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0. Review of measure and integration

This review covers briefly some notions which are discussed in detail in my notes on
Probability and Measure (from now on [PM]), Sections 1 to 3.

0.1. Measurable spaces. Let E be a set. A set E of subsets of E is called a σ-algebra on
E if it contains the empty set ∅ and, for all A ∈ E and every sequence (An : n ∈ N) in E,

E \ A ∈ E,
⋃
n∈N

An ∈ E.

Let E be a σ-algebra on E. A pair such as (E,E) is called a measurable space. The elements
of E are called measurable sets. A function µ : E → [0,∞] is called a measure on (E,E) if
µ(∅) = 0 and, for every sequence (An : n ∈ N) of disjoint sets in E,

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

A triple such as (E,E, µ) is called a measure space.

Given a set E which is equipped with a topology, the Borel σ-algebra on E is the smallest σ-
algebra containing all the open sets. We denote this σ-algebra by B(E) and call its elements
Borel sets. We use this construction most often in the cases where E is the real line R or
the extended half-line [0,∞]. We write B for B(R).

0.2. Integration of measurable functions. Given measurable spaces (E,E) and (E ′,E′)
and a function f : E → E ′, we say that f is measurable if f−1(A) ∈ E whenever A ∈ E′. If
we refer to a measurable function f on (E,E) without specifying its range then, by default,
we take E ′ = R and E′ = B. By a non-negative measurable function on E we mean any
function f : E → [0,∞] which is measurable when we use the Borel σ-algebra on [0,∞].
Note that we allow the value∞ for non-negative measurable functions but not for real-valued
measurable functions. We denote the set of real-valued measurable functions by mE and the
set of non-negative measurable functions by mE+.

Theorem 0.2.1. Let (E,E, µ) be a measure space. There exists a unique map µ̃ : mE+ →
[0,∞] with the following properties

(a) µ̃(1A) = µ(A) for all A ∈ E,
(b) µ̃(αf + βg) = αµ̃(f) + βµ̃(g) for all f, g ∈ mE+ and all α, β ∈ [0,∞),
(c) µ̃(fn) → µ̃(f) as n → ∞ whenever (fn : n ∈ N) is a non-decreasing sequence in

mE+ with pointwise limit f .

The map µ̃ is called the integral with respect to µ. From now on, we simply write µ
instead of µ̃. We say that f is a simple function if it is a finite linear combination of
indicator functions of measurable sets, with positive coefficients. Thus f is a simple function
if there exist n ≥ 0, and αk ∈ (0,∞) and Ak ∈ E for k = 1, . . . , n, such that

f =
n∑
k=1

αk1Ak
.
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Note that properties (a) and (b) force the integral of such a simple function f to be

µ(f) =
n∑
k=1

αkµ(Ak).

Note also that property (b) implies that µ(f) ≤ µ(g) whenever f ≤ g.

Property (c) is called monotone convergence. Given f ∈ mE+, we can define a non-
decreasing sequence of simple functions (fn : n ∈ N) by

fn(x) = (2−n⌊2nf(x)⌋) ∧ n, x ∈ E.

Then fn(x) → f(x) as n→ ∞ for all x ∈ E. So, by monotone convergence, we have

µ(f) = lim
n→∞

µ(fn).

We have proved the uniqueness statement in Theorem 0.2.1.

For measurable functions f and g, we say that f = g almost everywhere if

µ({x ∈ E : f(x) ̸= g(x)}) = 0.

It is straightforward to see that, for f ∈ mE+, we have µ(f) = 0 if and only if f = 0 almost
everywhere.

Lemma 0.2.2 (Fatou’s lemma). Let (fn : n ∈ N) be a sequence of non-negative measurable
functions. Then

µ
(
lim inf
n→∞

fn

)
≤ lim inf

n→∞
µ(fn).

The proof is by applying monotone convergence to the non-decreasing sequence of functions
(infm≥n fm : n ∈ N).

Given a (real-valued) measurable function f , we say that f is integrable with respect to µ
if µ(|f |) < ∞. We write L1(E,E, µ) for the set of such integrable functions, or simply L1

when the choice of measure space is clear. The integral is extended to L1 by setting

µ(f) = µ(f+)− µ(f−)

where f± = (±f) ∨ 0. Then L1 is a vector space and the map µ : L1 → R is linear.

Theorem 0.2.3 (Dominated convergence). Let (fn : n ∈ N) be a sequence of measurable
functions. Suppose that fn(x) converges as n → ∞, with limit f(x), for all x ∈ E. Suppose
further that there exists an integrable function g such that |fn| ≤ g for all n. Then fn is
integrable for all n, and so is f , and µ(fn) → µ(f) as n→ ∞.

The proof is by applying Fatou’s lemma to the two sequences of non-negative measurable
functions (g ± fn : n ∈ N).
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0.3. Product measure and Fubini’s theorem. Let (E1,E1, µ1) and (E2,E2, µ2) be finite
(or σ-finite) measure spaces. The product σ-algebra E = E1⊗E2 is the σ-algebra on E1×E2

generated by subsets of the form A1 × A2 for A1 ∈ E1 and A2 ∈ E2.

Theorem 0.3.1. There exists a unique measure µ = µ1⊗µ2 on E such that, for all A1 ∈ E1

and A2 ∈ E2,
µ(A1 × A2) = µ1(A1)µ2(A2).

Theorem 0.3.2 (Fubini’s theorem). Let f be a non-negative E-measurable function on E.
For x1 ∈ E1, define a function fx1 on E2 by fx1(x2) = f(x1, x2). Then fx1 is E2-measurable
for all x1 ∈ E1. Hence, we can define a function f1 on E1 by f1(x1) = µ2(fx1). Then f1 is
E1-measurable and µ1(f1) = µ(f).

By some routine arguments, it is not hard to see that µ(f) = µ̂(f̂), where µ̂ = µ2⊗µ1 and

f̂ is the function on E2×E1 given by f̂(x2, x1) = f(x1, x2). Hence, with obvious notation, it
follows from Fubini’s theorem that, for any non-negative E-measurable function f , we have
µ1(f1) = µ2(f2). This is more usually written as∫

E1

(∫
E2

f(x1, x2)µ2(dx2)

)
µ1(dx1) =

∫
E2

(∫
E1

f(x1, x2)µ1(dx1)

)
µ2(dx2).

We refer to [PM, Section 3.6] for more discussion, in particular for the case where the
assumption of non-negativity is replaced by one of integrability.
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1. Conditional expectation

We say that (Ω,F,P) is a probability space if it is a measure space with the property that
P(Ω) = 1. Let (Ω,F,P) be a probability space. The elements of F are called events and P is
called a probability measure. A measurable function X on (Ω,F) is called a random variable.
The integral of a random variable X with respect to P is written E(X) and is called the
expectation of X. We use almost surely to mean almost everywhere in this context.

A probability space gives us a mathematical framework in which to model probabilities of
events subject to randomness and average values of random quantities. It is often natural
also to take a partial average, which may be thought of as integrating out some variables
and not others. This is made precise in greatest generality in the notion of conditional
expectation. We first give three motivating examples, then establish the notion in general,
and finally discuss some of its properties.

1.1. Discrete case. Let (Gn : n ∈ [N ]) be a finite family of disjoint events, whose union is
Ω. Set

G = σ(Gn : n ∈ [N ]) = {∪n∈IGn : I ⊆ [N ]}.
For any integrable random variable X, we can define

Y =
∑
n∈[N ]

E(X|Gn)1Gn

where we set E(X|Gn) = E(X1Gn)/P(Gn) when P(Gn) > 0 and set E(X|Gn) = 0 when
P(Gn) = 0. It is easy to check that Y has the following two properties

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

It is a straightforward exercise to see that this remains true for a countable family of disjoint
events whose union is Ω.

1.2. Gaussian case. Let (W,X) be a Gaussian random variable in R2. Set

G = σ(W ) = {{W ∈ B} : B ∈ B}

and set Y = aW + b, where a, b ∈ R are chosen to satisfy

aE(W ) + b = E(X), a varW = cov(W,X).

Then E(X − Y ) = 0 and

cov(W,X − Y ) = cov(W,X)− cov(W,Y ) = 0

Since W and X − Y are jointly Gaussian, this implies that they are independent. Hence Y
satisfies

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.
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1.3. Conditional density functions. Suppose that U and V are random variables having
a joint density function fU,V (u, v) in R2. Then U has density function fU given by

fU(u) =

∫
R
fU,V (u, v) dv.

The conditional density function fV |U(v|u) of V given U is defined by

fV |U(v|u) = fU,V (u, v)/fU(u)

where we interpret 0/0 as 0 if necessary. Let h : R → R be a Borel function and suppose
that X = h(V ) is integrable. Let

g(u) =

∫
R
h(v)fV |U(v|u) dv.

Set G = σ(U) and Y = g(U). Then Y satisfies

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

To see (b), note that every A ∈ G takes the form A = {U ∈ B}, for some Borel set B. Then,
by Fubini’s theorem,

E(X1A) =

∫
R2

h(v)1B(u)fU,V (u, v) dudv

=

∫
R

(∫
R
h(v)fV |U(v|u) dv

)
fU(u)1B(u) du = E(Y 1A).

1.4. Existence and uniqueness. We will use in this subsection the Hilbert space structure
of the set L2 of square integrable random variables. See [PM, Section 5] for details.

Theorem 1.4.1. Let X be an integrable random variable and let G ⊆ F be a σ-algebra.
Then there exists a random variable Y such that

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

Moreover, if Y ′ also satisfies (a) and (b), then Y = Y ′ almost surely.

The same statement holds with ‘integrable’ replaced by ‘non-negative’ throughout. We leave
this extension as an exercise. We call Y (a version of ) the conditional expectation of X given
G and write

Y = E(X|G) almost surely.

In the case where G = σ(G) for some random variable G, we also write Y = E(X|G) almost
surely. In the case where X = 1A for some event A, we write Y = P(A|G) almost surely.
The preceding three examples show how to construct explicit versions of the conditional
expectation in certain simple cases. In general, we have to live with the indirect approach
provided by the theorem.
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Proof. (Uniqueness.) Suppose that Y satisfies (a) and (b) and that Y ′ satisfies (a) and
(b) for another integrable random variable X ′, with X ≤ X ′ almost surely. Consider the
non-negative random variable Z = (Y − Y ′)1A, where A = {Y ≥ Y ′} ∈ G. Then

E(Y 1A) = E(X1A) ≤ E(X ′1A) = E(Y ′1A) <∞
so E(Z) ≤ 0 and so Z = 0 almost surely, which implies that Y ≤ Y ′ almost surely. In the
case X = X ′, we deduce that Y = Y ′ almost surely.

(Existence.) Assume for now thatX ∈ L2(F). Since L2(G) is complete, it is a closed subspace
of L2(F), so X has an orthogonal projection Y on L2(G), that is, there exists Y ∈ L2(G)
such that E((X − Y )Z) = 0 for all Z ∈ L2(G). In particular, for any A ∈ G, we can take
Z = 1A to see that E(X1A) = E(Y 1A). Thus Y satisfies (a) and (b).

Assume now that X ≥ 0. Then Xn = X ∧ n ∈ L2(F) and 0 ≤ Xn ↑ X as n → ∞. We
have shown, for each n, that there exists Yn ∈ L2(G) such that, for all A ∈ G,

E(Xn1A) = E(Yn1A)
and moreover that 0 ≤ Yn ≤ Yn+1 almost surely. Define

Ω0 = {ω ∈ Ω : 0 ≤ Yn(ω) ≤ Yn+1(ω) for all n}
and set Y∞ = limn→∞ Yn1Ω0 . Then Y∞ is a non-negative G-measurable random variable and,
by monotone convergence, for all A ∈ G,

E(X1A) = E(Y∞1A).

In particular, since X is integrable, we have E(Y∞) = E(X) <∞ so Y∞ <∞ almost surely.
Set Y = Y∞1{Y∞<∞}. Then Y is a random variable satisfying (a) and (b).

Finally, for a general integrable random variable X, we can apply the preceding construc-
tion to X− and X+ to obtain Y − and Y +. Then Y = Y + − Y − satisfies (a) and (b). □

1.5. Properties of conditional expectation. Let X be an integrable random variable
and let G ⊆ F be a σ-algebra. The following properties follow directly from Theorem 1.4.1

(i) E(E(X|G)) = E(X),
(ii) if X is G-measurable, then E(X|G) = X almost surely,
(iii) if X is independent of G, then E(X|G) = E(X) almost surely.

In the proof of Theorem 1.4.1, we showed also

(iv) if X ≥ 0 almost surely, then E(X|G) ≥ 0 almost surely.

Next, for α, β ∈ R and any integrable random variable Y , we have

(v) E(αX + βY |G) = αE(X|G) + βE(Y |G) almost surely.

To see this, one checks that the right hand side satisfies the properties (a) and (b) from
Theorem 1.4.1 which characterize the left hand side.

The basic convergence theorems for expectation have counterparts for conditional expec-
tation. Consider a sequence of random variables Xn in the limit n → ∞. If 0 ≤ Xn ↑ X
almost surely, then E(Xn|G) ↑ Y almost surely, for some G-measurable random variable Y ;
so, by monotone convergence, for all A ∈ G,

E(X1A) = limE(Xn1A) = limE(E(Xn|G)1A) = E(Y 1A),
7



which implies that Y = E(X|G) almost surely. We have proved the conditional monotone
convergence theorem:

(vi) if 0 ≤ Xn ↑ X almost surely, then E(Xn|G) ↑ E(X|G) almost surely.

Next, by essentially the same arguments used for the original results, we can deduce condi-
tional forms of Fatou’s lemma and the dominated convergence theorem

(vii) if Xn ≥ 0 for all n, then E(lim infXn|G) ≤ lim inf E(Xn|G) almost surely,
(viii) if Xn → X and |Xn| ≤ Y for all n, almost surely, for some integrable random

variable Y , then E(Xn|G) → E(X|G) almost surely.

There is a conditional form of Jensen’s inequality. Let c : R → (−∞,∞] be a convex
function. Then c is the supremum of a sequence of affine functions

c(x) = sup
n∈N

(anx+ bn), x ∈ R.

Hence, E(c(X)|G) is well defined and, almost surely, for all n,

E(c(X)|G) ≥ anE(X|G) + bn.

On taking the supremum over n ∈ N in this inequality, we obtain

(ix) if c : R → (−∞,∞] is convex, then E(c(X)|G) ≥ c(E(X|G)) almost surely.

In particular, for 1 ≤ p <∞,

∥E(X|G)∥pp = E(|E(X|G)|p) ≤ E(E(|X|p|G)) = E(|X|p) = ∥X∥pp.
So we have

(x) ∥E(X|G)∥p ≤ ∥X∥p for all 1 ≤ p <∞.

For any σ-algebra H ⊆ G, the random variable Y = E(E(X|G)|H) is H-measurable and
satisfies, for all A ∈ H

E(Y 1A) = E(E(X|G)1A) = E(X1A)

so we have the tower property

(xi) if H ⊆ G, then E(E(X|G)|H) = E(X|H) almost surely.

We can always take out what is known

(xii) if Y is bounded and G-measurable, then E(Y X|G) = Y E(X|G) almost surely.

To see this, consider first the case where Y = 1B for some B ∈ G. Then, for A ∈ G,

E(Y E(X|G)1A) = E(E(X|G)1A∩B) = E(X1A∩B) = E(Y X1A),

which implies that E(Y X|G) = Y E(X|G) almost surely. The result extends to simple G-
measurable random variables Y by linearity, then to the case X ≥ 0 and any bounded
non-negative G-measurable random variable Y by monotone convergence. The general case
follows by writing X = X+ −X− and Y = Y + − Y −.

Finally,

(xiii) if σ(X,G) is independent of H, then E(X|σ(G,H)) = E(X|G) almost surely.
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For, suppose A ∈ G and B ∈ H, then

E(E(X|σ(G,H))1A∩B) = E(X1A∩B)

= E(E(X|G)1A)P(B) = E(E(X|G)1A∩B).
The set of such intersections A∩B is a π-system generating σ(G,H), so the desired formula
follows from [PM, Proposition 3.1.4].

Lemma 1.5.1. Let X ∈ L1. Then the set of random variables Y of the form Y = E(X|G),
where G ⊆ F is a σ-algebra, is uniformly integrable.

Proof. By [PM, Lemma 6.2.1], given ε > 0, we can find δ > 0 so that E(|X|1A) ≤ ε
whenever P(A) ≤ δ. Then choose λ < ∞ so that E(|X|) ≤ λδ. Suppose Y = E(X|G), then
|Y | ≤ E(|X||G). In particular, E(|Y |) ≤ E(|X|) so

P(|Y | ≥ λ) ≤ λ−1E(|Y |) ≤ δ.

Then
E(|Y |1|Y |≥λ) ≤ E(|X|1|Y |≥λ) ≤ ε.

Since λ was chosen independently of G, we are done. □

1.6. Regular conditional probability measures. Given an event B of positive proba-
bility, we can define not only the (elementary) conditional expectation E(X|B) but also a
conditional probability measure PB, given by

PB(A) = P(A|B) =
P(A ∩B)

P(B)
.

Then, for all integrable random variables, we have

E(X|B) = EB(X)

where EB denotes the expectation with respect to PB.
We would like to extend this idea to conditioning with respect to a σ-algebra G. Recall

that, for A ∈ F, we define
P(A|G) = E(1A|G).

