B € A and set s, =t — tx_1. For

A€ Jpand k=1,...,n, the increments X, — X, _, are independent, and independent of
X and A, with distribution ~,, ~ N(0, sg/) Then

f(x) = pa(B) = 1gy(x) | [ 76 (Be)

and

E(F(X)14)=P(BNA)=P{Xo€ By} NA) H Vs (Br) = E(f(Xo)1a).
k=1
Hence f is a measurable function on R% and E(F(X)|Fy) = f(X,) almost surely. The same
conclusion then extends to all bounded measurable functions F' on W, by a monotone class
argument. 0

7.5. Martingales of Brownian motion. We now identify a useful class of martingales
associated to Brownian motion, in terms of the Laplacian A on R? which is the second-
order differential operator given by

0? 0?
= e =

dx? x?

Theorem 7.5.1. Let (X;)i>o be an (Fy)i>0-Brownian motion and let f € CZ(R?). Define
(Mi)izo by

A

M= 10X = 7050~ [ 385X

Then (My)i>o is a continuous (Fy)i>o-martingale.

Proof. For simplicity of writing, we write the proof for the case d = 1. The argument for
general d is similar. It is clear that (M;);>¢ is continuous, adapted and integrable. Fix 7" > 0
and set

571 = Sup{|Xs - Xt| ps,t < T, ’S - t| < 2—71}’
en = sup{|f"(y) = [1(X)| - ¢t < T, |y = Xif <0n}.

Then ¢, < 2||f"||« for all n and 4, — 0 and hence ¢, — 0 as n — oo almost surely, since
f" is continuous. Hence ||g,|l2 — 0 by bounded convergence.

We will show that, for r <t < T with t —r <277,
[E(M; — My |F2)|l1 < 3(¢ = 7)l[enl]2-
Then, by the tower property, for s <r <t <T with t —r <27,

[B(M, = M, [Fo)lle < 3(t = 7)llenll2-
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By the triangle inequality, this inequality remains valid without the condition ¢t —r < 27",

Then on taking r = s and letting n — oo we obtain
[E(M|Fs) — My[[1 =0
so (M;)¢>o has the martingale property, as claimed.
Fix s <t <T with t — s < 27", By Taylor’s theorem
F(X0) = [(Xo) + (X = X)) [/(Xo) + 5(Xe = Xo)* " (X5) + (X — X,)* B (s, 1)

where
Bils) = [ (1= ("X + (1= 0X,) = /(X))
Also .
[ A0t = - 9770 + (1= ) Ealo
where

(t = 9)Ealst) = [ 3006) = (X))
Note that |Ey(s,t)| < e, and |Ey(s,t)| < &,. Now
M= M, = £00) = (%) - [ 40 ar

= (Xe = Xo) [/(X5) + ((Xe = X5) = (t = 8)).f"(X,)
+ (Xy — X)2E1(s,t) — (t — 5)Ey(s,1).

and
E((Xt - Xs)f/(Xs>|5ts) = f/(Xs>E(Xt - Xs|3rs) = 07
E(((Xt - Xs)2 - (t - S))f”(Xs)w:s) = f//(Xs)E((Xt - Xs)2 - (t - S)|?S) =0.
Hence
E(M; — M,|F,) = E((X; — Xo)2Ev(s,1)|F.) — (t — )E(Ea(s, )|F,)
and so

[E(M; — M|Fo) [l < [[(Xe = X2 Bi(s, )|l + (t = 8)[| Ba(s, ) L
< (Xe = X2l B2 (s, )|z + (¢ = 5)[[ Ba(s, 1)z
< (V34 1)(t = 9)lenllo < 3(t — 5)llenll2
where we used Cauchy—Schwarz and the fact that
E((X: — X)) = (t — s)’E(X}) = 3(t — 5)*.

O

Second proof. 1t is clear that (M;);>o is continuous, adapted and integrable. Fix ¢ > 0.

Consider for now the case where X, = x for some z € R? and set

i) =506 = [ (o) = 100 - [ 5 s(as) ol
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Then, for all s € (0,¢], by Fubini,

(43 = & (£ - X - [ t AF (X )

—E(f(X)) - E(f(X.) - [ E(RAS(X) dr

z/de(t7rC7y)f( )dy — /R p(s,z,y)f(y)dy — // p(r,z,y)5Af(y)dydr.

Now p satisfies the heat equation p = lAp so, on integrating by parts twice in R%, we obtain

// p(r, z,y) Af dydr—// p(r,z,y) f(y)dydr

— [ plto) o)y - / p(s, 7,9) f(9)dy.
R4 R
Hence E(M;) = E(M,). On letting s — 0, we have My — 0, so E(M;) — 0 by bounded
convergence. Hence m(z) = E(M;) = 0.
We return to the case of general initial state Xy. Then, by Proposition 7.4.2, almost surely,
Finally, for all s > 0, since

Mowi— M, = f(Xups) — F(X.) - / LAF(X s )dr

we may apply the preceding formula to (X, t)i>0, which is an (Fgi¢)i>0-Brownian motion,
to obtain, almost surely,

E<M5+t - M5|9'~S) — 0
showing that (M;);>o is a martingale. O

7.6. Properties of one-dimensional Brownian motion.

Proposition 7.6.1 (Reflection principle). Let (X;)i>o be a Brownian motion in R starting
from 0 and let a > 0. Set T = inf{t > 0: X; = a} and define

7, — 2a — Xt7 ZfT S t
T X, otherwise.

Then (Zy)i>o is also a Brownian motion starting from 0.

Proof. Note that T is a stopping time and X7 = a on {T' < co}. On the event {T' < oo},
set
Xt - XT+t - XT, t Z O

By the strong Markov property, conditional on {T" < oo}, (Xt)tzg is a Brownian motion
starting from 0 and independent of Fr. Hence the same is true for (—X;)¢>o. But

Xy = Xrne + Xyt Liraooyy, Ze = Xrae — Xyt Liraosy, £ 2> 0.