Then, by linearity of conditional expectation and conditional monotone convergence, we
have, for any sequence of disjoint events (An : n ∈ N), almost surely,

P

(⋃
n

An

∣∣∣∣∣G
)

=
∑
n

P(An|G). (1.1)

Although this resembles the property of countable additivity, (P(A|G) : A ∈ F) does not
define a conditional probability measure because the conditional probabilities P(A|G) are
only defined up to almost sure equivalence. We would need to show that we could choose
good versions of P(A|G) for all A ∈ F such that (1.1) held everywhere on Ω for all sequences
of disjoint events (An : n ∈ N). There are examples which show this cannot always be done.

We say that a map PG : Ω × F → [0, 1] is a regular conditional probability measure of P
given G if

(i) for all A ∈ F, the map ω 7→ PG(ω,A) is a version of P(A|G),
(ii) for all ω ∈ Ω, the map A 7→ PG(ω,A) is a probability measure on (Ω,F).
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Given such a map PG, it is straightforward to show that we obtain, for all integrable random
variables X, a version EG(X) of the conditional expectation E(X|G) by setting

EG(X)(ω) = EG(ω,X)

where EG(ω, .) denotes the expectation with respect to PG(ω, .).

We say that a measurable space (Ω,F) is a Borel space if it is isomorphic to a Borel subset
B of [0, 1]. That is to say, there is a bijection ϕ : Ω → B such that both ϕ and ϕ−1 are
measurable. It is known that every Borel subset of a Polish space is a Borel space.

Theorem 1.6.1. Assume that (Ω,F) is a Borel space. Then for all probability measures P
on (Ω,F) and all sub-σ-algebras G ⊆ F, there exists a regular conditional probability measure
PG for P given G.

We will prove a stronger form of this result below, in which the Borel regularity hypothesis
is placed on the range of a random variable instead of on the whole probability space.

Let X be a random variable on (Ω,F) with values in a measurable space (S, S). We say
that a map µX,G : Ω× S → [0, 1] is a regular conditional distribution of X under P given G if

(i) for all B ∈ S, the map ω 7→ µX,G(ω,B) is a version of P(X ∈ B|G),
(ii) for all ω ∈ Ω, the map B 7→ µX,G(ω,B) is a probability measure on (S, S).

Given such a map µX,G, it is straightforward to show that, for all measurable functions F on S
such that F (X) is integrable, we can define a version µX,G(F ) of the conditional expectation
E(F (X)|G) by setting

µX,G(F )(ω) = µX,G(ω, F ).

where the right-hand side denotes the integral of F with respect to µX,G(ω, .). Note that,
if S = Ω and X(ω) = ω then µX,G is simply a regular conditional probability measure of P
given G.

Theorem 1.6.2. Let X be a random variable with values in a Borel space (S, S). Then, for
all sub-σ-algebras G of F, there exists a regular conditional distribution µX,G of X under P
given G.

Proof. It suffices to consider the case where X is a random variable in a Borel subset B0

of [0, 1]. Choose then, for each t ∈ [0, 1] a version f(., t) of P(X ≤ t|G). We can and do
insist that, for all ω ∈ Ω, we have f(ω, 0) = 0 and f(ω, 1) = 1 and f(ω, t) ∈ [0, 1] for all t.
For s ≤ t, we have 1{X≤s} ≤ 1{X≤t}, so f(., s) ≤ f(., t) almost surely. For tn ↓ t, we have
1{X≤tn} → 1{X≤t}, so f(., tn) → f(., t) almost surely, by conditional bounded convergence.
Set

Ω0 = {ω ∈ Ω : t 7→ f(ω, t) : Q ∩ [0, 1] → [0, 1] is non-decreasing and right-continuous}.
Then P(Ω0) = 1. Define, for t ∈ [0, 1],

F (ω, t) =

{
lims↓t,s∈Q f(ω, s), if ω ∈ Ω0,
t, otherwise.

Then F (ω, 0) = 0 and F (ω, 1) = 1 and F (ω, .) : [0, 1] → [0, 1] is non-decreasing and right-
continuous for all ω, and F (., t) is a version of P(X ≤ t|G) for all t ∈ [0, 1]. Define λ(ω, .)
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to be the Lebesgue–Stieltjes probability measure on [0, 1] with distribution function F (ω, .).
Fix A ∈ G and consider the Borel measures λA and νA on [0, 1] given by

λA(B) = E(λ(., B)1A), νA(B) = P({X ∈ B} ∩ A).
Then, for all t ∈ [0, 1], we have

λA([0, t]) = E(F (., t)1A) = P({X ≤ t} ∩ A) = νA([0, t])

so λA = νA by uniqueness of extension. Hence λ(., B) is a version of P(X ∈ B|G) for all
Borel sets B. Set

Ω1 = {ω ∈ Ω : λ(ω,B0) = 1}.
We have λ(., B0) ≤ 1 and E(λ(., B0)) = P(X ∈ B0) = 1, so P(Ω1) = 1. Fix x0 ∈ B0 and
define for B ⊆ B0

µX,G(ω,B) =

{
λ(ω,B), if ω ∈ Ω1,
δx0(B), otherwise.

Then µX,G is a regular conditional distribution of X under P for G. □
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2. Martingales in discrete time

2.1. Definitions and simple examples. Let (Ω,F,P) be a probability space. We assume
that (Ω,F,P) is equipped with a filtration, that is to say, a sequence (Fn)n≥0 of σ-algebras
such that, for all n ≥ 0,

Fn ⊆ Fn+1 ⊆ F.

Set

F∞ = σ(Fn : n ≥ 0).

Then F∞ ⊆ F. We allow the possibility that F∞ ̸= F. We interpret the parameter n as
time, and the σ-algebra Fn as the extent of our knowledge at time n.

By a random process (in discrete time) we mean a sequence of random variables (Xn)n≥0.
Each random process X = (Xn)n≥0 has a natural filtration (FXn )n≥0, given by

FXn = σ(X0, . . . , Xn).

Then FXn models what we know about X by time n. We say that (Xn)n≥0 is adapted (to
(Fn)n≥0) if Xn is Fn-measurable for all n ≥ 0. It is equivalent to require that FXn ⊆ Fn for
all n. In this section we consider only real-valued or non-negative random processes. We say
that (Xn)n≥0 is integrable if Xn is an integrable random variable for all n ≥ 0.

A martingale is an adapted integrable random process (Xn)n≥0 such that, for all n ≥ 0,

E(Xn+1|Fn) = Xn almost surely.

If equality is replaced in this condition by ≤, then we call X a supermartingale. On the
other hand, if equality is replaced by ≥, then we call X a submartingale. Note that every
process which is a martingale with respect to the given filtration (Fn)n≥0 is also a martingale
with respect to its natural filtration.

Here are two simple ways in which martingales can arise. Throughout these notes, we will
label as Propositions, certain statements whose justification should be straightforward and
which are left as exercises.

Proposition 2.1.1. Let (Yn : n ≥ 1) be a sequence of independent integrable random vari-
ables of mean 0. Set X0 = 0 and Xn = Y1 + · · · + Yn for n ≥ 1. Then (Xn)n≥0 is a
martingale.

Proposition 2.1.2. Let (Zn : n ≥ 1) be a sequence of independent non-negative random
variables of mean 1. Set X0 = 1 and Xn =

∏n
k=1 Zk for n ≥ 1. Then (Xn)n≥0 is a

martingale.

2.2. Optional stopping. We say that a random variable

T : Ω → {0, 1, 2, . . . } ∪ {∞}
is a stopping time if {T ≤ n} ∈ Fn for all n ≥ 0. For a stopping time T , we set

FT = {A ∈ F∞ : A ∩ {T ≤ n} ∈ Fn for all n ≥ 0}.
It is easy to check that, if T (ω) = n for all ω, then T is a stopping time and FT = Fn. Given
a process X, we define

XT (ω) = XT (ω)(ω) whenever T (ω) <∞
12



and we define the stopped process XT by

XT
n (ω) = XT (ω)∧n(ω), n ≥ 0.

Proposition 2.2.1. Let S and T be stopping times and let X be an adapted process. Then

(a) S ∧ T is a stopping time,
(b) FT is a σ-algebra,
(c) if S ≤ T , then FS ⊆ FT ,
(d) XT1T<∞ is an FT -measurable random variable,
(e) XT is adapted,
(f) if X is integrable, then XT is integrable.

Theorem 2.2.2 (Optional stopping theorem). Let X be a martingale and let T be a bounded
stopping time. Then E(XT ) = E(X0).

Proof. Fix n ≥ 0 such that T ≤ n. Then

XT = X0 +
T−1∑
k=0

(Xk+1 −Xk) = X0 +
n−1∑
k=0

(Xk+1 −Xk)1{k≤T−1}. (2.1)

Since T is a stopping time, we have {k ≤ T − 1} = {T ≤ k}c ∈ Fk. Then, since X is a
martingale,

E((Xk+1 −Xk)1{k≤T−1}) = 0.

The result follows on taking expectations in (2.1). □

The property that E(XT ) = E(X0) for bounded stopping times characterizes martingales
in the class of adapted integrable processes. This is left as an exercise.

A similar argument proves the following more comprehensive result on the relationship
between supermartingales and stopping times. On replacing ≤ everywhere in the statement
and the proof below by = or ≥, we obtain corresponding results for martingales and sub-
martingales. Alternatively, these may be deduced from the given result using the facts that
(Xn)n≥0 is a submartingale if and only if (−Xn)n≥0 is a supermartingale, and (Xn)n≥0 is a
martingale if and only if it is both a supermartingale and a submartingale.

Theorem 2.2.3. Let X be an adapted integrable process. Then the following are equivalent

(a) X is a supermartingale,
(b) for all bounded stopping times T and all stopping times S,

E(XT |FS) ≤ XS∧T almost surely,

(c) for all stopping times T , the stopped process XT is a supermartingale,
(d) for all bounded stopping times T and all stopping times S ≤ T ,

E(XT ) ≤ E(XS).

Proof. For S ≥ 0 and T ≤ n, we have

XT = XS∧T +
∑

S≤k<T

(Xk+1 −Xk) = XS∧T +
n∑
k=0

(Xk+1 −Xk)1S≤k<T . (2.2)

13



Suppose that X is a supermartingale and that S and T are stopping times, with T ≤ n. Let
A ∈ FS. Then A ∩ {S ≤ k} ∈ Fk and {T > k} ∈ Fk, so

E((Xk+1 −Xk)1S≤k<T1A) ≤ 0.

Hence, on multiplying (2.2) by 1A and taking expectations, we obtain

E(XT1A) ≤ E(XS∧T1A).

Since XS∧T is FS-measurable, this shows that E(XT |FS) ≤ XS∧T almost surely. We have
shown that (a) implies (b).

It is obvious that (b) implies (c) and (d) and that (c) implies (a).

Let m ≤ n and A ∈ Fm. Set T = m1A+ n1Ac . Then T is a stopping time and T ≤ n. We
note that

E(Xn1A)− E(Xm1A) = E(Xn)− E(XT ).

It follows that (d) implies (a). □

2.3. Doob’s upcrossing inequality. Let X be a random process and let a, b ∈ R with
a < b. Fix ω ∈ Ω. By an upcrossing of [a, b] by X(ω), we mean an interval of times
{j, j + 1, . . . , k} such that Xj(ω) < a and Xk(ω) > b. Write Un[a, b](ω) for the number of
disjoint upcrossings contained in {0, 1, . . . , n} and write U [a, b](ω) for the total number of
disjoint upcrossings. Then, as n→ ∞, we have

Un[a, b] ↑ U [a, b].

Theorem 2.3.1 (Doob’s upcrossing inequality). Let X be a supermartingale. Then

(b− a)E(U [a, b]) ≤ sup
n≥0

E((Xn − a)−).

Proof. Set T0 = 0 and define recursively for k ≥ 0

Sk+1 = inf{m ≥ Tk : Xm < a}, Tk+1 = inf{m ≥ Sk+1 : Xm > b}.
Note that, if Tk <∞, then {Sk, Sk+1, . . . , Tk} is an upcrossing of [a, b] by X, and indeed Tk
is the time of completion of the kth disjoint upcrossing. Note that Un[a, b] ≤ n. For m ≤ n,
we have

{Un[a, b] = m} = {Tm ≤ n < Tm+1}
and, on this event,

XTk∧n −XSk∧n =

{
XTk −XSk

≥ b− a, if k ≤ m,
Xn −XSk

≥ Xn − a, if k = m+ 1 and Sm+1 ≤ n,
0, otherwise.

Hence, on summing over k ≤ n, we obtain
n∑
k=1

(XTk∧n −XSk∧n) ≥ (b− a)Un[a, b]− (Xn − a)−.

Since X is a supermartingale and Tk∧n and Sk∧n are bounded stopping times with Sk ≤ Tk,
by optional stopping,

E(XTk∧n) ≤ E(XSk∧n).

Hence, on taking expectations, we obtain

(b− a)E(Un[a, b]) ≤ E
(
(Xn − a)−

)
(2.3)
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and the claimed inequality follows by monotone convergence. □

2.4. Doob’s maximal inequalities. Define, for a random process X,

X∗
n = sup

k≤n
|Xk|.

In the next two theorems, we see that the martingale (or submartingale) property allows us
to obtain estimates on this supremum in terms of expectations for Xn itself.

Theorem 2.4.1 (Doob’s maximal inequality). Let X be a martingale or non-negative sub-
martingale. Then, for all λ ≥ 0,

λP(X∗
n ≥ λ) ≤ E(|Xn|1{X∗

n≥λ}) ≤ E(|Xn|).

Proof. If X is a martingale, then |X| is a non-negative submartingale. It therefore suffices
to consider the case where X is non-negative. Set

T = inf{k ≥ 0 : Xk ≥ λ} ∧ n.
Then T is a stopping time and T ≤ n so, by optional stopping,

E(Xn) ≥ E(XT ) = E(XT1{X∗
n≥λ}) + E(XT1{X∗

n<λ}) ≥ λP(X∗
n ≥ λ) + E(Xn1{X∗

n<λ}).

Hence
λP(X∗

n ≥ λ) ≤ E(Xn1{X∗
n≥λ}) ≤ E(Xn).

□

Theorem 2.4.2 (Doob’s Lp-inequality). Let X be a martingale or non-negative submartin-
gale. Then, for all p > 1 and q = p/(p− 1),

∥X∗
n∥p ≤ q∥Xn∥p.

Proof. If X is a martingale, then |X| is a non-negative submartingale. So it suffices to
consider the case where X is non-negative. Fix k < ∞. By Fubini’s theorem, Doob’s
maximal inequality, and Hölder’s inequality,

E[(X∗
n ∧ k)p] = E

∫ k

0

pλp−11{X∗
n≥λ} dλ =

∫ k

0

pλp−1P(X∗
n ≥ λ) dλ

≤
∫ k

0

pλp−2E(Xn1{X∗
n≥λ}) dλ = E

(
Xn

∫ k

0

pλp−21{X∗
n≥λ}dλ

)
= qE(Xn(X

∗
n ∧ k)p−1) ≤ q∥Xn∥p∥(X∗

n ∧ k)p−1∥q = q∥Xn∥p∥X∗
n ∧ k∥p−1

p .

Hence ∥X∗
n ∧ k∥p ≤ q∥Xn∥p and the result follows by monotone convergence on letting

k → ∞. □

Doob’s maximal and Lp inequalities have versions which apply, under the same hypotheses,
to the full supremum

X∗ = sup
n≥0

|Xn|.

Since X∗
n ↑ X∗, on letting n→ ∞, we obtain, for all λ ≥ 0,

λP(X∗ > λ) = lim
n→∞

λP(X∗
n > λ) ≤ sup

n≥0
E(|Xn|).
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We can then replace λP(X∗ > λ) by λP(X∗ ≥ λ) by taking limits from the right in λ.
Similarly, for p ∈ (1,∞), by monotone convergence,

∥X∗∥p ≤ q sup
n≥0

∥Xn∥p.

2.5. Doob’s martingale convergence theorems. We say that a random process X is
Lp-bounded if

sup
n≥0

∥Xn∥p <∞.

We say that X is uniformly integrable if

sup
n≥0

E
(
|Xn|1{|Xn|>λ}

)
→ 0 as λ→ ∞.

By Hölder’s inequality, if X is Lp-bounded for some p > 1, then X is uniformly integrable.
On the other hand, if X is uniformly integrable, then X is L1-bounded.

Theorem 2.5.1 (Almost sure martingale convergence theorem). Let X be an L1-bounded
supermartingale. Then there exists an integrable F∞-measurable random variable X∞ such
that Xn → X∞ almost surely as n→ ∞.

Proof. For a sequence of real numbers (xn)n≥0, as n → ∞, either xn converges (in R), or
xn → ±∞, or lim inf xn < lim supxn. In the second case, we have lim inf |xn| = ∞. In the
third case, since the rationals are dense, there exist a, b ∈ Q such that lim inf xn < a < b <
lim supxn. Set

Ω0 = Ω∞ ∩

( ⋂
a,b∈Q, a<b

Ωa,b

)
where

Ω∞ = {lim inf |Xn| <∞}, Ωa,b = {U [a, b] <∞}.
Then Xn(ω) converges for all ω ∈ Ω0. By Fatou’s lemma and Doob’s upcrossing inequality,
for all a < b,

E(lim inf |Xn|) ≤ lim inf E|Xn|, (b− a)E(U [a, b]) ≤ |a|+ sup
n≥0

E|Xn|.

So, since (Xn)n≥0 is L1-bounded, we have P(Ω0) = 1. Define

X∞ = lim
n→∞

Xn1Ω0 .

Then Xn → X∞ almost surely, X∞ is F∞-measurable and |X∞| ≤ lim inf |Xn| so X∞ is
integrable. □

Note, in particular, that every bounded martingale and every non-negative supermartingale
is L1-bounded and hence, by the theorem, converges almost surely. This provides some nice
short cuts. For example, a simple symmetric random walk in Z stopped on leaving a finite
interval is (by optional stopping) a bounded martingale, and hence converges almost surely.
It can only do this by leaving the interval, so almost surely it does so.
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Theorem 2.5.2 (L1 martingale convergence theorem). Let (Xn)n≥0 be a uniformly integrable
martingale. Then there exists a random variable X∞ ∈ L1(F∞) such that Xn → X∞ as
n → ∞ almost surely and in L1. Moreover, Xn = E(X∞|Fn) almost surely for all n ≥ 0.
Moreover, for all Y ∈ L1(F∞), on choosing a version Xn of E(Y |Fn) for all n, we obtain a
uniformly integrable martingale (Xn)n≥0 such that Xn → Y almost surely and in L1.

Proof. Let (Xn)n≥0 be a uniformly integrable martingale. By the almost sure martingale
convergence theorem, there exists X∞ ∈ L1(F∞) such that Xn → X∞ almost surely. Since
X is uniformly integrable, it follows that Xn → X∞ in L1, by [PM, Theorems 2.5.1 and
6.2.3]. Next, for m ≥ n,

∥Xn − E(X∞|Fn)∥1 = ∥E(Xm −X∞|Fn)∥1 ≤ ∥Xm −X∞∥1.

Let m→ ∞ to deduce Xn = E(X∞|Fn) almost surely.

Suppose now that Y ∈ L1(F∞) and let Xn be a version of E(Y |Fn) for all n. Then (Xn)n≥0

is a martingale by the tower property and is uniformly integrable by Lemma 1.5.1. Hence
there exists X∞ ∈ L1(F∞) such that Xn → X∞ almost surely and in L1. For all n ≥ 0 and
all A ∈ Fn we have

E(X∞1A) = lim
m→∞

E(Xm1A) = E(Y 1A).

Now X∞, Y ∈ L1(F∞) and ∪nFn is a π-system generating F∞. Hence, by [PM, Proposition
3.1.4], X∞ = Y almost surely. □

This theorem can be seen as setting up a bijection between the set of uniformly integrable
martingales and L1(F∞), given by X 7→ X∞, provided that we identify martingales and
random variables which agree almost surely.

Theorem 2.5.3 (Lp martingale convergence theorem). Let p ∈ (1,∞). Let (Xn)n≥0 be
an Lp-bounded martingale. Then there exists a random variable X∞ ∈ Lp(F∞) such that
Xn → X∞ as n→ ∞ almost surely and in Lp. Moreover, Xn = E(X∞|Fn) almost surely for
all n ≥ 0. Moreover, for all Y ∈ Lp(F∞), on choosing a version Xn of E(Y |Fn) for all n,
we obtain an Lp-bounded martingale (Xn)n≥0 such that Xn → Y almost surely and in Lp.

Proof. Let (Xn)n≥0 be an Lp-bounded martingale. By the almost sure martingale conver-
gence theorem, there exists X∞ ∈ L1(F∞) such that Xn → X∞ almost surely. By Doob’s
Lp-inequality,

∥X∗∥p ≤ q sup
n≥0

∥Xn∥p <∞.

Since |Xn −X∞|p ≤ (2X∗)p for all n, it follows by dominated convergence that Xn → X∞
in Lp. Then Xn = E(X∞|Fn) almost surely for all n ≥ 0, as in the L1 case.

Suppose now that Y ∈ Lp(F∞) and let Xn be a version of E(Y |Fn) for all n. Then (Xn)n≥0

is a martingale by the tower property and

∥Xn∥p = ∥E(Y |Fn)∥p ≤ ∥Y ∥p
for all n, so (Xn)n≥0 is Lp-bounded. Hence there exists X∞ ∈ Lp(F∞) such that Xn → X∞
almost surely and in Lp. Finally, we must have X∞ = Y almost surely, as in the L1 case. □
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In the next result, we dispense with the filtration (Fn)n≥0 and suppose given instead a

backward filtration (F̂n)n≥0, that is to say, a sequence of σ-algebras F̂n such that, for all
n ≥ 0,

F ⊇ F̂n ⊇ F̂n+1.

We write F̂∞ for the σ-algebra given by

F̂∞ =
⋂
n≥0

F̂n.

Theorem 2.5.4 (Backward martingale convergence theorem). For all Y ∈ L1(F), we have

E(Y |F̂n) → E(Y |F̂∞) as n→ ∞, almost surely and in L1.

Proof. Write Xn = E(Y |F̂n) for all n ≥ 0. Fix n ≥ 0. By the tower property, (Xn−k)0≤k≤n is

a martingale for the filtration (F̂n−k)0≤k≤n. For a < b, the number Un[a, b] of upcrossings of
[a, b] by (Xk)0≤k≤n equals the number of upcrossings of [−b,−a] by (−Xn−k)0≤k≤n. Hence,
from (2.3), we obtain

(b− a)E(Un[a, b]) ≤ E((X0 − b)+)

and so, by monotone convergence,

(b− a)E(U [a, b]) ≤ E((X0 − b)+) ≤ E|Y |+ |b| <∞.

Also, we have

E(lim inf |Xn|) ≤ lim inf E|Xn| ≤ E|Y | <∞.

Hence the argument used in the proof of the almost sure martingale convergence theorem
applies to show that P(Ω̂0) = 1, where

Ω̂0 = {Xn converges as n→ ∞}.

Set

X∞ = 1Ω̂0
lim
n→∞

Xn.

Then X∞ ∈ L1(F̂∞) and Xn → X∞ almost surely. Now (Xn)n≥0 is uniformly integrable by

Lemma 1.5.1, so Xn → X∞ also in L1. Finally, for all A ∈ F̂∞, we have

E((X∞ − E(Y |F̂∞))1A) = lim
n→∞

E((Xn − Y )1A) = 0

and this implies that X∞ = E(Y |F̂∞) almost surely. □

Recall that, for a stopping time T and a random process X, XT has been defined only
on the event {T < ∞}. Given an almost sure limit X∞ for X, we define XT = X∞ on
{T = ∞}. Then the optional stopping theorem extends to all stopping times for uniformly
integrable martingales.

Theorem 2.5.5. Let X be a uniformly integrable martingale and let T be any stopping time.
Then E(XT ) = E(X0). Moreover, for all stopping times S and T , we have

E(XT |FS) = XS∧T almost surely.
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Proof. By the L1 martingale convergence theorem, there exists X∞ ∈ L1(F∞) such that
Xn → X∞ as n → ∞, almost surely and in L1, and Xn = E(X∞|Fn) almost surely, for all
n. Hence XT is well defined and XT∧n → XT almost surely as n→ ∞.

Consider, for each n ≥ 0, the bounded stopping time T ∧ n. By the optional stopping
theorem and Theorem 2.2.3

E(XT∧n) = E(X0), E(XT∧n|FS) = XS∧T∧n almost surely. (2.4)

Since FT∧n ⊆ Fn, by Theorem 2.2.3 and the tower property,

XT∧n = E(Xn|FT∧n) = E(X∞|FT∧n).
Then, by Lemma 1.5.1, the random process (XT∧n)n≥0 is uniformly integrable. So XT∧n →
XT in L1 and so also E(XT∧n|FS) → E(XT |FS) in L1. Hence we can let n → ∞ in (2.4) to
obtain the claimed identities. □
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3. Applications of martingale theory

3.1. Sums of independent random variables. We use martingale arguments to analyse
some aspects of the behaviour of the partial sums

Sn = X1 + · · ·+Xn

of a sequence (Xn)n≥1 of independent random variables. We will have more to say about
such sums in Theorem 6.1.1 and Theorem 7.9.2

Theorem 3.1.1 (Strong law of large numbers). Let (Xn)n≥1 be a sequence of independent,
identically distributed, integrable random variables. Set µ = E(X1). Then Sn/n → µ as
n→ ∞ almost surely and in L1.

Proof. Define for n ≥ 1

F̂n = σ(Sm : m ≥ n), Tn = σ(Xm : m ≥ n+ 1), T = ∩n≥1Tn.

Then F̂n = σ(Sn,Tn) and (F̂n)n≥1 is a backward filtration. Since σ(X1, Sn) is independent

of Tn, we have E(X1|F̂n) = E(X1|Sn) almost surely for all n. For k ≤ n and all Borel sets
B, we have E(Xk1{Sn∈B}) = E(X11{Sn∈B}) by symmetry, so E(Xk|Sn) = E(X1|Sn) almost
surely. But

E(X1|Sn) + · · ·+ E(Xn|Sn) = E(Sn|Sn) = Sn almost surely

so we must have

E(X1|F̂n) = E(X1|Sn) = Sn/n almost surely.

Then, by the backward martingale convergence theorem,

Sn/n→ Y almost surely and in L1

for some random variable Y . Then Y is T-measurable so, by Kolmogorov’s zero-one law
[PM, Theorem 2.6.1], Y is constant almost surely. Hence

Y = E(Y ) = lim
n→∞

E(Sn/n) = µ almost surely.

□

Since almost sure convergence implies convergence in probability [PM, Theorem 2.5.1], the
following is an immediate corollary.

Corollary 3.1.2 (Weak law of large numbers). Let (Xn)n≥1 be a sequence of independent,
identically distributed, integrable random variables. Set µ = E(X1). Then P(|Sn/n − µ| >
ε) → 0 as n→ ∞ for all ε > 0.

3.2. Non-negative martingales and change of measure. Given a random variable X,
with X ≥ 0 and E(X) = 1, we can define a new probability measure P̃ on F by

P̃(A) = E(X1A), A ∈ F.

Moreover, by [PM, Proposition 3.1.4], given P̃, this equation determines X uniquely, up to

almost sure modification. We say that P̃ has a density with respect to P and X is a version
of the density.
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Let (Fn)n≥0 be a filtration which generates F. Let (Xn)n≥0 be an adapted random process,

with Xn ≥ 0 and E(Xn) = 1 for all n. We can define for each n a probability measure P̃n on
Fn by

P̃n(A) = E(Xn1A), A ∈ Fn.

Since we requireXn to be Fn-measurable, this equation determinesXn uniquely, up to almost
sure modification.

Proposition 3.2.1. The measures P̃n are consistent, that is P̃n+1|Fn = P̃n for all n, if and

only if (Xn)n≥0 is a martingale. Moreover, there is a measure P̃ on F, which has a density

with respect to P, such that P̃|Fn = P̃n for all n, if and only if (Xn)n≥0 is a uniformly
integrable martingale.

The following is an important result of measure theory.

Theorem 3.2.2 (Radon–Nikodym theorem). Let µ and ν be σ-finite measures on a mea-
surable space (E,E). Then the following are equivalent

(a) ν(A) = 0 for all A ∈ E such that µ(A) = 0,
(b) there exists a measurable function f on E such that f ≥ 0 and

ν(A) = µ(f1A), A ∈ E.

The function f , which is unique up to modification µ-almost everywhere, is called (a version
of ) the Radon-Nikodym derivative of ν with respect to µ. We write

f =
dν

dµ
almost everywhere.

We will give a proof, using the L1-martingale convergence theorem, for the case where E

is countably generated. Thus, we assume further that there is a sequence (Gn : n ∈ N) of
subsets of E which generates E. This holds, for example, whenever E is the Borel σ-algebra
of a topology with countable basis. A further martingale argument, which we omit, allows
to deduce the general case.

Proof. It is obvious that (b) implies (a). Assume then that (a) holds. There is a countable
partition of E by measurable sets on which both µ and ν are finite. It will suffice to show
that (b) holds on each of these sets, so we reduce without loss to the case where µ and ν are
finite.

The case where ν(E) = 0 is clear. Assume then that ν(E) > 0. Then also µ(E) > 0,
by (a). Write Ω = E and F = E and consider the probability measures P = µ/µ(E) and

P̃ = ν/ν(E) on (Ω,F). It will suffice to show that there is a random variable X ≥ 0 such

that P̃(A) = E(X1A) for all A ∈ F.

Set Fn = σ(Gk : k ≤ n). There exist m ∈ N and a partition of Ω by events A1, . . . , Am
such that Fn = σ(A1, . . . , Am). Set

Xn =
m∑
j=1

aj1Aj

where aj = P̃(Aj)/P(Aj) if P(Aj) > 0 and aj = 0 otherwise. Then Xn ≥ 0, Xn is Fn-

measurable and, using (a), we have P̃(A) = E(Xn1A) for all A ∈ Fn. Observe that (Fn)n≥0 is
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a filtration and (Xn)n≥0 is a non-negative martingale. We will show that (Xn)n≥0 is uniformly
integrable. Then, by the L1 martingale convergence theorem, there exists a random variable
X ≥ 0 such that E(X1A) = E(Xn1A) for all A ∈ Fn. Define a probability measure Q on F

by Q(A) = E(X1A). Then Q = P̃ on ∪nFn, which is a π-system generating F. Hence Q = P̃
on F, by uniqueness of extension [PM, Theorem 1.7.1], which implies (b).

It remains to show that (Xn)n≥0 is uniformly integrable. Given ε > 0 we can find δ > 0

such that P̃(B) < ε for all B ∈ F with P(B) < δ. For, if not, there would be a sequence of

sets Bn ∈ F with P(Bn) < 2−n and P̃(Bn) ≥ ε for all n. Then

P(∩n ∪m≥n Bm) = 0, P̃(∩n ∪m≥n Bm) ≥ ε

which contradicts (a). Set λ = 1/δ, then P(Xn > λ) ≤ E(Xn)/λ = 1/λ = δ for all n, so

E(Xn1Xn>λ) = P̃(Xn > λ) < ε.

Hence (Xn)n≥0 is uniformly integrable. □

3.3. Markov chains. Let S be a countable set. We identify each measure µ on S with its
mass function (µx : x ∈ S), where µx = µ({x}). Then, for each function f on S, the integral
is conveniently written as the matrix product

µ(f) = µf =
∑
x∈S

µxfx

where we consider µ as a row vector and identify f with the column vector (fx : x ∈ S) given
by fx = f(x). A transition matrix on S is a matrix P = (pxy : x, y ∈ S) such that each row
(pxy : y ∈ S) is a probability measure.

Let (Xn)n≥0 be a random process with values in S. We say that (Xn)n≥0 is a Markov chain
with transition matrix P if, for all n ≥ 0, all x, y ∈ S and all A ∈ FXn with A ⊆ {Xn = x}
and P(A) > 0,

P(Xn+1 = y|A) = pxy. (3.1)

We sometimes wish to work with a given filtration (Fn)n≥0 and the more restrictive notion
of (Fn)n≥0-Markov chain, where we insist both that (Xn)n≥0 is adapted to (Fn)n≥0 and that
(3.1) holds for all A ∈ Fn with A ⊆ {Xn = x} and P(A) > 0.

Proposition 3.3.1. Let (Xn)n≥0 be a random process with values in S. The following are
equivalent

(a) (Xn)n≥0 is a Markov chain with initial distribution µ and transition matrix P ,
(b) for all n and all x0, x1, . . . , xn ∈ S,

P(X0 = x0, X1 = x1, . . . , Xn = xn) = µx0px0x1 . . . pxn−1xn .

Proposition 3.3.2 (Strong Markov property). Let (Xn)n≥0 be an (Fn)n≥0-Markov chain

with transition matrix P and let T be a stopping time. Set X̃n = XT+n and F̃n = FT+n.
Then, conditional on {T < ∞}, (X̃n)n≥0 is a (F̃n)n≥0-Markov chain with transition matrix
P .

Theorem 3.3.3. Let S∗ denote the set of sequences x = (xn : n ≥ 0) in S and define
Xn : S∗ → S by Xn(x) = xn. Set S∗ = σ(Xk : k ≥ 0). Let P be a transition matrix on S.
Then, for each x ∈ S, there is a unique probability measure µx on (S∗, S∗) such that (Xn)n≥0

is a Markov chain with transition matrix P and starting from x.
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Proof. By Proposition 3.3.1, the values of any such measure µx are determined on the π-
system A = ∪∞

n=0 σ(Xk : 0 ≤ k ≤ n). Since A generates S∗, it follows that µx is unique.
There exists a probability space (Ω,F,P) on which is defined a sequence (Un : n ∈ N) of
independent U [0, 1] random variables. There exists a measurable function F : [0, 1]×S → S
such that P(F (U, x) = y) = pxy for U ∼ U [0, 1] and all x, y ∈ S. Set X0 = x and define
(Xn)n≥0 recursively by Xn+1 = F (Un+1, Xn). We can then check that (Xn)n≥0 is a Markov
chain with transition matrix P , so its law µx on (S∗, S∗) is a measure with the desired
property. □

An example of a Markov chain in Zd is the simple symmetric random walk, whose transition
matrix is given by

pxy =

{
1/(2d), if |x− y| = 1,
0, otherwise.