Hence (X;)i>0 and (Z;)i>0 have the same distribution. O
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Proposition 7.6.2. Let (X;);>0 be a Brownian motion in R starting from 0. For a € R, set
T,=inf{t > 0: X; =a}.
Then, for a,b > 0, we have
P(T,<o)=1, P(T_,<T,)=0b/(a+b), E(T_,AT,) = ab.
Moreover, T, has a density function f, on [0,00), given by
fat) = (a/V2rt3)e=a /2
Moreover, the following properties hold almost surely
(a) Xi/t = 0 ast — oo,
(b) inf;>p X; = —00 and sup;>o X; = 0o,

(c) for all s > 0, there exist t,u > s with X; < 0 < X,
(d) for all s > 0, there exist t,u < s with X; < 0 < X,.

Theorem 7.6.3. Let X be a Brownian motion in R. Then, almost surely,

(a) for all « < 1/2, X s locally Hélder continuous of exponent c,
(b) for all « > 1/2, X is not Hélder continuous of exponent a on any non-trivial
interval.

Proof. Fix a < 1/2 and choose p < oo so that o« < 1/2 — 1/p. By scaling, we have
1Xs = Xellp < Cls — ]2
where C' = || X4||, < co. Then, by Kolmogorov’s criterion, there exists K € L” such that
| Xs — Xi| < K|s—t|*, s,te]0,1].
Hence, by scaling, X is locally Holder continuous of exponent «, almost surely. Then (a)
follows by considering a sequence o, > 1/2 with «a,, — 1/2.
Define for m,n > 0 with m > n and for s,t € D,, with s < t.

[X]Z?t = Z(XTH”" - XT)2
where the sum is taken over all 7 € D,, such that s < 7 < t. The random variables
(X,49-m — X,)? are then independent, of mean 27 and variance 272" %1, For the variance,
we used scaling and the fact that var(X?) = 2. Hence

E([X];”t) =t—s, var([X]™)=2"""(t—s)

s,t
so [ X[, — t—s > 0 almost surely as m — oco. On the other hand, if X is Hélder continuous
of some exponent o > 1/2 and constant K on [s, ], then we have

<X7-+2—m - XT)2 < K2272ma

SO
[(X]7 < K2272mem(t — 5) — 0.

Hence, almost surely, X is not Holder continuous of any exponent o« > 1/2 on [s,t]. Now,

for any non-trivial interval I, there exist n > 0 and s,t € D,, with s < ¢ such that [s,¢] C I.

Hence, almost surely, for all @ > 1/2, there is no non-trivial interval on which (X});> is

Holder continuous of exponent «. [l
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7.7. Recurrence and transience of Brownian motion. The statements in the following
theorem are sometimes expressed by saying that Brownian motion in R is point recurrent,
that Brownian motion in R? is neighbourhood recurrent but does not hit points and that
Brownian motion in R? is transient for all d > 3.

Theorem 7.7.1. Let (Xi)i>0 be a Brownian motion in R<.

(a) In the case d =1,
P({t > 0: X; = 0} is unbounded) = 1.
(b) In the case d = 2,
P(X; =0 for somet>0)=0
but, for any e > 0,
P({t > 0:|Xy| < e} is unbounded) = 1.

(¢) In the case d > 3,
P(| X = o0 ast — o0) = 1.

Proof. By Proposition 7.4.2, it suffices to consider the case where X, = z for some = € R
Then (a) follows easily from Proposition 7.6.2. We turn to (b). Set
po(z) = P(X; = 0 for some t > 0) = p,(w(t) = 0 for some ¢t > 0)
and, for € > 0, set
pe(x) = P(| Xt < e for some t > 0) = u,(Jw(t)| < e for some ¢t > 0).
Fix a € (0,1) and b € (1,00). There exists a function f € CZ(R?) such that
f(z) =logl|z|, fora<|z| <D

Then, since log |z| is harmonic in R?\ {0}, we have Af(x) = 0 for a < || < b. Consider the
process

¢

M, = (X0~ £X0) — [ 5AF(X.)ds

0

and the stopping time

T =inf{t > 0:|X;| = a or | X;| = b}.
Then (M;)i>o is a martingale, by Theorem 7.5.1, and P(T" < oo) = 1 by (a). Hence, by
optional stopping, since (M;):>o is bounded up to 7', we have

E(Mr) =E(M,) = 0.
Assume for now that |z| = 1. Then My = log|Xr|. Set p = p(a,b) = P(|Xr| = a). Then
0=E(Mr)=ploga+ (1 —p)logb.

Consider first the limit @ — 0 with b fixed. Then loga — —oo so p(a,b) — 0. Hence

po(z) = 0 whenever |z| = 1. A scaling argument extends this to all  # 0. In the remaining
case, when x = 0, for all n > 1, by the Markov property,

P(X; =0 for some t > 1/n) = / p(1/n,0,y)po(y)dy = 0.

R2

Since n > 1 is arbitrary, we deduce that py(0) = 0.
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Consider now the limit b — oo with a = ¢ > 0 fixed. Then logh — o0, so p(a,b) — 1.
Hence p.(x) = 1 whenever |z| = 1. A scaling argument extends this to all z # 0 and it is
obvious by continuity for = 0. Then, by the Markov property, for all x and all n > 1,

P(|X¢| < € for some t > n) = / p(n,z,y)p:(y)dy = 1.
R2

Since n > 1 is arbitrary, it follows that P({t > 0 : | X;| < ¢} is unbounded) = 1.
We turn to the proof of (¢). It will suffice to show, for all N > 1, that
P({t > 0:|X;| < N} is unbounded) = 0.