The following result shows a simple instance of a general relationship between Markov pro-
cesses and martingales. We will see a second instance of this for Brownian motion in Theorem
7.5.1.

Theorem 3.3.4. Let (Xn)n≥0 be a random process with values in S. Then the following are
equivalent

(a) (Xn)n≥0 is an (Fn)n≥0-Markov chain with transition matrix P ,
(b) for all bounded functions f on S the following process is a martingale

M f
n = f(Xn)− f(X0)−

n−1∑
k=0

(P − I)f(Xk).

Proof. We have

M f
n+1 −M f

n = f(Xn+1)− f(Xn)− (P − I)f(Xn) = f(Xn+1)− Pf(Xn).

The claimed equivalence follows on taking conditional expectations on Fn. □

A bounded function f on S is said to be harmonic if Pf = f , that is to say, if∑
y∈S

pxyfy = fx, x ∈ S.

Note that, if f is a bounded harmonic function, then (f(Xn))n≥0 is a bounded martingale.
Then, by Doob’s convergence theorems, f(Xn) converges almost surely and in Lp for all
p <∞. More generally, for D ⊆ S, a bounded function f on S is harmonic in D if∑

y∈S

pxyfy = fx, x ∈ D.

Theorem 3.3.5 (Dirichlet problem for Markov chains). Let D ⊆ S and set ∂D = S \ D.
Let f be a bounded function defined on ∂D. Set

T = inf{n ≥ 0 : Xn ∈ ∂D}
and define a function u on S by

u(x) = Ex(f(XT )1{T<∞}).
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Then u is bounded, u is harmonic in D, and u = f on ∂D. Moreover, if Px(T < ∞) = 1
for all x ∈ D, then u is the unique bounded extension of f which is harmonic in D.

Proof. It is clear that u is bounded and u = f on ∂D. For all x, y ∈ S with pxy > 0, under
Px, conditional on {X1 = y}, (Xn+1)n≥0 has distribution Py. So, for x ∈ D,

u(x) =
∑
y∈S

pxyu(y)

showing that u is harmonic in D. On the other hand, suppose that g is a bounded function,
harmonic in D and such that g = f on ∂D. Then M = M g is a martingale and T is a
stopping time, so MT is also a martingale by optional stopping. But MT∧n = g(XT∧n). So,
if Px(T <∞) = 1 for all x ∈ D, then

MT∧n → f(XT ) almost surely

so, by bounded convergence, for all x ∈ D,

g(x) = Ex(M0) = Ex(MT∧n) → Ex(f(XT )) = u(x).

□
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4. Random processes in continuous time

4.1. Definitions. A continuous random process is a family of random variables (Xt)t≥0 such
that, for all ω ∈ Ω, the path t 7→ Xt(ω) : [0,∞) → R is continuous.

A function x : [0,∞) → R is said to be cadlag if it is right-continuous with left limits,
that is to say, for all t ≥ 0

xs → xt as s→ t with s > t

and, for all t > 0, there exists xt− ∈ R such that

xs → xt− as s→ t with s < t.

A cadlag random process is a family of random variables (Xt)t≥0 such that, for all ω ∈ Ω,
the path t 7→ Xt(ω) : [0,∞) → R is cadlag.

The space of continuous on [0,∞) is denoted by C([0,∞),R), while the space of cadlag
functions on [0,∞) is denoted by D([0,∞),R). We equip both these spaces with the σ-
algebra generated by the coordinate functions σ(x 7→ xt : t ≥ 0). A continuous random
process (Xt)t≥0 can then be considered as a random variable X in C([0,∞),R) given by

X(ω) = (t 7→ Xt(ω) : t ≥ 0).

A cadlag random process can be thought of as a random variable in D([0,∞),R). The
finite-dimensional distributions of a continuous or cadlag process X are the laws µt1,...,tn on
Rn given by

µt1,...,tn(A) = P((Xt1 , . . . , Xtn) ∈ A), A ∈ B(Rn)

where n ∈ N and t1, . . . , tn ∈ [0,∞) with t1 < · · · < tn. The cylinder sets {(Xt1 , . . . , Xtn) ∈
A} form a generating π-system, so their probabilities uniquely determine the law of X. We
make analogous definitions when R is replaced by a general topological space.

4.2. Kolmogorov’s criterion. This result allows us to prove pathwise Hölder continuity
for a random process starting from Lp-Hölder continuity, by giving up 1/p in the exponent.

Theorem 4.2.1 (Kolmogorov’s criterion – simple version). Let β ∈ (0, 1] and p ∈ (1/β,∞)
be given. Let (Xt)t∈[0,1] be a continuous random process such that, for some constant C <∞
and all s, t ∈ [0, 1],

∥Xs −Xt∥p ≤ C|s− t|β.
Then, for all α ∈ (0, β − 1/p), there exists a random variable Kα ∈ Lp such that, almost
surely, for all s, t ∈ [0, 1],

|Xs −Xt| ≤ Kα|s− t|α.

In fact the following more elaborate formulation is more useful, especially in constructing
continuous random processes, such as Brownian motion. We will actually use a version in
which [0, 1] is replaced by [0,∞), and which can be deduced by piecing together continuous
processes on each interval [n, n+ 1]. This is left as an exercise.

Theorem 4.2.2 (Kolmogorov’s criterion – strong version). Let p ∈ (1,∞) and β ∈ (1
p
, 1].

Let I be a dense subset of [0, 1] and let (ξt)t∈I be a family of random variables such that, for
some constant C <∞,

∥ξs − ξt∥p ≤ C|s− t|β, for all s, t ∈ I. (4.1)
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Then there exists a continuous random process (Xt)t∈[0,1] such that

Xt = ξt almost surely, for all t ∈ I.

Moreover (Xt)t∈[0,1] may be chosen so that, for all α ∈ [0, β − 1
p
), there exists Kα ∈ Lp such

that
|Xs −Xt| ≤ Kα|s− t|α, for all s, t ∈ [0, 1].

Proof. For n ≥ 0, write

Dn = {k2−n : k ∈ Z+}, D = ∪n≥0Dn, Dn = Dn ∩ [0, 1), D = D ∩ [0, 1].

By taking limits in Lp, we can extend (ξt)t∈I to all parameter values t ∈ D and so that (4.1)
holds for all s, t ∈ D∪ I. For n ≥ 0 and α ∈ [0, β− 1

p
), define non-negative random variables

by

Kn = sup
t∈Dn

|ξt+2−n − ξt|, Kα = 2
∑
n≥0

2nαKn.

Then
E(Kp

n) ≤ E
∑
t∈Dn

|ξt+2−n − ξt|p ≤ 2nCp(2−n)βp

so
∥Kα∥p ≤ 2

∑
n≥0

2nα∥Kn∥p ≤ 2C
∑
n≥0

2−(β−α−1/p)n <∞.

For s, t ∈ D with s < t, choose m ≥ 0 so that 2−m−1 < t− s ≤ 2−m. The interval [s, t) can
be expressed as the finite disjoint union of intervals of the form [r, r + 2−n), where r ∈ Dn

and n ≥ m+ 1 and where no three intervals have the same length. Hence

|ξt − ξs| ≤ 2
∑

n≥m+1

Kn

and so
|ξt − ξs|
(t− s)α

≤ 2
∑

n≥m+1

Kn2
(m+1)α ≤ Kα.

Now define

Xt(ω) =

{
lims→t, s∈D ξs(ω) if Kα(ω) <∞ for all α ∈ [0, β − 1

p
),

0 otherwise.

Then (Xt)t∈[0,1] is a continuous random process with the claimed properties. □

4.3. Martingales in continuous time. We assume in this section that our probability
space (Ω,F,P) is equipped with a continuous-time filtration, that is, a family of σ-algebras
(Ft)t≥0 such that

Fs ⊆ Ft ⊆ F, s ≤ t.

Define for t ≥ 0

Ft+ = ∩s>tFs, F∞ = σ(Ft : t ≥ 0), N = {A ∈ F∞ : P(A) = 0}.
The filtration (Ft)t≥0 is said to satisfy the usual conditions if N ⊆ F0 and Ft = Ft+ for
all t. A continuous adapted integrable random process (Xt)t≥0 is said to be a continuous
martingale if, for all s, t ≥ 0 with s ≤ t,

E(Xt|Fs) = Xs almost surely.
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We define analogously the notion of a cadlag martingale. If equality is replaced in this
condition by ≤ or ≥, we obtain notions of supermartingale and submartingale respectively.

Recall that we write, for n ≥ 0,

Dn = {k2−n : k ∈ Z+}, D = ∪n≥0Dn.

Define, for a cadlag random process X,

X∗ = sup
t≥0

|Xt|, X(n)∗ = sup
t∈Dn

|Xt|.

The cadlag property implies that

X(n)∗ → X∗ as n→ ∞

while, if (Xt)t≥0 is a cadlag martingale, then (Xt)t∈Dn is a discrete-time martingale, for the
filtration (Ft)t∈Dn , and similarly for supermartingales and submartingales. Thus, on applying
Doob’s inequalities to (Xt)t∈Dn and passing to the limit we obtain the following results.

Theorem 4.3.1 (Doob’s maximal inequality). Let X be a cadlag martingale or non-negative
submartingale. Then, for all λ ≥ 0,

λP(X∗ ≥ λ) ≤ sup
t≥0

E(|Xt|).

Theorem 4.3.2 (Doob’s Lp-inequality). Let X be a cadlag martingale or non-negative sub-
martingale. Then, for all p > 1 and q = p/(p− 1),

∥X∗∥p ≤ q sup
t≥0

∥Xt∥p.

Similarly, the cadlag property implies that every upcrossing of a non-trivial interval by
(Xt)t≥0 corresponds, eventually as n → ∞, to an upcrossing by (Xt)t∈Dn . This leads to the
following estimate.

Theorem 4.3.3 (Doob’s upcrossing inequality). Let X be a cadlag supermartingale and let
a, b ∈ R with a < b. Then

(b− a)E(U [a, b]) ≤ sup
t≥0

E((Xt − a)−)

where U [a, b] is the total number of disjoint upcrossings of [a, b] by X.

Then, arguing as in the discrete-time case, we obtain continuous-time versions of each
martingale convergence theorem, where the notions of Lp-bounded and uniformly integrable
are adapted in the obvious way.

Theorem 4.3.4 (Almost sure martingale convergence theorem). Let X be an L1-bounded
cadlag supermartingale. Then there exists an integrable F∞-measurable random variable X∞
such that Xt → X∞ almost surely as t→ ∞.

The following result shows, in particular, that, under the usual conditions on (Ft)t≥0,
martingales are naturally cadlag.
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Theorem 4.3.5 (L1 martingale convergence theorem). Let (Xt)t≥0 be a uniformly integrable
cadlag martingale. Then there exists a random variable X∞ ∈ L1(F∞) such that Xt → X∞
as t → ∞ almost surely and in L1. Moreover, Xt = E(X∞|Ft) almost surely for all t ≥ 0.
Moreover, if (Ft)t≥0 satisfies the usual conditions, then, for all Y ∈ L1(F∞), there exists a
uniformly integrable cadlag martingale (Xt)t≥0 such that Xt = E(Y |Ft) almost surely for all
t, and Xt → Y almost surely and in L1.

Proof. The proofs of the first two assertions are straightforward adaptations of the corre-
sponding discrete-time proofs. We give details only for the final assertion. Suppose that
(Ft)t≥0 satisfies the usual conditions and that Y ∈ L1(F∞). Choose a version ξt of E(Y |Ft)
for all t ∈ D. Then (ξt)t∈D is uniformly integrable and (ξt)t∈Dn is a discrete-time martingale
for all n ≥ 0. Set ξ∗ = supt∈D |ξt| and write u[a, b] for the total number of disjoint upcrossings
of [a, b] by (ξt)t∈D. Set

Ω0 = Ω∗ ∩
⋂

a,b∈Q, a<b

Ωa,b

where
Ω∗ = {ξ∗ <∞}, Ωa,b = {u[a, b] <∞}.

By the arguments leading to Theorems 4.3.1 and 4.3.3, we obtain the estimates

λP(ξ∗ ≥ λ) ≤ E|Y |, (b− a)E(u[a, b]) ≤ E|Y |+ |a|
which then imply that P(Ω0) = 1. Define for t ≥ 0

Xt = lim
s→t, s>t, s∈D

ξs1Ω0 .

The usual conditions ensure that (Xt)t≥0 is adapted to (Ft)t≥0. It is straightforward to check
that (Xt)t≥0 is cadlag and Xt = E(Y |Ft) almost surely for all t ≥ 0, so (Xt)t≥0 is a uniformly
integrable cadlag martingale. Moreover, Xt converges, with limit X∞ say, as t → ∞, and
then X∞ = Y almost surely by the same argument used for the discrete-time case. □

Theorem 4.3.6 (Lp martingale convergence theorem). Let p ∈ (1,∞). Let (Xt)t≥0 be an
Lp-bounded cadlag martingale. Then there exists a random variable X∞ ∈ Lp(F∞) such that
Xt → X∞ as t → ∞ almost surely and in Lp. Moreover, Xt = E(X∞|Ft) almost surely for
all t ≥ 0. Moreover, if (Ft)t≥0 satisfies the usual conditions, then, for all Y ∈ Lp(F∞), there
exists an Lp-bounded cadlag martingale (Xt)t≥0 such that Xt = E(Y |Ft) almost surely for all
t, and Xt → Y almost surely and in Lp.

We say that a random variable
T : Ω → [0,∞]

is a stopping time if {T ≤ t} ∈ Ft for all t ≥ 0. For a stopping time T , we set

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}.
Given a cadlag random process X, we define XT and the stopped process XT by

XT (ω) = XT (ω)(ω), XT
t (ω) = XT (ω)∧t(ω)

where we leave XT (ω) undefined if T (ω) = ∞ and Xt(ω) fails to converge as t→ ∞.

Proposition 4.3.7. Let S and T be stopping times and let X be a cadlag adapted process.
Then
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(a) S ∧ T is a stopping time,
(b) FT is a σ-algebra,
(c) if S ≤ T , then FS ⊆ FT ,
(d) XT1T<∞ is an FT -measurable random variable,
(e) XT is adapted.

Theorem 4.3.8. Let X be a cadlag adapted integrable process. Then the following are
equivalent

(a) X is a martingale,
(b) for all bounded stopping times T and all stopping times S, XT is integrable and

E(XT |FS) = XS∧T almost surely,

(c) for all stopping times T , the stopped process XT is a martingale,
(d) for all bounded stopping times T , XT is integrable and

E(XT ) = E(X0).

Moreover, if X is uniformly integrable, then (b) and (d) hold for all stopping times T .

Proof. Suppose (a) holds. Let S and T be stopping times, with T bounded, T ≤ t say. Let
A ∈ FS. For n ≥ 0, set

Sn = 2−n⌈2nS⌉, Tn = 2−n⌈2nT ⌉.
Then Sn and Tn are stopping times and Sn ↓ S and Tn ↓ T as n→ ∞. Since (Xt)t≥0 is right
continuous, XTn → XT almost surely as n → ∞. By Theorem 2.2.3, XTn = E(Xt+1|FTn)
so (XTn : n ≥ 0) is uniformly integrable and so XTn → XT in L1. In particular, XT is
integrable. Similarly XSn∧Tn → XS∧T in L1. By Theorem 2.2.3 again,

E(XTn1A) = E(XSn∧Tn1A).

On letting n → ∞, we deduce that (b) holds. For the rest of the proof we argue as in the
discrete-time case. □
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5. Weak convergence

5.1. Definitions and characterizations. Let (µn : n ∈ N) be a sequence of probability
measures on a metric space E, and let µ be another probability measure on E. We say
that µn converges to µ weakly on E and write µn → µ weakly on E if µn(f) → µ(f) for all
bounded continuous functions f on E. Here is a general result, which we will not prove, on
characterizations of weak convergence.

Theorem 5.1.1. The following are equivalent

(a) µn → µ weakly on E,
(b) lim supn µn(C) ≤ µ(C) for all closed sets C,
(c) lim infn µn(G) ≥ µ(G) for all open sets G,
(d) limn µn(A) = µ(A) for all Borel sets A with µ(∂A) = 0.

Here is a result of similar type for the case E = R.

Theorem 5.1.2. Let µn and µ be probability measures on R. Denote by Fn and F the
corresponding distribution functions. The following are equivalent

(a) µn → µ weakly on R,
(b) Fn(x) → F (x) for all x ∈ R such that F (x−) = F (x),
(c) on some probability space (Ω,F,P), for all n, there exist random variables X and

Xn, with laws µ and µn respectively, such that Xn → X almost surely.

Proof. Suppose that (a) holds. Fix x ∈ R with F (x−) = F (x). Given ε > 0, choose δ > 0 so
that F (x− δ) ≥ F (x)− ε and F (x+ δ) ≤ F (x) + ε. For some continuous functions f and g,

1(−∞,x−δ] ≤ f ≤ 1(−∞,x] ≤ g ≤ 1(−∞,x+δ].

Then µn(f) ≤ Fn(x) ≤ µn(g) for all n. Also µ(f) ≥ F (x)− ε and µ(g) ≤ F (x) + ε. We use
(a) to see that lim infn Fn(x) ≥ F (x) − ε and lim supn Fn(x) ≤ F (x) + ε. Since ε > 0 was
arbitrary, we deduce that (b) holds.

Suppose now that (b) holds. Take (Ω,F,P) = ((0, 1),B((0, 1)), dx). Consider for ω ∈ Ω
the intervals

I(ω) = {x ∈ R : F (x) ≥ ω}, J(ω) = {x ∈ R : F (x−) ≤ ω}.
and set X(ω) = inf I(ω) and Y (ω) = sup J(ω). Since F is right-continuous, X(ω) ∈ I(ω) so
X(ω) ≤ x if and only if ω ≤ F (x). Hence X is a random variable and P(X ≤ x) = F (x).
Since F (x−) is left-continuous, Y (ω) ∈ J(ω) so Y (ω) ≥ x if and only if ω ≥ F (x−).
Similarly, we construct Xn and Yn starting from Fn. Fix a ∈ R such that F (a) = F (a−) and
Fn(a) = Fn(a−) for all n. Then Fn(a) → F (a). If X(ω) > a then ω > F (a) so ω > Fn(a)
eventually, and so Xn(ω) > a eventually. Since the set of such a is dense (as its complement
is countable), this implies that lim infXn(ω) ≥ X(ω). On the other hand, if Y (ω) < a then
ω < F (a−) so ω < Fn(a−) eventually, and so Yn(ω) < a eventually. Hence we see that
lim supYn(ω) ≤ Y (ω). But Yn(ω) = Xn(ω) for all n and Y (ω) = X(ω) except possibly at
countably many ω. So lim supXn ≤ X almost surely, and so Xn → X almost surely. Hence
(c) holds.

Finally, if (c) holds, then (a) follows by bounded convergence. □
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5.2. Prohorov’s theorem. A sequence of probability measures (µn : n ∈ N) on a metric
space E is said to be tight if, for all ε > 0, there exists a compact setK such that µn(E\K) ≤
ε for all n.

Theorem 5.2.1 (Prohorov’s theorem). Let E be a separable metric space and let (µn : n ∈ N)
be a tight sequence of probability measures on E. Then there exists a subsequence (nk) and
a probability measure µ on E such that µnk

→ µ weakly on E.

Proof for the case E = R. Write Fn for the distribution function of µn. By a diagonal argu-
ment and by passing to a subsequence, it suffices to consider the case where Fn(x) converges,
with limit g(x) say, for all rationals x. Then g is non-decreasing on the rationals, so has a
non-decreasing extension G to R, and G has at most countably many discontinuities. It is
easy to check that, if G is continuous at x ∈ R, then Fn(x) → G(x). Set F (x) = G(x+).
Then F is non-decreasing and right-continuous and Fn(x) → F (x) at every point of conti-
nuity x of F . By tightness, for every ε > 0, there exists R < ∞ such that Fn(−R) ≤ ε and
Fn(R) ≥ 1− ε for all n. It follows that F (x) → 0 as x→ −∞ and F (x) → 1 as x→ ∞, so
F is a distribution function. The result now follows from Proposition 5.1.2. □

5.3. Weak convergence and characteristic functions. For a probability measure µ on
Rd, we define the characteristic function ϕ by

ϕ(u) =

∫
Rd

ei⟨u,x⟩µ(dx), u ∈ Rd.

Lemma 5.3.1. Let µ be a probability measure on R with characteristic function ϕ. Then

µ(|y| ≥ λ) ≤ Cλ

∫ 1/λ

0

(1− Reϕ(u))du

for all λ ∈ (0,∞), where C = (1− sin 1)−1 <∞.

Proof. It is elementary to check that, for all t ≥ 1,

Ct−1

∫ t

0

(1− cos v)dv ≥ 1.

By a substitution, we deduce that, for all y ∈ R,

1|y|≥λ ≤ Cλ

∫ 1/λ

0

(1− cosuy)du.

Then, by Fubini’s theorem,

µ(|y| ≥ λ) ≤ Cλ

∫
R

∫ 1/λ

0

(1− cosuy)duµ(dy) = Cλ

∫ 1/λ

0

(1− Reϕ(u))du.

□

Theorem 5.3.2. Let (µn : n ∈ N) be a sequence of probability measures on Rd and let µ be
another probability measure on Rd. Write ϕn and ϕ for the characteristic functions of µn
and µ respectively. Then the following are equivalent

(a) µn → µ weakly on Rd,
(b) ϕn(u) → ϕ(u), for all u ∈ Rd.
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Proof for d = 1. It is clear that (a) implies (b). Suppose then that (b) holds. Since ϕ is a
characteristic function, it is continuous at 0, with ϕ(0) = 1. So, given ε > 0, we can find
λ <∞ such that

Cλ

∫ 1/λ

0

(1− Reϕ(u))du ≤ ε/2.

By bounded convergence we have∫ 1/λ

0

(1− Reϕn(u))du→
∫ 1/λ

0

(1− Reϕ(u))du

as n→ ∞. So, for n sufficiently large,

µn(|y| ≥ λ) ≤ ε.

Hence the sequence (µn : n ∈ N) is tight. By Prohorov’s theorem, there is at least one weak
limit point ν.

Fix a bounded continuous function f on R and suppose for a contradiction that µn(f) ̸→
µ(f). Then there is a subsequence (nk) such that |µnk

(f)−µ(f)| ≥ ε for all k, for some ε > 0.
But then, by the argument just given, we may choose (nk) so that moreover µnk

converges
weakly on R, with limit ν say. Then ϕnk

(u) → ψ(u) for all u, where ψ is the characteristic
function of ν. But then ψ = ϕ so ν = µ, by uniqueness of characteristic functions [PM,
Theorem 7.7.1], so µnk

(f) → µ(f), which is impossible. It follows that µn → µ weakly on
R. □

The argument just given in fact establishes the following stronger result (in the case d = 1).

Theorem 5.3.3 (Lévy’s continuity theorem). Let (µn : n ∈ N) be a sequence of probability
measures on Rd. Let µn have characteristic function ϕn and suppose that ϕn(u) → ϕ(u)
for all u ∈ Rd, for some function ϕ which is continuous at 0. Then ϕ is the characteristic
function of a probability measure µ and µn → µ weakly on Rd.
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6. Large deviations

Whilst it is often the typical behaviour of a random variable that is of interest, sometimes
we wish to know about the probabilities of rare events, say when the consequences of those
events are particularly significant. Suppose we are given a family of probability measures
(µn : n ∈ N), on some metric space (S, d) say, which concentrates near some point m ∈ S,
in the sense that, for all ε > 0, as n→ ∞,

µn({x ∈ S : d(x,m) > ε}) → 0.

We may be able to show that, for suitable subsets A ⊆ S \ {m}, the probabilities µn(A) in
fact decay exponentially in n at some computable rate I(A) > 0 depending on A. Thus we
would have, in some sense, as n→ ∞

µn(A) ≈ e−nI(A).

A precise way to state such an exponential rate of decay is by the limit

1

n
log µn(A) → −I(A).

Such a limit, with precise conditions on A, is called a large deviations principle for (µn)n≥1.
We will explore such ideas in the case where µn is the distribution of the sample mean of n
independent identically distributed integrable random variables.

6.1. Cramér’s theorem.

Theorem 6.1.1 (Cramér’s theorem). Let (Xn : n ∈ N) be a sequence of independent,
identically distributed, integrable real-valued random variables. Set

m = E(X1), Sn = X1 + · · ·+Xn

and define the cumulant generating function ψ and its Legendre transform ψ∗ by

ψ(λ) = logE(eλX1), ψ∗(x) = sup
λ≥0

(λx− ψ(λ)).

Then, for all a ≥ m, we have

lim
n→∞

1

n
logP(Sn/n ≥ a) = −ψ∗(a)

As is usually the case for large deviations, we will use separate arguments to prove the
upper bound

lim sup
n→∞

1

n
logP(Sn/n ≥ a) ≤ −ψ∗(a)

and then a complementary lower bound

lim inf
n→∞

1

n
logP(Sn/n ≥ a) ≥ −ψ∗(a).

Before starting on the proof, we discuss some examples. Consider first the case where X1

has N(0, 1) distribution. Then ψ(λ) = λ2/2 and so ψ∗(x) = x2/2. So, by Cramér’s Theorem,
for all a ≥ 0,

lim
n→∞

1

n
logP(Sn/n ≥ a) = −a

2

2
.

Since Sn/n has N(0, 1/n) distribution, it is straightforward to check this directly.
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Consider next the case where X1 has exponential distribution of parameter 1. Then
E(X1) = 1 and

E(eλX1) =

∫ ∞

0

eλxe−xdx =

{
1/(1− λ), if λ < 1,
∞, otherwise.

By a simple computation, we find that ψ∗(x) = x− 1− log x. Then, by Cramér’s Theorem,
for all a ≥ 1,

lim
n→∞

1

n
logP(Sn/n ≥ a) = −(a− 1− log a).

Since var(X1) = 1, by the central limit theorem, (Sn − n)/
√
n converges in distribution to

N(0, 1). Thus, for all a ∈ R,

lim
n→∞

P(Sn ≥ n+ a
√
n) =

∫ ∞

a

1√
2π
e−x

2/2dx.

This agrees exactly, modulo adjusting for the mean, with the corresponding limit for the
first example. Note however that the large deviations for Sn in the two examples show quite
different behaviour.

For a third example, suppose that X1 has density ∝ 1/(1 + x4). Then E(eλX1) = ∞ for
all λ ̸= 0, so

ψ(λ) = ∞1{λ ̸=0}, ψ∗(x) ≡ 0.

Cramér’s theorem then expresses that, for all a ≥ 0, P(Sn/n ≥ a) does not decay at any
positive exponential rate in n.

Finally, consider the case where X1 is uniformly distributed on [−1, 1]. Then E(X1) = 0
and

E(eλX1) =
1

2

∫ 1

−1

eλxdx =
sinhλ

λ
so

ψ(λ) = log

(
sinhλ

λ

)
, ψ′(λ) =

coshλ

sinhλ
− 1

λ
.

We can then show that ψ′ is a homeomorphism [0,∞) → [0, 1) and ψ∗ is a homeomorphism
[0, 1) → [0,∞). Hence ψ∗(1) = ∞ and Cramér’s theorem shows that P(Sn/n ≥ 1) decays
faster than any exponential rate in n. This is of course obvious because P(Sn/n ≥ 1) = 0
for all n.

Proof of the upper bound. Fix a ≥ m and note that, for all n ≥ 1 and all λ ≥ 0,

P(Sn ≥ an) ≤ P(eλSn ≥ eλan) ≤ e−λanE(eλSn) = e−(λa−ψ(λ))n

so

logP(Sn ≥ an) ≤ −(λa− ψ(λ))n

and so, on optimizing over λ ≥ 0, we obtain

logP(Sn ≥ an) ≤ −ψ∗(a)n.

Hence we have

lim sup
n→∞

1

n
logP(Sn ≥ an) ≤ −ψ∗(a).

□
34



Proof of the lower bound. We exclude the trivial case where P(X1 = m) = 1, for which the
lower bound can be verified easily. Define Λ ∈ [0,∞] by

Λ = inf{λ ≥ 0 : E(eλX1) = ∞}.

We exclude for now the case Λ = 0. Write µ for the law of X1. For λ ∈ [0,Λ), we can define
a tilted distribution µλ on R by

µλ(dx) = eλx−ψ(λ)µ(dx).

By differentiation of E(eλX1) under the integral sign, we see that ψ has derivatives of all
orders on [0,Λ), and a computation shows that

ψ′(λ) =

∫
R
xµλ(dx), ψ′′(λ) = var(µλ) > 0.

We define M ∈ (m,∞] by

M = lim
λ→Λ

ψ′(λ).

Then ψ′ : [0,Λ) → [m,M) is a homeomorphism. Also, for x ∈ [m,M), the map λ 7→ λx −
ψ(λ) achieves a unique maximum at λ∗ = λ∗(x), where ψ′(λ∗) = x. So ψ∗(x) = λ∗x− ψ(λ∗)
and ψ∗ is continuous on [m,M).

Consider first the case where a ∈ [m,M). Fix ε > 0 and set b = a+ ε and c = a+2ε. We
can and do choose ε > 0 so that c < M . Then b = ψ′(λ) for some λ ∈ [0,Λ). Fix n ≥ 1 and
define a new probability measure Pλ by

dPλ = eλSn−ψ(λ)ndP.

Under Pλ, the random variablesX1, . . . , Xn are independent and integrable, with distribution
µλ and mean b. Consider the event

An = {|Sn/n− b| ≤ ε} = {an ≤ Sn ≤ cn}.

Then

P(Sn ≥ an) ≥ P(An) = Eλ(e−λSn+ψ(λ)n1An) ≥ e−λcn+ψ(λ)nPλ(An).
Now Pλ(An) → 1 as n→ ∞ by the weak law of large numbers, so logPλ(An) → 0, and so

lim inf
n→∞

1

n
logP(Sn ≥ an) ≥ −λc+ ψ(λ) ≥ −ψ∗(c).

On letting ε → 0, we have c → a, so ψ∗(c) → ψ∗(a) by continuity. Hence we obtain the
claimed lower bound.

Consider next the case where a ∈ [M,∞) and Λ = ∞. This can only happen if P(X1 ≤
a) = 1 (exercise). Set p = P(X1 = a). Then p ∈ [0, 1] and E(eλ(X1−a)) → p as λ → ∞ by
bounded convergence, so

ψ(λ)− λa = logE(eλ(X1−a)) → log p.

Hence ψ∗(a) ≥ − log p. Now, for all n ≥ 1, we have P(Sn ≥ an) = pn, so

logP(Sn ≥ an) = n log p ≥ −nψ∗(a).

Hence the lower bound holds also in this case.
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There remain two cases, firstly where Λ ∈ (0,∞) and a ∈ [M,∞) and secondly where
Λ = 0. We consider these cases together. Fix K < ∞ and (repurposing the subscript
notation) consider the conditioned distribution µK given by

µK(dx) ∝ 1{x≤K}µ(dx)

and, for fixed n ≥ 1, the conditioned probability measure PK , given by

dPK ∝ 1{X1≤K,...Xn≤K}dP.
Then, under PK , the random variables X1, . . . , Xn are independent and integrable, with
distribution µK . Set mK = EK(X1) and define for λ ≥ 0 and a ≥ mK ,

ψK(λ) = logEK(eλX1), ψ∗
K(a) = sup

λ≥0
(λa− ψK(λ)).

Then mK ↑ m and ψK(λ) ↑ ψ(λ) as K → ∞ for all λ ≥ 0. Since EK(eλX1) < ∞ for all
λ ≥ 0, by the cases already considered, for all a ≥ m, we have

lim inf
n→∞

1

n
PK(Sn ≥ an) ≥ −ψ∗

K(a).

Since P(Sn ≥ an) ≥ PK(Sn ≥ an), it now suffices to show that ψ∗
K(a) ↓ ψ∗(a) as K → ∞.

By choosing K sufficiently large, we can ensure that PK(X1 > a) > 0 so a < MK and so

ψ∗
K(a) = λ∗Ka− ψK(λ

∗
K)

where λ∗K ≥ 0 is determined by ψ′
K(λ

∗
K) = a. Since ψ′

K(λ) is increasing in both K and λ, we
must have λ∗K ↓ λ∗ for some λ∗ ≥ 0. Now

ψK(λ
∗
K) = ψK(λ

∗) +

∫ λ∗K

λ∗
ψ′
K(λ)dλ ≥ ψK(λ

∗) +mK(λ
∗
K − λ∗)

so, in the limit K → ∞,

ψ∗
K(a) ≤ λ∗Ka− ψK(λ

∗)−mK(λ
∗
K − λ∗) → λ∗a− ψ(λ∗) ≤ ψ∗(a).

□
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7. Brownian motion

Brownian motion is named after a botanist who observed an apparently random but con-
tinuous motion when looking at pollen grains under a microscope. The mathematical object
now called Brownian motion was rigorously defined by Wiener, though it was understood at
some level earlier by Bachelier as a model for the evolution of stock prices, and in physics
by Einstein and Smoluchowski, where it played an important role in establishing the atomic
theory of matter.

7.1. Definition. Let (Xt)t≥0 be a random process with state-space Rd. We say that (Xt)t≥0

is a Brownian motion if

(i) for all s, t ≥ 0, the random variable Xs+t −Xs is Gaussian, of mean 0 and variance
tI, and is independent of FXs = σ(Xu : u ≤ s),

(ii) for all ω ∈ Ω, the map t 7→ Xt(ω) : [0,∞) → Rd is continuous.

We will show that such processes exist and that they provide a universal weak scaling limit
for random walks in Rd with steps of finite variance. In particular, Brownian motion is a
scaling limit of the simple symmetric random walk in Zd. We may expect then that Brownian
motion inherits some properties of simple symmetric random walks.

First it will be useful to consider some reformulations of the definition. Condition (i)
states that, for all s ≥ 0, all t > 0, any Borel set B ⊆ Rd and any A ∈ FXs ,

P({Xs+t −Xs ∈ B} ∩ A) = P(A)
∫
B

(2πt)−d/2e−|y|2/(2t)dy.

By a monotone class argument, it is equivalent to the following statement expressed in terms
of conditional expectation: for all s, t ≥ 0, and for all bounded measurable functions f on
Rd, almost surely,

E(f(Xs+t)|FXs ) = Ptf(Xs)

where (Pt)t≥0 is the heat semigroup, given by P0f = f and, for t > 0,

Ptf(x) =

∫
Rd

p(t, x, y)f(y)dy. (7.1)

Here p(t, x, .) is the Gaussian probability density function on Rd of mean x and variance tI,
given by

p(t, x, y) = (2πt)−d/2e−|x−y|2/(2t).