Since the first three components of a Brownian motion in R? form a Brownian motion in R3,
it suffices to consider the case d = 3. The function 1/|z| is harmonic in R?\ {0}. We adapt
the argument for (b), replacing log |x| by 1/|x| to see that, in the case Xy = z with |z| =1,
we have

a * b
so, on letting b — oo we obtain, for |z| =1,

iz (Jw(t)| = a for some t > 0) = a.
Hence, by scaling, for all N > 1 and for || = N + 1,

z t) =N f t>0)=——.
p(Jw(t)] or some t > 0) Nl

Set Ty = 0 and define sequences of stopping times (S : £ > 1) and (T : k > 1) by
Sk; = inf{t Z Tk—l : |Xt| =N + 1}, Tk = inf{t Z Sk : |Xt| = N}
For k > 1, we can apply the strong Markov property at Sy to see that

N N \*
P(T; < P(T}_ < .
(Tk < 00) < P(T; 1<OO)N+1— <N+1>
Set K = sup{k > 0: T} < oo}. Then K < oo almost surely. Now Si1 < oo almost surely
on {T}, < oo} for all k > 0, so Sigy1 < oo almost surely. But |X;| > N for all t > Sk, so
we have shown that

P({t > 0:|X;| < N} is unbounded ) = 0.

7.8. Skorohod embedding for random walks.

Theorem 7.8.1 (Skorohod embedding for random walks). Let v be a probability measure
on R of mean 0 and variance 0® < oo. Then there exists a probability space (2, F,P) with
filtration (F¢)i>0, on which is defined a Brownian motion (Bt)i>o and a sequence of stopping
times 0 =Ty <Ty < Ty < ... such that, setting S, = Br,,

(a) (T})n>0 is a random walk with step mean o2,

(b) (Sn)nzo0 is a random walk with step distribution fi.
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Proof. Define Borel measures u* on [0, 00) by
ph(A) = p(AN[0,00)), p(A) = (AN (0,00))

where fi(A) = p({z € R: —x € A}). There exists a probability space on which are defined a
Brownian motion (B;);>0 and a sequence ((X,,Y;) : n € N) of independent random variables
in R? with law v given by

v(dz,dy) = C(z +y)p (dx)p (dy)

where C is a suitable normalizing constant. Set Fy = 0(X,,,Y,, : n € N) and F; = o(Fo, FP).
Set Ty = 0 and define recursively for n > 0

Tn+1 = lllf{t Z Tn . Bt - BTn S {_Xn+17 Yn—i—l}}-
Then T, is a stopping time for all n. Note that, since p has mean 0, we must have
¢ [ wwtn)=c [ gty =1
[0,00) [0,00)
Define a non-negative measurable function 7 on W x [0, 00)? by
T(w,z,y) =inf{t > 0:w(t) € {—z,y}}.
Then T} = 7(B, Xi, Y1) so, by Proposition 7.6.2 and Fubini,

B = [ [ o vy, )

- /[0,00)2 e+ = [ o) + /[O,OO) Pt (dy) = o

[0,00)

and, for any Borel set A C [0, 00),

]P)(BT1 € A) = /[ | / 1{w(‘r(w,x,y))€A},u0(dw)l/(d‘rvdy)
0,00)2 JW

- C/[Om)2 T i yl{yeA}(x +y)p (dz)p" (dy) = C’/[O’oo) xu_(dI)AM+(dy) — (A,

Similarly, P(Br, € A) = u(A) also for A C (—00,0), so By, has distribution pu.
Now, by the strong Markov property, for each n > 1, the process (Br,++ — Br,)t>0 is

a Brownian motion, independent of Fz,. Hence S,41 — S, = Br,,, — Br, has law p,
T,+1 — T}, has the same distribution as 77, and both these increments are independent of
(T1,51),..., (T, Sn). The result follows. O

7.9. Donsker’s invariance principle. In this section we show that Brownian motion pro-
vides a universal scaling limit for random walks having steps of zero mean and finite variance.
This can be considered as a generalization to processes of the central limit theorem. We give
C([0,00),R) the topology of uniform convergence on compact time intervals. The associated
Borel o-algebra then coincides with the o-algebra generated by the coordinate functions.

Theorem 7.9.1 (Donsker’s invariance principle). Let (S,,)n>0 be a random walk with steps
of mean 0 and variance 1. Write (S¢)i>o for the linear interpolation
Sn+t = (1 - t)Sn + tSn+1, t < [0, 1]

Then the law of (N"Y2Sx;)i>0 converges weakly to Wiener measure on C([0,00), R).
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Proof. Let (B;):>o be a Brownian motion and let (X,,,Y,),>1 be a sequence of independent
random variables, as in the proof of Theorem 7.8.1. Fix N > 1 and set Bt(N) = N'Y2By-1,.
Then (Bt(N))tzO is also a Brownian motion. Define a sequence of stopping times (7, ,SN))@O
as in Theorem 7.8.1, but using (B§N))t20 in place of (By)i>0. Set

509 = BT
and interpolate linearly to form (St(N))tzo- Set
T = Nl SN = N12800
Then (gt(N))tZO has the same law as (N~1/2Sy;);50 on C([0,00),R) and, for all n > 0,

We will show that, for all 7 < oo
sup |S™ — B,| = 0 in probability.
te[0,7]
Then, for any bounded continuous function F' on C([0,00),R), we have
F(S™) = F(B) in probability

so, by bounded convergence,

E(F((N~'2Sn1)i0)) = E(F(S™)) = E(F(B))
as required.
By the strong law of large numbers T7(L1)/n — 1 almost surely as n — co. So, as N — o0,

N7t sup [TV —n| = 0 almost surely
n<NT

and hence

N7t sup |[T™ —n| — 0 in probability
n<NT

Hence, for all § > 0,
P (Sup TN —n/N| > 5) — 0.

n<NT

By the intermediate value theorem, for n/N <t < (n+ 1)/N we have S™ = B, for some
TN <u< T,(LJR Hence
{18™) _ B,| > ¢ for some t € [0,7]} C A; U Ay
where }
Ay = {|T"V) —n/N| > 6 for some n < N7}
and
Ay ={|B, — By| > ¢ for some t € [0,7] and |[u —t| <5+ 1/N}.
The paths of (B;)t>o are uniformly continuous on [0,7]. So given £ > 0 we can find § > 0
so that P(Ay) < /2 whenever N > 1/6. Then, by choosing N even larger if necessary, we

can ensure also that P(4;) < £/2. Hence S™) — B, uniformly on [0, 7] in probability, as
required. 0

We did not use the central limit theorem in this proof, so we have the following corollary
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Corollary 7.9.2 (Central limit theorem). Let (X,, : n € N) be a sequence of independent,
tdentically distributed random variables, of mean 0 and variance 1. Set S, = X5 +---+ X,,.
Then S, /v/n converges weakly to the Gaussian distribution of mean 0 and variance 1.

Proof. Let f be a continuous bounded function on R and define z; : C([0,00),R) — R by
z1(w) = w;y. Set F' = fox;. Then F is a continuous bounded function on C([0,00),R). So

B((S,/v/m) = E(F(S™) ~ BP(B) = [ flo)om=e .

7.10. Brownian motion and the Dirichlet problem. Let D be a connected open set in
R? with boundary D and let ¢ : D — [0,00) and f : 9D — [0, 00) be measurable functions.
We shall be interested in the potential or expected total cost function ¢, defined on the closure
D of D by

o(z) =E (/OT c(Xy)dt + f(XT)l{T<OO}) (7.3)

where (X;);>0 is a Brownian motion in R? starting from z, and T is its exit time from D,
given by

T=inf{t >0: X, & D}.
We call any function ¢ € C(D) N C*(D) satisfying

—%Aw:c in D,
Y= f indD

a solution of the Dirichlet problem (in D with data c and f). More generally, a function
Y € C(D)NC?*(D) is called a supersolution of the Dirichlet problem if

—%Aw >c in D,
> f indD.

Theorem 7.10.1. Suppose that D is bounded and has a C' boundary OD. Suppose further
that ¢ has a C? extension to R% and that f is continuous on OD. Then the expected total
cost function ¢ given by (7.3) is the unique solution of the Dirichlet problem in D with data
cand f.

It may be helpful to consider the following quick argument, while noting that it contains
a number of gaps. Let (X;);>o be a Brownian motion in R? starting from z and let T be
its exit time from D. Suppose we knew that 7" was finite and that there was a function
Y € C2(RY) whose restriction to D was a solution to the Dirichlet problem. Then we could
set

Aﬂszﬁ—MXﬁ—A%AMXﬂk
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and (M;):>o would be a martingale. Suppose we could justify applying optional stopping to
(My)i>0 at time T'. Then we would have E(Mr) = E(M)) so

P(x) = P(Xo) = E (w(XT) - /T %MJ(Xt)dt>

— & () + / ) X ) = o).

For a rigorous argument, we will have to work around the obvious gaps.

The proof of Theorem 7.10.1 is given in a series of steps below. These in fact lead to the
following stronger result.

Theorem 7.10.2. Let ¢ be the expected total cost function given for x € D by (7.3). Thus

o) =& ([ et s 06011

where (X;)i>0 is a Brownian motion in R? starting from x, and T is its exit time from D.

(a) For any non-negative supersolution v of the Dirichlet problem in D with data ¢ and
f, we have ¢ < ).

(b) For any bounded solution v of the Dirichlet problem in D with data ¢ and f, such
that

E (¢(Xi)lgery) = 0 ast — oo (7.4)

for all starting points x € D, we have ¢ = 1.

(c) Assume that ¢ extends to R? as a C? function and f is continuous on OD. Assume
further that D satisfies the exterior cone condition (7.9) and that ¢ is locally bounded.
Then ¢ is a solution of the Dirichlet problem in D with data ¢ and f.

Since we impose that ¢ is bounded, condition (7.4) holds whenever T' is almost surely
finite. So, by Theorem 7.7.1, condition (7.4) holds in each of the following cases

(a) d =1 and 0D is non-empty,
(b) d =2 and R?\ D contains an open ball,
(¢) d > 3 and D is bounded.

An examination of the proof of Theorem 7.10.2(b) shows that ¢ always satisfies (7.4) if it is
a bounded solution of the Dirichlet problem.

Under the hypotheses of Theorem 7.10.1, E(T) is bounded, uniformly in the starting point
x, by Proposition 7.6.2. Since D is bounded, so are the functions ¢, f and ¢, and so is any
solution 1) of the Dirichlet problem. Since 0D is C', D satisfies the exterior cone condition.
So ¢ is a solution of the Dirichlet problem by Theorem 7.10.2(c). Moreover, (7.4) holds for
¥, 80 ¢ = 1 by Theorem 7.10.2(b), and so ¢ is the unique solution. Hence Theorem 7.10.1
follows from Theorem 7.10.2.

Theorem 7.10.1 contains, in particular, existence and uniqueness statements for the Dirich-
let problem. We will prove these statements, via Theorem 7.10.2, using arguments based
on an understanding of Brownian motion. They could be approached, alternatively, using

methods from the theory of partial differential equations.
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Proof of Theorem 7.10.2(a). Let ¢ be a supersolution of the Dirichlet problem. It is clear
that ¢ < on dD. Fix z € D and let (X;)s>o be a Brownian motion in R? starting from z.
Fix N > 1 and set

Dy={x€D:|z|] <N and |x —0D| > 1/N}.
There exists g € CZ(R?) with g = ¢ on Dy. Set

M, = g(X,) — g(Xo) — / LAg(X,)ds.

Then (M;)t>0 is a martingale, by Theorem 7.5.1. Denote by Ty the exit time from Dy.
Then, by optional stopping, for N sufficiently large and for all ¢ > 0,

(z) = E Xy n)) + E / LAY (X.)ds. (7.5)

We now let ¢ — oo and N — oco. By monotone convergence,

T At Ty At T
E /O (~1AW(X,)dt > E /0 ((X)dt — E /0 o(X,)dt.
On the other hand, on the event {T' < oo}, we have
U(Xryne) = (Xr) = f(X71).
Since ¥ > 0, this implies that
liminf ¢ (X7ynt) > f(X7) <o
so, by Fatou’s lemma,

liminf E ((Xzyne)) 2 E(f(X7)lrcos)-
Hence, on taking the liminf in (7.5), we obtain ¢ (z) > ¢(x). O

Next we show that, under suitable conditions, we can replace inequalities by equalities in
the preceding argument.