In the case where X0 = x for some x ∈ Rd, we call (Xt)t≥0 a Brownian motion starting from
x. Then condition (i) may also be expressed in terms of the finite-dimensional distributions
of (Xt)t≥0 as follows: for all n ∈ N and all t1, . . . , tn ≥ 0 with t1 < · · · < tn, for any Borel
set B ⊆ (Rd)n,

P((Xt1 , . . . , Xtn) ∈ B) =

∫
B

n∏
i=1

p(si, xi−1, xi)dxi

where x0 = x, t0 = 0 and si = ti − ti−1. Note that (Xt)t≥0 is a Brownian motion starting
from x if and only if Xt = x + Bt with (Bt)t≥0 a Brownian motion starting from 0. Also
(Xt)t≥0 is a Brownian motion in Rd starting from 0 if and only if Xt = (X1

t , . . . , X
d
t ) with

(X1
t )t≥0, . . . , (X

d
t )t≥0 independent Brownian motions in R starting from 0.
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For a Brownian motion (Xt)t≥0 in Rd starting from x, for all s, t ≥ 0 and all i, j = 1, . . . , d,

E(Xt) = x, cov(X i
s, X

j
t ) = E(X i

sX
j
t ) = (s ∧ t)δij. (7.2)

Recall that Gaussian distributions are determined by their means and covariances. Hence,
given that (Xt)t≥0 is a continuous Gaussian process, the simple properties (7.2) determine the
finite-dimensional distributions (Xt)t≥0 and hence characterize (Xt)t≥0 as a Brownian motion.
This provides a convenient way to identify certain linear transformations of Brownian motion
as Brownian motions themselves.

7.2. Wiener’s theorem. WriteWd for the set of continuous paths C([0,∞),Rd). For t ≥ 0,
define the coordinate function xt : Wd → Rd by xt(w) = w(t). We equip Wd with the σ-
algebra Wd = σ(xt : t ≥ 0). Given any continuous random process (Xt)t≥0 with state-space
Rd, we can define a measurable map X : Ω → Wd and a probability measure µ on (Wd,Wd)
by

X(ω)(t) = Xt(ω), µ(A) = P(X ∈ A).

Then µ is called the law of (Xt)t≥0 on Wd. The measure µx identified in the next theorem is
called Wiener measure starting from x.

Theorem 7.2.1 (Wiener’s theorem). For all d ≥ 1 and all x ∈ Rd, there exists a unique
probability measure µx on (Wd,Wd) such that the coordinate process (xt)t≥0 is a Brownian
motion starting from x.

Proof. Conditions (i) and (ii) determine the finite-dimensional distributions of any such
measure µx, so there can be at most one. To prove existence, it will suffice to construct,
on some probability space (Ω,F,P), a one-dimensional Brownian motion (Xt)t≥0 starting
from 0. Then, for d = 1 and x ∈ R, the law µx of (x + Xt)t≥0 on (W1,W1) is a measure
with the required property, and, for d ≥ 2 and x = (x1, . . . , xd) ∈ Rd, the product measure
µx = µx1 ⊗ · · · ⊗ µxd on (Wd,Wd) has the required property.

For N ≥ 0, set

DN = {k2−N : k ∈ Z+}, D =
∞⋃
N=0

DN .

There exists a probability space (Ω,F,P) on which there is defined a family of independent
N(0, 1) random variables (Yt : t ∈ D). For t ∈ D0 = Z+, set ξt = Y1 + · · · + Yt. Define
recursively, for N ≥ 0 and t ∈ DN+1 \ DN ,

ξt =
ξr + ξs

2
+ Zt

where r = t − 2−(N+1), s = t + 2−(N+1) and Zt = 2−(N+2)/2Yt. Then the random variables
(ξt : t ∈ D) are jointly Gaussian and of mean 0. Note that the increments (ξt+1− ξt : t ∈ D0)
are independent and of variance 1.

Suppose inductively for N ≥ 0 that the increments (ξt+2−N − ξt : t ∈ DN) are independent
and of variance 2−N . Consider the increments (ξt+2−(N+1) −ξt : t ∈ DN+1). Fix t ∈ DN+1 \DN

and note that, for r and s as above,

ξt − ξr =
ξs − ξr

2
+ Zt, ξs − ξt =

ξs − ξr
2

− Zt.
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Now

var

(
ξs − ξr

2

)
= 2−(N+2) = var(Zt)

so

var(ξt − ξr) = var(ξs − ξt) = 2−(N+1), cov(ξt − ξr, ξs − ξt) = 0.

On the other hand, for any u, v ∈ DN+1 with (u, v] ∩ (r, s] = ∅,

cov(ξt − ξr, ξv − ξu) = cov(ξs − ξt, ξv − ξu) = 0

Hence ξt − ξr and ξs − ξt are independent and of variance 2−(N+1), and are moreover inde-
pendent of ξv − ξu for any such u, v. The induction proceeds.

It follows that (ξt)t∈D has independent increments and, for all s, t ∈ D with s < t, the
random variable ξt − ξs is N(0, t − s). Choose p > 2 and set Cp = E(|ξ1|p). Then Cp < ∞
and

E(|ξt − ξs|p) = Cp(t− s)p/2.

Hence, by Kolmogorov’s criterion, there is a continuous process (Xt)t≥0 starting from 0 such
that Xt = ξt for all t ∈ D almost surely.

Let s ≥ 0 and t > 0, and choose sequences (s(k))k≥1 and (t(k))k≥1 in D such that s(k) → s
and t(k) → t with s(k) ≥ s and t(k) > 0 for all k. Note that, since X is continuous, FXs is
generated by the π-system consisting of sets of the form

A = {(Xs1 , . . . , Xsn) ∈ B}, B ∈ B(Rn), s1, . . . sn ∈ [0, s] ∩ D, n ≥ 1.

Set A0 = {(ξs1 , . . . , ξsn) ∈ B} and note that 1A = 1A0 and Xs(k) = ξs(k) and Xs(k)+t(k) =
ξs(k)+t(k) almost surely. In particular P(A) = P(A0). Then, for any continuous bounded
function f on R,

E(f(Xs(k)+t(k) −Xs(k))1A) = E(f(ξs(k)+t(k) − ξs(k))1A0) = P(A0)

∫
R
p(t(k), 0, y)f(y)dy

so, on letting k → ∞, we obtain, by bounded convergence,

E(f(Xs+t −Xs)1A) = P(A)
∫
R
p(t, 0, y)f(y)dy.

It follows that Xt+s −Xs ∼ N(0, t) and is independent of FXs . Hence (Xt)t≥0 is a Brownian
motion. □

7.3. Symmetries of Brownian motion. In the study of Brownian motion, we can take
advantage of the following symmetries.

Proposition 7.3.1. Let (Xt)t≥0 be a Brownian motion in Rd starting from 0. Let σ ∈ (0,∞)
and let U be an orthogonal d× d-matrix. Then

(a) (σXσ−2t)t≥0 is a Brownian motion in Rd starting from 0,
(b) (UXt)t≥0 is a Brownian motion in Rd starting from 0.

We call (a) the scaling property and we call (b) rotation invariance.
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7.4. Brownian motion in a given filtration. Suppose given a filtration (Ft)t≥0 on (Ω,F,P).
Let (Xt)t≥0 be a random process with state-space Rd. We say that (Xt)t≥0 is an (Ft)t≥0-
Brownian motion if

(i) (Xt)t≥0 is (Ft)t≥0-adapted,
(ii) for all s, t ≥ 0, the random variable Xs+t −Xs is Gaussian, of mean 0 and variance

tI, and is independent of Fs,
(iii) for all ω ∈ Ω, the map t 7→ Xt(ω) : [0,∞) → Rd is continuous.

Then every (Ft)t≥0-Brownian motion is a Brownian motion, in the sense used above, and
every Brownian motion is an (FXt )t≥0-Brownian motion. By specifying that (Xt)t≥0 is an
(Ft)t≥0-Brownian motion we can express conveniently certain independence statements be-
tween (Xt)t≥0 and other random variables defined on the same probability space.

Theorem 7.4.1 (Strong Markov property). Let (Xt)t≥0 be an (Ft)t≥0-Brownian motion and
let T be a stopping time. Then, conditional on {T < ∞}, the process (XT+t)t≥0 is an
(FT+t)t≥0-Brownian motion.

Proof. It is clear that (XT+t)t≥0 is continuous on {T < ∞}. Also XT+t is FT+t-measurable
on {T < ∞} for all t ≥ 0, so (XT+t)t≥0 is (FT+t)t≥0-adapted on {T < ∞}. Let f be a
bounded continuous function on Rd. Let s ≥ 0 and t > 0 and let m ∈ N and A ∈ FT+s with
A ⊆ {T ≤ m}. Fix n ≥ 1 and set Tn = 2−n⌈2nT ⌉. For k ∈ {0, 1, . . . ,m2n}, set tk = k2−n

and consider the event
Ak = A ∩ {T ∈ (tk − 2−n, tk]}.

Then Ak ∈ Ftk+s and Tn = tk on Ak, so

E(f(XTn+s+t)1Ak
) = E(f(Xtk+s+t)1Ak

) = E(Ptf(Xtk+s)1Ak
) = E(Ptf(XTn+s)1Ak

)

On summing over k, we obtain

E(f(XTn+t)1A) = E(Pt−sf(XTn+s)1A).

Then, by bounded convergence, on letting n→ ∞, we deduce that

E(f(XT+s+t)1A) = E(Ptf(XT+s)1A).

Since m and A were arbitrary, this implies that, almost surely on {T <∞},
E(f(XT+s+t)|FT+s) = Ptf(XT+s)

so, conditional on {T <∞}, (XT+t)t≥0 is an (FT+t)t≥0-Brownian motion. □

The following result allows us to compute conditional expectations for Brownian motion
in terms of Wiener measure. It is particularly useful in conjunction with the strong Markov
property.

Theorem 7.4.2. Let (Xt)t≥0 be an (Ft)t≥0-Brownian motion and let F be a bounded mea-
surable function on Wd. Define a function f on Rd by

f(x) =

∫
Wd

F (w)µx(dw).

Then f is measurable and, almost surely,

E(F (X)|F0) = f(X0).
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Proof. Consider the π-system A on Wd consisting of sets of the form

B = {w ∈ Wd : w0 ∈ B0, wtk − wtk−1
∈ Bk for k = 1, . . . , n}

where n ∈ N and 0 = t0 < t1 < · · · < tn and B0, B1, . . . , Bn are Borel sets in Rd. Then A

generates Wd. Consider the case where F = 1B for some B ∈ A and set sk = tk − tk−1. For
A ∈ F0 and k = 1, . . . , n, the increments Xtk −Xtk−1

are independent, and independent of
X0 and A, with distribution γsk ∼ N(0, skI) Then

f(x) = µx(B) = 1B0(x)
n∏
k=1

γsk(Bk)

and

E(F (X)1A) = P(B ∩ A) = P({X0 ∈ B0} ∩ A)
n∏
k=1

γsk(Bk) = E(f(X0)1A).

Hence f is a measurable function on Rd and E(F (X)|F0) = f(X0) almost surely. The same
conclusion then extends to all bounded measurable functions F on Wd by a monotone class
argument. □

7.5. Martingales of Brownian motion. We now identify a useful class of martingales
associated to Brownian motion, in terms of the Laplacian ∆ on Rd, which is the second-
order differential operator given by

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2d
.

Theorem 7.5.1. Let (Xt)t≥0 be an (Ft)t≥0-Brownian motion and let f ∈ C2
b (Rd). Define

(Mt)t≥0 by

Mt = f(Xt)− f(X0)−
∫ t

0

1
2
∆f(Xs)ds.

Then (Mt)t≥0 is a continuous (Ft)t≥0-martingale.

Proof. For simplicity of writing, we write the proof for the case d = 1. The argument for
general d is similar. It is clear that (Mt)t≥0 is continuous, adapted and integrable. Fix T ≥ 0
and set

δn = sup{|Xs −Xt| : s, t ≤ T, |s− t| ≤ 2−n},
εn = sup{|f ′′(y)− f ′′(Xt)| : t ≤ T, |y −Xt| ≤ δn}.

Then εn ≤ 2∥f ′′∥∞ for all n and δn → 0 and hence εn → 0 as n → ∞ almost surely, since
f ′′ is continuous. Hence ∥εn∥2 → 0 by bounded convergence.

We will show that, for r ≤ t ≤ T with t− r ≤ 2−n,

∥E(Mt −Mr|Fr)∥1 ≤ 3(t− r)∥εn∥2.

Then, by the tower property, for s ≤ r ≤ t ≤ T with t− r ≤ 2−n,

∥E(Mt −Mr|Fs)∥1 ≤ 3(t− r)∥εn∥2.
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By the triangle inequality, this inequality remains valid without the condition t − r ≤ 2−n.
Then on taking r = s and letting n→ ∞ we obtain

∥E(Mt|Fs)−Ms∥1 = 0

so (Mt)t≥0 has the martingale property, as claimed.

Fix s < t ≤ T with t− s ≤ 2−n. By Taylor’s theorem

f(Xt) = f(Xs) + (Xt −Xs)f
′(Xs) +

1
2
(Xt −Xs)

2f ′′(Xs) + (Xt −Xs)
2E1(s, t)

where

E1(s, t) =

∫ 1

0

(1− u)(f ′′(uXt + (1− u)Xs)− f ′′(Xs))du.

Also ∫ t

s

1
2
f ′′(Xr)dr =

1
2
(t− s)f ′′(Xs) + (t− s)E2(s, t)

where

(t− s)E2(s, t) =

∫ t

s

1
2
(f ′′(Xr)− f ′′(Xs))dr.

Note that |E1(s, t)| ≤ εn and |E2(s, t)| ≤ εn. Now

Mt −Ms = f(Xt)− f(Xs)−
∫ t

s

1
2
f ′′(Xr)dr

= (Xt −Xs)f
′(Xs) + ((Xt −Xs)

2 − (t− s))f ′′(Xs)

+ (Xt −Xs)
2E1(s, t)− (t− s)E2(s, t).

and

E((Xt −Xs)f
′(Xs)|Fs) = f ′(Xs)E(Xt −Xs|Fs) = 0,

E(((Xt −Xs)
2 − (t− s))f ′′(Xs)|Fs) = f ′′(Xs)E((Xt −Xs)

2 − (t− s)|Fs) = 0.

Hence

E(Mt −Ms|Fs) = E((Xt −Xs)
2E1(s, t)|Fs)− (t− s)E(E2(s, t)|Fs)

and so

∥E(Mt −Ms|Fs)∥1 ≤ ∥(Xt −Xs)
2E1(s, t)∥1 + (t− s)∥E2(s, t)∥1

≤ ∥(Xt −Xs)
2∥2∥E1(s, t)∥2 + (t− s)∥E2(s, t)∥2

≤ (
√
3 + 1)(t− s)∥εn∥2 ≤ 3(t− s)∥εn∥2

where we used Cauchy–Schwarz and the fact that

E((Xt −Xs)
4) = (t− s)2E(X4

1 ) = 3(t− s)2.

□

Second proof. It is clear that (Mt)t≥0 is continuous, adapted and integrable. Fix t > 0.
Consider for now the case where X0 = x for some x ∈ Rd and set

m(x) = E(Mt) =

∫
Wd

(
f(w(t))− f(w(0))−

∫ t

0

1
2
∆f(w(s))ds

)
µx(dw).
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Then, for all s ∈ (0, t], by Fubini,

E(Mt −Ms) = E
(
f(Xt)− f(Xs)−

∫ t

s

1
2
∆f(Xr)dr

)
= E (f(Xt))− E (f(Xs))−

∫ t

s

E
(
1
2
∆f(Xr)

)
dr

=

∫
Rd

p(t, x, y)f(y)dy −
∫
Rd

p(s, x, y)f(y)dy −
∫ t

s

∫
Rd

p(r, x, y)1
2
∆f(y)dydr.

Now p satisfies the heat equation ṗ = 1
2
∆p so, on integrating by parts twice in Rd, we obtain∫ t

s

∫
Rd

p(r, x, y)1
2
∆f(y)dydr =

∫ t

s

∫
Rd

ṗ(r, x, y)f(y)dydr

=

∫
Rd

p(t, x, y)f(y)dy −
∫
Rd

p(s, x, y)f(y)dy.

Hence E(Mt) = E(Ms). On letting s → 0, we have Ms → 0, so E(Ms) → 0 by bounded
convergence. Hence m(x) = E(Mt) = 0.

We return to the case of general initial state X0. Then, by Proposition 7.4.2, almost surely,

E(Mt|F0) = m(X0) = 0.

Finally, for all s ≥ 0, since

Ms+t −Ms = f(Xs+t)− f(Xs)−
∫ t

0

1
2
∆f(Xs+r)dr

we may apply the preceding formula to (Xs+t)t≥0, which is an (Fs+t)t≥0-Brownian motion,
to obtain, almost surely,

E(Ms+t −Ms|Fs) = 0

showing that (Mt)t≥0 is a martingale. □

7.6. Properties of one-dimensional Brownian motion.

Proposition 7.6.1 (Reflection principle). Let (Xt)t≥0 be a Brownian motion in R starting
from 0 and let a > 0. Set T = inf{t ≥ 0 : Xt = a} and define

Zt =

{
2a−Xt, if T ≤ t
Xt, otherwise.