Proof of Theorem 7.10.2(b). Let 1 be a bounded solution of the Dirichlet problem. It is
clear that ¢ = on dD. Fix x € D. Let (X;);>0 be a Brownian motion in R? starting from
x, and let T be its exit time from D. Consider the limit N — oo and then ¢t — oo in (7.5).
By monotone convergence,

TN At TR At T
1 _
E /0 (~1A)(X,)dt = E /0 o(X))dt — E /0 o(X,)dt.
On the other hand
E (W(Xrynt)) = E (0(Xry)liry<y) + E (W(X) ey ) -

For the first term on the right, almost surely,

V(X1 ) i<ty = V(X7)ir<oo) = F(X7)LiT<o0)

so, by bounded convergence,

E (w(XTN)l{TNgt}) 5? E (f(XT)l{T<oo})



while, for the second term on the right, if ¢ satisfies (7.4) then, as t — oo,
]\}g{l)oE (¢(Xt)1{t<TN}) =E <¢(Xt)1{t<T}) — 0.

Now, take the limit N — oo and then ¢t — oo in (7.5) to obtain (z) = ¢(z). O

It remains to find conditions under which we can show that ¢ is a solution of the Dirichlet
problem.

Proof of Theorem 7.10.2(c). Step I. We restrict for now to the case where d > 3 and D = R¢,
and where ¢ has compact support. Let (X;);>o be a Brownian motion in R? starting from 0.
Let ¢ be a continuous function on R¢ of compact support. Then

E/ gz + X,)dt = / Prg(x)dt.
0 0
From the explicit formula (7.1) for the heat semigroup, we obtain the following estimates

1Pglloe < llgllocs  1Pgllse < (278) =2 vol(supp 9) |9l (7.6)

and so, by splitting the integral at t = 1,

B [ oo+ Xlde < [ [Pyl < (14 vollsupp o).
0 0

Fix ¢ > 0 and set g.(r) = supj,_,<.|9(y)|. Then g. is also continuous and of compact
support, so we see that

E/ sup |gly + X)|dt < oo.
0 |

y—x|<e

We use this estimate, applied to the first and second derivatives of ¢, to justify differentiating
the formula

6(z) = E / e + X)dt
0
twice under the integral, to see that ¢ € C?(R?) with

Ap(z) =E /000 Ac(z + X;)dt.

Take s,t € (0,00) with s < ¢ and split the integral into three pieces

Ag(x) = (/05+/:+/:°> E(Ac(z + X,,))du.

Consider the limit where s — 0 and ¢ — oo. Using the estimates (7.6), we see that the first

and third integrals on the right tend to 0. On the other hand, for the second integral, we
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have

% /St E(Ac(z +

/pua:yAc y)dydu

d

N)I»—l [\Dln—
=

/ dpuxy y)dydu
R

= [ pttmnetoy = [ ps.e. ety
= Pic(z) — E(c(z + X)) = —c(z).

/ Ap(u, z,y)c(y)dydu
Rd

Hence %A(ﬁ = —c, showing that ¢ is a solution of the Dirichlet problem. 0]

We will use several times the following identity for the expected total cost function, which
is a consequence of the strong Markov property.

Lemma 7.10.3. Let Dy be a bounded open subset of D and let x € D. Let (X;)i>0 be a
Brownian motion in RY starting from x, and write Ty for its exit time from Dy. Then Ty is
almost surely finite and the expected total cost function ¢ satisfies

o) = E ( / " (Xt + ¢><XTO>) -

Proof. §et F, = Fr,4e and X, = Xr1,44, and write T for the exit time 0~f (Xt>t20 from D.
Then T' < oo if and only if 7" < oo, and if both are finite, then X = X7. By the strong

Markov property, (X;)e=o is an (F,);=o-Brownian motion, so
T T
d(x) =E (/0 c(Xy)dt —|—/ o(Xy)dt + f(XT)l{T<oo})
T 7
E ( /0 c(Xt)dt> +E (]E ( /0 (Kt + F(Xp) e %))
To
E ( /O o(X)dt + ¢(XTO)) | (7.7)

To
O

We will use the following characterization of harmonic functions in terms of averages.
Denote by o, , the uniform distribution on the sphere S(z, p) of radius p and centre .

Lemma 7.10.4. Let ¢ be a non-negative measurable function on D. Suppose that

olz) = /S L OWasla) (78)

whenever B(x,p) C D. Then, either ¢(x) = oo for all x € D, or ¢ € C=(D) with A¢ = 0
mn D.
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Proof. By taking a suitable average of the equation (7.8) over the possible values of p, we
can see that ¢ also satisfies the ball-average property

o(x) = / oW Beyld)

where 3, , is the uniform distribution on the ball B(z, p). Hence, if B(xz,p) C B(y,7) C D,
then ¢(z) < (7/p)%@(y). Since D is connected, this implies that either ¢(z) = oo for all
x € D, or ¢ is locally bounded in D.

Given e > 0, there exists a C°° probability density function f on R?, which is rotationally
invariant and supported in B(0,¢). Let Y be a random variable in R? having density f.
Then, for any x € D at distance at least ¢ from JD, by taking a suitable average of the
equation (7.8), we obtain

Ox) =B +Y) = | dl+u)fwdy= [ 6()1( - x)d=
R R

In the case where ¢ is locally bounded, we can differentiate in the last integral to see that

» € C*(D).

Consider then the Taylor expansion

o(z + ty) = ¢p(z) + t¢' (2)y + 29" (x)y ® y/2 + O(t%).

By rotational invariance

‘/‘yf@Ddy:=0, m/‘y%ﬂf@Ddy:=5mEﬂY15/d
R4 R4
so, on putting y = Y and taking the expectation, we obtain, for all ¢ € (0, 1],
¢(x) = E(d(z +1Y)) = ¢(2) + *Ag(x)E([Y]*)/(2d) + O(t*)
from which it follows that A¢(z) = 0. O

Proof of Theorem 7.10.2(c). Step II. We will show, in the case where ¢ = 0, that, provided
¢ is finite-valued, we have ¢ € C*°(D) and A¢ =0 in D. Fix x € D and take Dy = B(z, p)
where p > 0 is chosen so that B(z,p) C D. Let (X;);>o and Ty be as in Lemma 7.10.3. By
rotational invariance, X7, has the uniform distribution o, , on S(z, p). Hence

o(x) = E(6(Xn,)) = / 6(4)72 ().