Then (Zt)t≥0 is also a Brownian motion starting from 0.

Proof. Note that T is a stopping time and XT = a on {T < ∞}. On the event {T < ∞},
set

X̃t = XT+t −XT , t ≥ 0.

By the strong Markov property, conditional on {T < ∞}, (X̃t)t≥0 is a Brownian motion

starting from 0 and independent of FT . Hence the same is true for (−X̃t)t≥0. But

Xt = XT∧t + X̃(t−T )+1{T<∞}, Zt = XT∧t − X̃(t−T )+1{T<∞}, t ≥ 0.

Hence (Xt)t≥0 and (Zt)t≥0 have the same distribution. □
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Proposition 7.6.2. Let (Xt)t≥0 be a Brownian motion in R starting from 0. For a ∈ R, set
Ta = inf{t ≥ 0 : Xt = a}.

Then, for a, b > 0, we have

P(Ta <∞) = 1, P(T−a < Tb) = b/(a+ b), E(T−a ∧ Tb) = ab.

Moreover, Ta has a density function fa on [0,∞), given by

fa(t) = (a/
√
2πt3)e−a

2/2t.

Moreover, the following properties hold almost surely

(a) Xt/t→ 0 as t→ ∞,
(b) inft≥0Xt = −∞ and supt≥0Xt = ∞,
(c) for all s ≥ 0, there exist t, u ≥ s with Xt < 0 < Xu,
(d) for all s > 0, there exist t, u ≤ s with Xt < 0 < Xu.

Theorem 7.6.3. Let X be a Brownian motion in R. Then, almost surely,

(a) for all α < 1/2, X is locally Hölder continuous of exponent α,
(b) for all α > 1/2, X is not Hölder continuous of exponent α on any non-trivial

interval.

Proof. Fix α < 1/2 and choose p <∞ so that α < 1/2− 1/p. By scaling, we have

∥Xs −Xt∥p ≤ C|s− t|1/2

where C = ∥X1∥p <∞. Then, by Kolmogorov’s criterion, there exists K ∈ Lp such that

|Xs −Xt| ≤ K|s− t|α, s, t ∈ [0, 1].

Hence, by scaling, X is locally Hölder continuous of exponent α, almost surely. Then (a)
follows by considering a sequence αn > 1/2 with αn → 1/2.

Define for m,n ≥ 0 with m ≥ n and for s, t ∈ Dn with s < t.

[X]ms,t =
∑
τ

(Xτ+2−m −Xτ )
2

where the sum is taken over all τ ∈ Dm such that s ≤ τ < t. The random variables
(Xτ+2−m −Xτ )

2 are then independent, of mean 2−m and variance 2−2m+1. For the variance,
we used scaling and the fact that var(X2

1 ) = 2. Hence

E([X]ms,t) = t− s, var([X]ms,t) = 2−m+1(t− s)

so [X]ms,t → t−s > 0 almost surely as m→ ∞. On the other hand, if X is Hölder continuous
of some exponent α > 1/2 and constant K on [s, t], then we have

(Xτ+2−m −Xτ )
2 ≤ K22−2mα

so
[X]ms,t ≤ K22−2mα+m(t− s) → 0.

Hence, almost surely, X is not Hölder continuous of any exponent α > 1/2 on [s, t]. Now,
for any non-trivial interval I, there exist n ≥ 0 and s, t ∈ Dn with s < t such that [s, t] ⊆ I.
Hence, almost surely, for all α > 1/2, there is no non-trivial interval on which (Xt)t≥0 is
Hölder continuous of exponent α. □
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7.7. Recurrence and transience of Brownian motion. The statements in the following
theorem are sometimes expressed by saying that Brownian motion in R is point recurrent,
that Brownian motion in R2 is neighbourhood recurrent but does not hit points and that
Brownian motion in Rd is transient for all d ≥ 3.

Theorem 7.7.1. Let (Xt)t≥0 be a Brownian motion in Rd.

(a) In the case d = 1,

P({t ≥ 0 : Xt = 0} is unbounded) = 1.

(b) In the case d = 2,
P(Xt = 0 for some t > 0) = 0

but, for any ε > 0,

P({t ≥ 0 : |Xt| < ε} is unbounded) = 1.

(c) In the case d ≥ 3,
P(|Xt| → ∞ as t→ ∞) = 1.

Proof. By Proposition 7.4.2, it suffices to consider the case where X0 = x for some x ∈ Rd.
Then (a) follows easily from Proposition 7.6.2. We turn to (b). Set

p0(x) = P(Xt = 0 for some t > 0) = µx(w(t) = 0 for some t > 0)

and, for ε > 0, set

pε(x) = P(|Xt| < ε for some t > 0) = µx(|w(t)| < ε for some t > 0).

Fix a ∈ (0, 1) and b ∈ (1,∞). There exists a function f ∈ C2
b (R2) such that

f(x) = log |x|, for a ≤ |x| ≤ b.

Then, since log |x| is harmonic in R2 \ {0}, we have ∆f(x) = 0 for a ≤ |x| ≤ b. Consider the
process

Mt = f(Xt)− f(X0)−
∫ t

0

1
2
∆f(Xs)ds

and the stopping time
T = inf{t ≥ 0 : |Xt| = a or |Xt| = b}.

Then (Mt)t≥0 is a martingale, by Theorem 7.5.1, and P(T < ∞) = 1 by (a). Hence, by
optional stopping, since (Mt)t≥0 is bounded up to T , we have

E(MT ) = E(M0) = 0.

Assume for now that |x| = 1. Then MT = log |XT |. Set p = p(a, b) = P(|XT | = a). Then

0 = E(MT ) = p log a+ (1− p) log b.

Consider first the limit a → 0 with b fixed. Then log a → −∞ so p(a, b) → 0. Hence
p0(x) = 0 whenever |x| = 1. A scaling argument extends this to all x ̸= 0. In the remaining
case, when x = 0, for all n ≥ 1, by the Markov property,

P(Xt = 0 for some t > 1/n) =

∫
R2

p(1/n, 0, y)p0(y)dy = 0.

Since n ≥ 1 is arbitrary, we deduce that p0(0) = 0.
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Consider now the limit b → ∞ with a = ε > 0 fixed. Then log b → ∞, so p(a, b) → 1.
Hence pε(x) = 1 whenever |x| = 1. A scaling argument extends this to all x ̸= 0 and it is
obvious by continuity for x = 0. Then, by the Markov property, for all x and all n ≥ 1,

P(|Xt| < ε for some t > n) =

∫
R2

p(n, x, y)pε(y)dy = 1.

Since n ≥ 1 is arbitrary, it follows that P({t ≥ 0 : |Xt| < ε} is unbounded) = 1.

We turn to the proof of (c). It will suffice to show, for all N ≥ 1, that

P({t ≥ 0 : |Xt| ≤ N} is unbounded) = 0.

Since the first three components of a Brownian motion in Rd form a Brownian motion in R3,
it suffices to consider the case d = 3. The function 1/|x| is harmonic in R3 \ {0}. We adapt
the argument for (b), replacing log |x| by 1/|x| to see that, in the case X0 = x with |x| = 1,
we have

p

a
+

1− p

b
= 1

so, on letting b→ ∞ we obtain, for |x| = 1,

µx(|w(t)| = a for some t ≥ 0) = a.

Hence, by scaling, for all N ≥ 1 and for |x| = N + 1,

µx(|w(t)| = N for some t ≥ 0) =
N

N + 1
.

Set T0 = 0 and define sequences of stopping times (Sk : k ≥ 1) and (Tk : k ≥ 1) by

Sk = inf{t ≥ Tk−1 : |Xt| = N + 1}, Tk = inf{t ≥ Sk : |Xt| = N}.

For k ≥ 1, we can apply the strong Markov property at Sk to see that

P(Tk <∞) ≤ P(Tk−1 <∞)
N

N + 1
≤
(

N

N + 1

)k
.

Set K = sup{k ≥ 0 : Tk < ∞}. Then K < ∞ almost surely. Now Sk+1 < ∞ almost surely
on {Tk < ∞} for all k ≥ 0, so SK+1 < ∞ almost surely. But |Xt| > N for all t ≥ SK+1, so
we have shown that

P({t ≥ 0 : |Xt| ≤ N} is unbounded ) = 0.

□

7.8. Skorohod embedding for random walks.

Theorem 7.8.1 (Skorohod embedding for random walks). Let µ be a probability measure
on R of mean 0 and variance σ2 < ∞. Then there exists a probability space (Ω,F,P) with
filtration (Ft)t≥0, on which is defined a Brownian motion (Bt)t≥0 and a sequence of stopping
times 0 = T0 ≤ T1 ≤ T2 ≤ . . . such that, setting Sn = BTn,

(a) (Tn)n≥0 is a random walk with step mean σ2,
(b) (Sn)n≥0 is a random walk with step distribution µ.
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Proof. Define Borel measures µ± on [0,∞) by

µ+(A) = µ(A ∩ [0,∞)), µ−(A) = µ̂(A ∩ (0,∞))

where µ̂(A) = µ({x ∈ R : −x ∈ A}). There exists a probability space on which are defined a
Brownian motion (Bt)t≥0 and a sequence ((Xn, Yn) : n ∈ N) of independent random variables
in R2 with law ν given by

ν(dx, dy) = C(x+ y)µ−(dx)µ+(dy)

where C is a suitable normalizing constant. Set F0 = σ(Xn, Yn : n ∈ N) and Ft = σ(F0,F
B
t ).

Set T0 = 0 and define recursively for n ≥ 0

Tn+1 = inf{t ≥ Tn : Bt −BTn ∈ {−Xn+1, Yn+1}}.
Then Tn is a stopping time for all n. Note that, since µ has mean 0, we must have

C

∫
[0,∞)

xµ−(dx) = C

∫
[0,∞)

yµ+(dy) = 1.

Define a non-negative measurable function τ on W × [0,∞)2 by

τ(w, x, y) = inf{t ≥ 0 : w(t) ∈ {−x, y}}.
Then T1 = τ(B,X1, Y1) so, by Proposition 7.6.2 and Fubini,

E(T1) =
∫
[0,∞)2

∫
W

τ(w, x, y)µ0(dw)ν(dx, dy)

= C

∫
[0,∞)2

xy(x+ y)µ−(dx)µ+(dy) =

∫
[0,∞)

x2µ−(dx) +

∫
[0,∞)

y2µ+(dy) = σ2.

and, for any Borel set A ⊆ [0,∞),

P(BT1 ∈ A) =

∫
[0,∞)2

∫
W

1{w(τ(w,x,y))∈A}µ0(dw)ν(dx, dy)

= C

∫
[0,∞)2

x

x+ y
1{y∈A}(x+ y)µ−(dx)µ+(dy) = C

∫
[0,∞)

xµ−(dx)

∫
A

µ+(dy) = µ(A).

Similarly, P(BT1 ∈ A) = µ(A) also for A ⊆ (−∞, 0), so BT1 has distribution µ.

Now, by the strong Markov property, for each n ≥ 1, the process (BTn+t − BTn)t≥0 is
a Brownian motion, independent of FTn . Hence Sn+1 − Sn = BTn+1 − BTn has law µ,
Tn+1 − Tn has the same distribution as T1, and both these increments are independent of
(T1, S1), . . . , (Tn, Sn). The result follows. □

7.9. Donsker’s invariance principle. In this section we show that Brownian motion pro-
vides a universal scaling limit for random walks having steps of zero mean and finite variance.
This can be considered as a generalization to processes of the central limit theorem. We give
C([0,∞),R) the topology of uniform convergence on compact time intervals. The associated
Borel σ-algebra then coincides with the σ-algebra generated by the coordinate functions.

Theorem 7.9.1 (Donsker’s invariance principle). Let (Sn)n≥0 be a random walk with steps
of mean 0 and variance 1. Write (St)t≥0 for the linear interpolation

Sn+t = (1− t)Sn + tSn+1, t ∈ [0, 1].

Then the law of (N−1/2SNt)t≥0 converges weakly to Wiener measure on C([0,∞),R).
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Proof. Let (Bt)t≥0 be a Brownian motion and let (Xn, Yn)n≥1 be a sequence of independent

random variables, as in the proof of Theorem 7.8.1. Fix N ≥ 1 and set B
(N)
t = N1/2BN−1t.

Then (B
(N)
t )t≥0 is also a Brownian motion. Define a sequence of stopping times (T

(N)
n )n≥0

as in Theorem 7.8.1, but using (B
(N)
t )t≥0 in place of (Bt)t≥0. Set

S(N)
n = B(N)(T (N)

n )

and interpolate linearly to form (S
(N)
t )t≥0. Set

T̃ (N)
n = N−1T (N)

n , S̃
(N)
t = N−1/2S

(N)
Nt .

Then (S̃
(N)
t )t≥0 has the same law as (N−1/2SNt)t≥0 on C([0,∞),R) and, for all n ≥ 0,

S̃
(N)
n/N = B

T̃
(N)
n
.

We will show that, for all τ <∞
sup
t∈[0,τ ]

|S̃(N)
t −Bt| → 0 in probability.

Then, for any bounded continuous function F on C([0,∞),R), we have

F (S̃(N)) → F (B) in probability

so, by bounded convergence,

E(F ((N−1/2SNt)t≥0)) = E(F (S̃(N))) → E(F (B))

as required.

By the strong law of large numbers T
(1)
n /n→ 1 almost surely as n→ ∞. So, as N → ∞,

N−1 sup
n≤Nτ

|T (1)
n − n| → 0 almost surely

and hence
N−1 sup

n≤Nτ
|T (N)
n − n| → 0 in probability

Hence, for all δ > 0,

P
(

sup
n≤Nτ

|T̃ (N)
n − n/N | > δ

)
→ 0.

By the intermediate value theorem, for n/N ≤ t ≤ (n + 1)/N we have S̃
(N)
t = Bu for some

T̃
(N)
n ≤ u ≤ T̃

(N)
n+1. Hence

{|S̃(N)
t −Bt| > ε for some t ∈ [0, τ ]} ⊆ A1 ∪ A2

where
A1 = {|T̃ (N)

n − n/N | > δ for some n ≤ Nτ}
and

A2 = {|Bu −Bt| > ε for some t ∈ [0, τ ] and |u− t| ≤ δ + 1/N}.
The paths of (Bt)t≥0 are uniformly continuous on [0, τ ]. So given ε > 0 we can find δ > 0
so that P(A2) ≤ ε/2 whenever N ≥ 1/δ. Then, by choosing N even larger if necessary, we
can ensure also that P(A1) ≤ ε/2. Hence S̃(N) → B, uniformly on [0, τ ] in probability, as
required. □

We did not use the central limit theorem in this proof, so we have the following corollary
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Corollary 7.9.2 (Central limit theorem). Let (Xn : n ∈ N) be a sequence of independent,
identically distributed random variables, of mean 0 and variance 1. Set Sn = X1 + · · ·+Xn.
Then Sn/

√
n converges weakly to the Gaussian distribution of mean 0 and variance 1.

Proof. Let f be a continuous bounded function on R and define x1 : C([0,∞),R) → R by
x1(w) = w1. Set F = f ◦ x1. Then F is a continuous bounded function on C([0,∞),R). So

E(f(Sn/
√
n)) = E(F (S(n))) → E(F (B)) =

∫
R
f(x)

1√
2π
e−|x|/2dx.

□

7.10. Brownian motion and the Dirichlet problem. Let D be a connected open set in
Rd with boundary ∂D and let c : D → [0,∞) and f : ∂D → [0,∞) be measurable functions.
We shall be interested in the potential or expected total cost function ϕ, defined on the closure
D̄ of D by

ϕ(x) = E
(∫ T

0

c(Xt)dt+ f(XT )1{T<∞}

)
(7.3)

where (Xt)t≥0 is a Brownian motion in Rd starting from x, and T is its exit time from D,
given by

T = inf{t ≥ 0 : Xt ̸∈ D}.

We call any function ψ ∈ C(D̄) ∩ C2(D) satisfying

−1
2
∆ψ = c in D,

ψ = f in ∂D

a solution of the Dirichlet problem (in D with data c and f). More generally, a function
ψ ∈ C(D̄) ∩ C2(D) is called a supersolution of the Dirichlet problem if

−1
2
∆ψ ≥ c in D,

ψ ≥ f in ∂D.

Theorem 7.10.1. Suppose that D is bounded and has a C1 boundary ∂D. Suppose further
that c has a C2 extension to Rd and that f is continuous on ∂D. Then the expected total
cost function ϕ given by (7.3) is the unique solution of the Dirichlet problem in D with data
c and f .

It may be helpful to consider the following quick argument, while noting that it contains
a number of gaps. Let (Xt)t≥0 be a Brownian motion in Rd starting from x and let T be
its exit time from D. Suppose we knew that T was finite and that there was a function
ψ ∈ C2

b (Rd) whose restriction to D̄ was a solution to the Dirichlet problem. Then we could
set

Mt = ψ(Xt)− ψ(X0)−
∫ t

0

1
2
∆ψ(Xs)ds

49



and (Mt)t≥0 would be a martingale. Suppose we could justify applying optional stopping to
(Mt)t≥0 at time T . Then we would have E(MT ) = E(M0) so

ψ(x) = ψ(X0) = E
(
ψ(XT )−

∫ T

0

1
2
∆ψ(Xt)dt

)
= E

(
f(XT ) +

∫ T

0

c(Xt)dt

)
= ϕ(x).