S(z,p)
Since ¢ is finite-valued, it follows by Lemma 7.10.4 that ¢ € C*°(D) with A¢p =0in D. O

We now show, under suitable conditions, that ¢ extends continuously to the boundary.
For this we will need to understand the behaviour of Brownian motion just after time 0.

Theorem 7.10.5 (Blumenthal’s zero-one law). Let (X;)i>o be a Brownian motion in R?
starting from 0. Then

P(A) €{0,1} forall AcTF) =()F.

t>0
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Proof. Set
A = Ua(Xt—XS:tZS).
s>0

Then A is a m-system and P(4y N A) = P(A4y)P(A) for all Ay € F, and all A € A. Hence
this holds also for all A in the generated o-algebra o(A). Now X; — X, is o(A)-measurable
for all s, > 0 with s <t. But X; — 0 as s — 0, so X; is o(A)-measurable for all ¢ > 0 and
so o(A) = FX. Hence, if A € Fg,, then A € o(A), so
P(A) =P(ANA) = P(A)?

and so P(A) € {0, 1}. O
Proposition 7.10.6. Let A be a non-empty open subset of the unit sphere in R and let
e > 0. Consider the cone

C={rcR:z=ty for some 0 <t <e,yc A}
Let (X¢)i>0 be a Brownian motion in R? starting from 0 and let
Te=inf{t >0: X, € C}.

Then T = 0 almost surely.

We say that D satisfies the exterior cone condition if, for all y € D, there exists ¢ > 0
and a non-empty open subset A of the unit sphere such that

{y+tz:2€ Ajte(0,e)}ND =10 (7.9)

Geometrically, this means that, for every point in y € D, there is an open cone in R%\ D
with apex at y. This condition is always satisfied if 9D is O, that is to say if, for all y € 9D,
there is a neighbourhood U of y in R? and a C* map F = (F,..., Fy) : U — R? such that
F(y) =0, F'(y) is invertible, and DNU = {x € U : Fy(z) > 0}.

Proof of Theorem 7.10.2(c). Step III. Note that ¢ = f on 0D. Fix y € 9D. We will show
that, for x € D, we have ¢(x) — f(y) as @ — y. Choose Dy = U N D, where U is a
bounded open set in R? containing y. Let (X;)s>o be a Brownian motion in R starting from
0. Consider the stopping time

To(z) =inf{t > 0: 2+ X; & Do}.
Then, by Lemma 7.10.3,

To(z)
¢(x) =E </0 c(x+ Xy)dt + o(x + XTO@))> : (7.10)

There exists an open cone C in R? of positive height such that y + C is disjoint from D.
By Proposition 7.10.6, Tc = inf{t > 0 : y + X; € C} = 0 almost surely. Now, on the
event {Tc = 0}, in the limit x — y, we must have Ty(xz) — 0, so x + Xpy;) — ¥ and
x + Xrqy(z) € 0D eventually. Since ¢ = f and f is continuous on 9D, this then implies that
¢+ X)) = f(y) as x — y. Now E(sup,cp, To(z)) < oo and ¢ and ¢ are locally bounded,
so we can use dominated convergence in (7.10) to see that ¢(z) — f(y) as x — y. O
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Proof of Theorem 7.10.2(c). Step IV. In the case where c¢(z) = 0 for all x € D, the proof is
already complete, by Steps II and III. In the case where f(z) = 0 for all x € 9D, by Step
I11, it remains to show that ¢ € C*(D) and —%Agb = cin D. By linearity, it will suffice to
complete this second case. Moreover, it will suffice to treat the case where d > 3. For the
cases d = 1 or d = 2 then follow by applying the result for d = 3 to cylindrical regions D
and to functions ¢ which depend only on the first and second coordinates. Assume, for now,
that D is bounded. Let (X;);>0 be a Brownian motion in R? starting from 0. Set

bol() = E/OOO Ho + X,)dt

where ¢ € C?*(RY) is a compactly supported function agreeing with ¢ on D. By Step I, we
have ¢y € CZ(R?) with —%Agbo = ¢. On taking ¢ = ¢y and D = R? and Dy = D in Lemma
7.10.3, we find that ¢o(z) = ¢(x) + ¢1(z) for all x € D, where
¢1(x) = E(po(r + Xr@m)))

and where T'(x) is the exit time of (z + X;);>o from D. As we showed in Step II, this implies
that ¢; € C>(D) with A¢; = 01in D, so ¢ € C*(D) with —3A¢ = ¢ in D. Finally, if D is
unbounded, then, by Lemma 7.10.3, in any bounded open set Dy C D, we have ¢ = ¢g + ¢1,
where

To(z)
bo(z) = E /0 c(z+ X)dt, éu(z) = E(b(z + Xnyw)))

where Ty(z) is the exit time of (z + X;)i>0 from Dy. Then ¢y € C?(Dy) with —%Aqf)o =cin
Dy by the preceding argument. On the other hand, since ¢ is locally bounded, ¢; is bounded
so, by the argument of Step II, we have ¢; € C?(Dy) with A¢; = 0 in Dy. Since Dy is
arbitrary, this shows that ¢ € C?(D) with —2A¢ = ¢ in D. O
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8. POISSON RANDOM MEASURES

8.1. Construction and basic properties. For A € (0,00) we say that a random variable
X in ZT U {oc} is Poisson of parameter A and write X ~ P()) if

P(X =n)=e*\"/n!
We also write X ~ P(0) to mean that X =0 and write X ~ P(c0) to mean that X = oo.

Proposition 8.1.1 (Addition property). Let (N : k € N) be a sequence of independent
random variables, with Ny ~ P(\g) for all k. Then

Zoer(e)

Proposition 8.1.2 (Splitting property). Let N ~ P(\) and let (Y, : n € N) be a sequence
of independent, identically distributed random variables in N, independent of N. Set

N
Nk = Z 1{Yn:k}-
n=1

Then (Ny : k € N) is a sequence of independent random variables, with Ny, ~ P(Apy) for all
k, where p;, = P(Y; = k).

Let (E, &, 1) be a o-finite measure space. A Poisson random measure with intensity p is
a map
M:Qx&—7Z"U{cx}
satisfying, for all sequences (A : k € N) of disjoint sets in €,
(1) M(UpAr) = > M(Ag),
(ii) (M(Ag) : k € N) is a sequence of independent random variables,
(i) M(Ax) ~ P(u(Ag)) for all .

Denote by E* the set of ZT U {co}-valued measures on € and define, for A € €,
X:E*x&—Z"U{oo}, Xa:E*—Z"U{oo}
by
X(m,A) = X4(m) =m(A).
Set &* =0(Xa: A€ f).
Theorem 8.1.3. There exists a unique probability measure p* on (E*, %) such that X is a
Poisson random measure with intensity p.

Proof. (Uniqueness.) Consider the subset A of £* consisting of sets of the form
A*={m e E" :m(A;) =nq,...,m(Ag) = ny}

where k € N, A,..., Ay € € and nq,...,n; € Z". Note that each such set A* is a finite
union of elements of A such that the sets Ay,..., Ay are disjoint. Also, in this disjoint case,
if u* makes X into a Poisson random measure with intensity u, then

K
(A7) = [T e "4, /ny!
=1
T



This condition thus determines the values of ©* on A and, since A is a m-system generating
€*, this implies that p* is uniquely determined on £*.

(Eristence.) Consider first the case where A = u(FE) < co. There exists a probability space
(Q, F,P) on which are defined a random variable N ~ P(\) and a sequence of independent
random variables (Y,, : n € N), independent of N and all having distribution pu/A. Set

N
M(A) =) ly,eay, A€E. (8.1)

n=1
It is easy to check, using the Poisson splitting property, that M is a Poisson random measure
with intensity pu.

More generally, if (F, €, ) is o-finite, then E = U, E}, for some sequence (Fy : k € N) of
disjoint sets in € such that u(Ey) < oo for all k. We can construct, on some probability
space, a sequence (My : k € N) of independent Poisson random measures, such that My has
intensity 1g, i for all k. Set

M(A) =) " My(A), Ackt.
keN

It is easy to check, using the Poisson addition property, that M is a Poisson random measure
with intensity p. The law pu* of M on E* is then a measure with the required properties. [J

8.2. Integrals with respect to a Poisson random measure.

Theorem 8.2.1. Let M be a Poisson random measure on E with intensity p. Assume that
w(E) < oo. Let g be a measurable function on E. Define

R T

Then M (g) is a well-defined random variable and

() = exp { [ (@0~ Dyutay) .
E
Moreover, if g € L*(u), then M(g) € L*(P) and

E(M(g»:/Eg(y)u(dy), Var(M(g))szg(y)2u(dy)-

Proof. Set Ef = {m € E* : m(E) < oo} and note that M € Ej almost surely. For any
m € Ej, we have m(|g| > n) = 0 for sufficiently large n € N, so g € L'(m). Moreover
the map m — m(g) : Ej — R is measurable. To see this, we note that in the case g = 14
for A € &, this is by definition of €*. This extends to ¢ simple by linearity, then to g
non-negative by monotone convergence, then to all g by linearity again.

Now M (g) is given by the composition of measurable maps w — M (w)1{n(w)ersy * @ — Ej
and m — m(g) : Ef — R, so is well-defined random variable, and moreover
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It will suffice then to prove the claimed formulas in the case where M is given as in (8.1).
Then

E( iuM (g ‘N _ TL) E(eiug(Y1))n _ (/ tug(y (dy)) A
E
SO

E(e™M @) ZE (e"MI|N = n)P(N = n)

n=0

—Z( [ euta)) et = o { [~ 1t |

If g € L*(p) is integrable, then formulae for E(M(g)) and var(M(g)) may be obtained by a
similar argument. 0

We now fix a o-finite measure space (E, &, K) and denote by p the product measure on
(0,00) x E determined by
wu((0,t] x A) =tK(A), t>0,A€¢t.

Let M be a Poisson random measure with intensity p and set M = M — p. We call M a
compensated Poisson random measure with intensity p. We use the filtration (F;);>¢ given
by F; = o(FM,N), where

FM =o(M((0,s] x A):s<t,Ac &), N={BecTFY .P(B)=0}.
Proposition 8.2.2. Assume that K(E) < co. Let g € L'(K). Set

M,(g) = {f(o,t]ng(y)M(ds,dy), if M((0,] x E) < 0o for all t >0,
0, otherwise.

Then (My(g))is0 is a cadlag martingale with stationary independent increments. Moreover

E(I1(g)) = ¢ /E 9y K (dy) (3.2)
and

(e 0) —exp {1 [ (@0~ 1 iug(u) ()} 83)

Theorem 8.2.3. Let g € L*(K). Let (E, : n € N) be a sequence in & with E, 1 E and
K(E,) < oo for all n. Then the restriction M™ of M to (0,00) x E, is a compensated

Poisson random measure with intensity 1g, p. Set X = M(g). Then there exists a cadlag
martingale (X¢)i>o such that, for allt > 0,

E (sup | Xy — XSIQ) — 0
s<t

Set My(g) = X;. Then (My(g))i>0 has stationary independent increments and (8.2) and (8.3)
remain valid.

The process (Mt(g))tzo is (a version of) the stochastic integral of g with respect to M. We
write
(g)eso = | gl)¥M(ds.dy) almost surely,

(0,t]xE
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Note that there is in general no preferred version and this ‘integral’ does not converge
absolutely.

Proof. Set g, = 1, g. Fix t > 0. By Doob’s L%-inequality and Proposition 8.2.2,
E (Sup X" — X;”|2> <AR((X] — X™)?) = 4t/ (G — gm)?dK — 0
s<t E

as n,m — oo. Then there is a subsequence (ny) such that, almost surely as j, k — oo, for
all t >0,
sup | X — X — 0.

s<t
The uniform limit of cadlag functions is cadlag, so there is a cadlag process (X;):>o such
that, almost surely as k — oo, for all t > 0,

sup | X" — X| — 0.

s<t
Then, by Fatou’s lemma, as n — oo,
E (sup | X7 — X5|2> < 4t/ (gn — g)*dK — 0.
s<t E

In particular X' — X, in L? for all ¢, from which it is easy to deduce (8.2) and that (X;);>o
inherits the martingale property. Moreover, using the inequality

le™d — 1 — iug| < u2g2/2,
for s,t > 0 with s <t and A € F,, we can pass to the limit in the identity
B L) = oxp { (0 5) [ (0 1~ iugl) Kdy) |

n

to see that (X});>0 has stationary independent increments and (8.3) holds. O
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9. LEVY PROCESSES

9.1. Definition and examples. A Lévy process is a cadlag process starting from 0 with
stationary independent increments. We call (a,b, K) a Lévy triple if a € [0,00), b € R and
K is a Borel measure on R with K ({0}) = 0 and

/R (LA ) K (dy) < .

We call a the diffusivity, b the drift and K the Lévy measure. These notions generalize
naturally to processes with values in R? but we will consider only the case d = 1. Let B
be a Brownian motion and let M be a Poisson random measure, independent of B, with
intensity p on (0,00) x R, where u(dt,dy) = dt ® K(dy), as in the preceding section. Since
K({]y| > 1}) < oo, by modifying M on an event of probability 0 if necessary, we can and
do assume that M ((0,¢] x {|y| > 1}) < oo for all £ > 0. Set

X; = +aB; + bt +/ yM (ds, dy) +/ yM (ds, dy).
(0.8 x{lyl>1}

(0,8]x{ly|<1}
Then (X;):>o is a Lévy process and, for all t > 0,
]E(eiuXt) _ etw(u)
where

P(u) = VYo pr(u) = ibu — %au2 + /(ei“y — 1 —duylyy<1) K (dy).
R

Thus, to every Lévy triple there corresponds a Lévy process. Moreover, given (X;);>o, we
can recover M by

M((0,t] x A) =#{s<t: X, — X,_ € A}
and so we can also recover b and y/aB. Hence the law of the Lévy process (X;);>o determines
the Lévy triple (a, b, K).

9.2. Lévy—Khinchin theorem.

Theorem 9.2.1 (Lévy—Khinchin theorem). Let X be a Lévy process. Then there exists a
unique Lévy triple (a,b, K) such that, for allt >0 and all u € R,

E(eiuXt) — etWab k(W)

Proof. For t > 0 and u € R, set ¢;(u) = E(e™**). Then ¢, : R — C is continuous. Since
(X¢)t>0 has stationary independent increments and

Xop = Xe + (Xt = Xo) + -+ (Xt = X(n—1)2)
we obtain, on taking characteristic functions, for all n € N,
Dnr(u) = (D (w))".
Since (X¢)i>o is cadlag, as t — s with ¢t > s, we have X; — Xj, so
[de(u) = @(u)| < Bl ) — 1] E((u|X; = X,[) A2) =0
uniformly on compacts in w. In particular, ¢;(u) — 1 as t — 0, so

|6 (W) |V™ = |pe/m(u)] = 1 asn — oo
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which implies that ¢;(u) # 0 for all £ > 0 and all u € R. Set

ét(u) d
() = / dz

z

where we integrate along a contour homotopic to (¢y(r) : r € [0,u]) in C\ {0}. Then
¥ : R — C is the unique continuous function such that v,(0) = 0 and, for all u € R,

or(u) = eVt

Moreover, we then have, for all n € N,

Une(u) = napy(u)
and
Y(u) — Ys(u) ast— s with t > s.
Hence, by a standard argument, for all ¢ > 0,

dr(u) = et (W)
where 1) = 91, and it remains to show that ¢ = 1, ¢ for some Lévy triple (a, b, K).

Write v, for the law of X/,. Then, uniformly on compacts in u, as n — oo,

[ = Dnwady) = n(oru(w) = 1) - v(a)
SO :
/(1 — cos uy)nvy,(dy) — — Re(u).
There is a constant C' < oo s]ich that, for all y € R
y21{‘y|§1} < C(1 — cosy)
and, for all A € (0, 00),

1/
Lijyiza < C)\/ (1 — cosuy)du.
0
Consider the measure 7, on R, given by

m(dy) = n(1 A Jy|*)va(dy).

Then, as n — oo,
(=11 = [ Ly (d)
R

< C’/(l — cosy)nvy,(dy) — —C Rep(1)
R
and, for A > 1,
B (AN) = [ 1gmmva(dn)

/2
< C'/\/ /(1 — cos uy)nv,(dy)du
o Jr

1/2
— —C)\/ Re ¢ (u)du.
0
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Note that, since ¥(0) = 0, the final limit can be made arbitrarily small by choosing A
sufficiently large. Hence the sequence (7, : n € N) is bounded in total mass and tight.
By Prohorov’s theorem, there is a subsequence (n;) and a finite measure 1 on R such that
Nn, — 1 weakly on R. Fix a continuous function x on R with

Lyi<ty < x(Y) < lyyi<a-

We have (d )
e — Dny,(dy) = / e —1
/R< o) = [ @ D
(e" — 1 — iuyx(y)) / iuyx (y)
= nn(dy) + —— =" (dy)
/R\{O} LAy? R0} LAY
= / 0w, y)nn(dy) + iub,
R
where (e W)/ (L A)
_ J (e =1—iuyx(y))/(LAy), ity #0,
blu,y) = { —u2/2, if y = 0.
and

bn:/Ryx(y)n (dy).

TAy2™
Now 6(u,.) is a bounded continuous function for each u € R. So, on letting k — oo,

/R (1t )1 () — / 0(u,y)n(dy) = / (€ — 1 — iuyx(y)) K (dy) — Sar?

where
K(dy) = (1A y*) royn(dy), a=n({0}).
Then b,, must also converge, to 3 say, so we obtain

0l = i = o+ [ (€0 = 1 i () K () = )
where
b=p3— Ry(x(y) — Lyy<1y) K (dy).
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