For a rigorous argument, we will have to work around the obvious gaps.

The proof of Theorem 7.10.1 is given in a series of steps below. These in fact lead to the
following stronger result.

Theorem 7.10.2. Let ϕ be the expected total cost function given for x ∈ D̄ by (7.3). Thus

ϕ(x) = E
(∫ T

0

c(Xt)dt+ f(XT )1{T<∞}

)
where (Xt)t≥0 is a Brownian motion in Rd starting from x, and T is its exit time from D.

(a) For any non-negative supersolution ψ of the Dirichlet problem in D with data c and
f , we have ϕ ≤ ψ.

(b) For any bounded solution ψ of the Dirichlet problem in D with data c and f , such
that

E
(
ψ(Xt)1{t<T}

)
→ 0 as t→ ∞ (7.4)

for all starting points x ∈ D, we have ϕ = ψ.
(c) Assume that c extends to Rd as a C2 function and f is continuous on ∂D. Assume

further that D satisfies the exterior cone condition (7.9) and that ϕ is locally bounded.
Then ϕ is a solution of the Dirichlet problem in D with data c and f .

Since we impose that ψ is bounded, condition (7.4) holds whenever T is almost surely
finite. So, by Theorem 7.7.1, condition (7.4) holds in each of the following cases

(a) d = 1 and ∂D is non-empty,
(b) d = 2 and R2 \D contains an open ball,
(c) d ≥ 3 and D is bounded.

An examination of the proof of Theorem 7.10.2(b) shows that ϕ always satisfies (7.4) if it is
a bounded solution of the Dirichlet problem.

Under the hypotheses of Theorem 7.10.1, E(T ) is bounded, uniformly in the starting point
x, by Proposition 7.6.2. Since D is bounded, so are the functions c, f and ϕ, and so is any
solution ψ of the Dirichlet problem. Since ∂D is C1, D satisfies the exterior cone condition.
So ϕ is a solution of the Dirichlet problem by Theorem 7.10.2(c). Moreover, (7.4) holds for
ψ, so ϕ = ψ by Theorem 7.10.2(b), and so ϕ is the unique solution. Hence Theorem 7.10.1
follows from Theorem 7.10.2.

Theorem 7.10.1 contains, in particular, existence and uniqueness statements for the Dirich-
let problem. We will prove these statements, via Theorem 7.10.2, using arguments based
on an understanding of Brownian motion. They could be approached, alternatively, using
methods from the theory of partial differential equations.
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Proof of Theorem 7.10.2(a). Let ψ be a supersolution of the Dirichlet problem. It is clear
that ϕ ≤ ψ on ∂D. Fix x ∈ D and let (Xt)t≥0 be a Brownian motion in Rd starting from x.
Fix N ≥ 1 and set

DN = {x ∈ D : |x| < N and |x− ∂D| > 1/N}.
There exists g ∈ C2

b (Rd) with g = ψ on DN . Set

Mt = g(Xt)− g(X0)−
∫ t

0

1
2
∆g(Xs)ds.

Then (Mt)t≥0 is a martingale, by Theorem 7.5.1. Denote by TN the exit time from DN .
Then, by optional stopping, for N sufficiently large and for all t ≥ 0,

ψ(x) = E (ψ(XTN∧t)) + E
∫ TN∧t

0

(−1
2
∆)ψ(Xs)ds. (7.5)

We now let t→ ∞ and N → ∞. By monotone convergence,

E
∫ TN∧t

0

(−1
2
∆)ψ(Xt)dt ≥ E

∫ TN∧t

0

c(Xt)dt→ E
∫ T

0

c(Xt)dt.

On the other hand, on the event {T <∞}, we have

ψ(XTN∧t) → ψ(XT ) ≥ f(XT ).

Since ψ ≥ 0, this implies that

lim inf ψ(XTN∧t) ≥ f(XT )1T<∞

so, by Fatou’s lemma,

lim inf E (ψ(XTN∧t)) ≥ E(f(XT )1T<∞).

Hence, on taking the lim inf in (7.5), we obtain ψ(x) ≥ ϕ(x). □

Next we show that, under suitable conditions, we can replace inequalities by equalities in
the preceding argument.

Proof of Theorem 7.10.2(b). Let ψ be a bounded solution of the Dirichlet problem. It is
clear that ϕ = ψ on ∂D. Fix x ∈ D. Let (Xt)t≥0 be a Brownian motion in Rd starting from
x, and let T be its exit time from D. Consider the limit N → ∞ and then t → ∞ in (7.5).
By monotone convergence,

E
∫ TN∧t

0

(−1
2
∆)ψ(Xt)dt = E

∫ TN∧t

0

c(Xt)dt→ E
∫ T

0

c(Xt)dt.

On the other hand

E (ψ(XTN∧t)) = E
(
ψ(XTN )1{TN≤t}

)
+ E

(
ψ(Xt)1{t<TN}

)
.

For the first term on the right, almost surely,

ψ(XTN )1{TN≤t} → ψ(XT )1{T<∞} = f(XT )1{T<∞}

so, by bounded convergence,

E
(
ψ(XTN )1{TN≤t}

)
→ E

(
f(XT )1{T<∞}

)
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while, for the second term on the right, if ψ satisfies (7.4) then, as t→ ∞,

lim
N→∞

E
(
ψ(Xt)1{t<TN}

)
= E

(
ψ(Xt)1{t<T}

)
→ 0.

Now, take the limit N → ∞ and then t→ ∞ in (7.5) to obtain ψ(x) = ϕ(x). □

It remains to find conditions under which we can show that ϕ is a solution of the Dirichlet
problem.

Proof of Theorem 7.10.2(c). Step I. We restrict for now to the case where d ≥ 3 andD = Rd,
and where c has compact support. Let (Xt)t≥0 be a Brownian motion in Rd starting from 0.
Let g be a continuous function on Rd of compact support. Then

E
∫ ∞

0

g(x+Xt)dt =

∫ ∞

0

Ptg(x)dt.

From the explicit formula (7.1) for the heat semigroup, we obtain the following estimates

∥Ptg∥∞ ≤ ∥g∥∞, ∥Ptg∥∞ ≤ (2πt)−d/2 vol(supp g)∥g∥∞ (7.6)

and so, by splitting the integral at t = 1,

E
∫ ∞

0

|g(x+Xt)|dt ≤
∫ ∞

0

∥Ptg∥∞dt ≤ (1 + vol(supp g))∥g∥∞.

Fix ε > 0 and set gε(x) = sup|y−x|≤ε |g(y)|. Then gε is also continuous and of compact
support, so we see that

E
∫ ∞

0

sup
|y−x|≤ε

|g(y +Xt)|dt <∞.

We use this estimate, applied to the first and second derivatives of c, to justify differentiating
the formula

ϕ(x) = E
∫ ∞

0

c(x+Xt)dt

twice under the integral, to see that ϕ ∈ C2(Rd) with

∆ϕ(x) = E
∫ ∞

0

∆c(x+Xt)dt.

Take s, t ∈ (0,∞) with s < t and split the integral into three pieces

∆ϕ(x) =

(∫ s

0

+

∫ t

s

+

∫ ∞

t

)
E(∆c(x+Xu))du.

Consider the limit where s→ 0 and t→ ∞. Using the estimates (7.6), we see that the first
and third integrals on the right tend to 0. On the other hand, for the second integral, we
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have

1

2

∫ t

s

E(∆c(x+Xu))du =
1

2

∫ t

s

∫
Rd

p(u, x, y)∆c(y)dydu

=
1

2

∫ t

s

∫
Rd

∆p(u, x, y)c(y)dydu

=

∫ t

s

∫
Rd

ṗ(u, x, y)c(y)dydu

=

∫
Rd

p(t, x, y)c(y)dy −
∫
Rd

p(s, x, y)c(y)dy

= Ptc(x)− E(c(x+Xs)) → −c(x).

Hence 1
2
∆ϕ = −c, showing that ϕ is a solution of the Dirichlet problem. □

We will use several times the following identity for the expected total cost function, which
is a consequence of the strong Markov property.

Lemma 7.10.3. Let D0 be a bounded open subset of D and let x ∈ D̄. Let (Xt)t≥0 be a
Brownian motion in Rd starting from x, and write T0 for its exit time from D0. Then T0 is
almost surely finite and the expected total cost function ϕ satisfies

ϕ(x) = E
(∫ T0

0

c(Xt)dt+ ϕ(XT0)

)
.

Proof. Set F̃t = FT0+t and X̃t = XT0+t, and write T̃ for the exit time of (X̃t)t≥0 from D.

Then T̃ < ∞ if and only if T < ∞, and if both are finite, then XT = X̃T̃ . By the strong

Markov property, (X̃t)t≥0 is an (F̃t)t≥0-Brownian motion, so

ϕ(x) = E
(∫ T0

0

c(Xt)dt+

∫ T

T0

c(Xt)dt+ f(XT )1{T<∞}

)
= E

(∫ T0

0

c(Xt)dt

)
+ E

(
E

(∫ T̃

0

c(X̃t)dt+ f(X̃T̃ )1{T̃<∞}

∣∣∣∣∣ F̃0

))

= E
(∫ T0

0

c(Xt)dt+ ϕ(XT0)

)
. (7.7)

□

We will use the following characterization of harmonic functions in terms of averages.
Denote by σx,ρ the uniform distribution on the sphere S(x, ρ) of radius ρ and centre x.

Lemma 7.10.4. Let ϕ be a non-negative measurable function on D. Suppose that

ϕ(x) =

∫
S(x,ρ)

ϕ(y)σx,ρ(dy) (7.8)

whenever B(x, ρ) ⊆ D. Then, either ϕ(x) = ∞ for all x ∈ D, or ϕ ∈ C∞(D) with ∆ϕ = 0
in D.

53



Proof. By taking a suitable average of the equation (7.8) over the possible values of ρ, we
can see that ϕ also satisfies the ball-average property

ϕ(x) =

∫
B(x,ρ)

ϕ(y)βx,ρ(dy)

where βx,ρ is the uniform distribution on the ball B(x, ρ). Hence, if B(x, ρ) ⊆ B(y, τ) ⊆ D,
then ϕ(x) ≤ (τ/ρ)dϕ(y). Since D is connected, this implies that either ϕ(x) = ∞ for all
x ∈ D, or ϕ is locally bounded in D.

Given ε > 0, there exists a C∞ probability density function f on Rd, which is rotationally
invariant and supported in B(0, ε). Let Y be a random variable in Rd having density f .
Then, for any x ∈ D at distance at least ε from ∂D, by taking a suitable average of the
equation (7.8), we obtain

ϕ(x) = E(ϕ(x+ Y )) =

∫
Rd

ϕ(x+ y)f(y)dy =

∫
Rd

ϕ(z)f(z − x)dz.

In the case where ϕ is locally bounded, we can differentiate in the last integral to see that
ϕ ∈ C∞(D).

Consider then the Taylor expansion

ϕ(x+ ty) = ϕ(x) + tϕ′(x)y + t2ϕ′′(x)y ⊗ y/2 +O(t3).

By rotational invariance∫
Rd

yf(y)dy = 0,

∫
Rd

yiyjf(y)dy = δijE(|Y |2)/d

so, on putting y = Y and taking the expectation, we obtain, for all t ∈ (0, 1],

ϕ(x) = E(ϕ(x+ tY )) = ϕ(x) + t2∆ϕ(x)E(|Y |2)/(2d) +O(t3)

from which it follows that ∆ϕ(x) = 0. □

Proof of Theorem 7.10.2(c). Step II. We will show, in the case where c = 0, that, provided
ϕ is finite-valued, we have ϕ ∈ C∞(D) and ∆ϕ = 0 in D. Fix x ∈ D and take D0 = B(x, ρ)
where ρ > 0 is chosen so that B(x, ρ) ⊆ D. Let (Xt)t≥0 and T0 be as in Lemma 7.10.3. By
rotational invariance, XT0 has the uniform distribution σx,ρ on S(x, ρ). Hence

ϕ(x) = E(ϕ(XT0)) =

∫
S(x,ρ)

ϕ(y)σx,ρ(dy).

Since ϕ is finite-valued, it follows by Lemma 7.10.4 that ϕ ∈ C∞(D) with ∆ϕ = 0 in D. □

We now show, under suitable conditions, that ϕ extends continuously to the boundary.
For this we will need to understand the behaviour of Brownian motion just after time 0.

Theorem 7.10.5 (Blumenthal’s zero-one law). Let (Xt)t≥0 be a Brownian motion in Rd

starting from 0. Then

P(A) ∈ {0, 1} for all A ∈ FX0+ =
⋂
t>0

FXt .
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Proof. Set

A =
⋃
s>0

σ(Xt −Xs : t ≥ s).

Then A is a π-system and P(A0 ∩ A) = P(A0)P(A) for all A0 ∈ FX0+ and all A ∈ A. Hence
this holds also for all A in the generated σ-algebra σ(A). Now Xt −Xs is σ(A)-measurable
for all s, t > 0 with s ≤ t. But Xs → 0 as s→ 0, so Xt is σ(A)-measurable for all t > 0 and
so σ(A) = FX∞. Hence, if A ∈ FX0+, then A ∈ σ(A), so

P(A) = P(A ∩ A) = P(A)2

and so P(A) ∈ {0, 1}. □

Proposition 7.10.6. Let A be a non-empty open subset of the unit sphere in Rd and let
ε > 0. Consider the cone

C = {x ∈ Rd : x = ty for some 0 < t < ε, y ∈ A}.

Let (Xt)t≥0 be a Brownian motion in Rd starting from 0 and let

TC = inf{t ≥ 0 : Xt ∈ C}.

Then TC = 0 almost surely.

We say that D satisfies the exterior cone condition if, for all y ∈ ∂D, there exists ε > 0
and a non-empty open subset A of the unit sphere such that

{y + tz : z ∈ A, t ∈ (0, ε)} ∩D = ∅ (7.9)

Geometrically, this means that, for every point in y ∈ ∂D, there is an open cone in Rd \D
with apex at y. This condition is always satisfied if ∂D is C1, that is to say if, for all y ∈ ∂D,
there is a neighbourhood U of y in Rd and a C1 map F = (F1, . . . , Fd) : U → Rd such that
F (y) = 0, F ′(y) is invertible, and D ∩ U = {x ∈ U : F1(x) > 0}.

Proof of Theorem 7.10.2(c). Step III. Note that ϕ = f on ∂D. Fix y ∈ ∂D. We will show
that, for x ∈ D̄, we have ϕ(x) → f(y) as x → y. Choose D0 = U ∩ D, where U is a
bounded open set in Rd containing y. Let (Xt)t≥0 be a Brownian motion in Rd starting from
0. Consider the stopping time

T0(x) = inf{t ≥ 0 : x+Xt ̸∈ D0}.

Then, by Lemma 7.10.3,

ϕ(x) = E

(∫ T0(x)

0

c(x+Xt)dt+ ϕ(x+XT0(x))

)
. (7.10)

There exists an open cone C in Rd of positive height such that y + C is disjoint from D.
By Proposition 7.10.6, TC = inf{t ≥ 0 : y + Xt ∈ C} = 0 almost surely. Now, on the
event {TC = 0}, in the limit x → y, we must have T0(x) → 0, so x + XT0(x) → y and
x+XT0(x) ∈ ∂D eventually. Since ϕ = f and f is continuous on ∂D, this then implies that
ϕ(x+XT0(x)) → f(y) as x→ y. Now E(supx∈D0

T0(x)) <∞ and c and ϕ are locally bounded,
so we can use dominated convergence in (7.10) to see that ϕ(x) → f(y) as x→ y. □
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Proof of Theorem 7.10.2(c). Step IV. In the case where c(x) = 0 for all x ∈ D, the proof is
already complete, by Steps II and III. In the case where f(x) = 0 for all x ∈ ∂D, by Step
III, it remains to show that ϕ ∈ C2(D) and −1

2
∆ϕ = c in D. By linearity, it will suffice to

complete this second case. Moreover, it will suffice to treat the case where d ≥ 3. For the
cases d = 1 or d = 2 then follow by applying the result for d = 3 to cylindrical regions D
and to functions c which depend only on the first and second coordinates. Assume, for now,
that D is bounded. Let (Xt)t≥0 be a Brownian motion in Rd starting from 0. Set

ϕ0(x) = E
∫ ∞

0

c̃(x+Xt)dt

where c̃ ∈ C2(Rd) is a compactly supported function agreeing with c on D. By Step I, we
have ϕ0 ∈ C2

b (Rd) with −1
2
∆ϕ0 = c̃. On taking ϕ = ϕ0 and D = Rd and D0 = D in Lemma

7.10.3, we find that ϕ0(x) = ϕ(x) + ϕ1(x) for all x ∈ D, where

ϕ1(x) = E(ϕ0(x+XT (x)))

and where T (x) is the exit time of (x+Xt)t≥0 from D. As we showed in Step II, this implies
that ϕ1 ∈ C∞(D) with ∆ϕ1 = 0 in D, so ϕ ∈ C2(D) with −1

2
∆ϕ = c in D. Finally, if D is

unbounded, then, by Lemma 7.10.3, in any bounded open set D0 ⊆ D, we have ϕ = ϕ0+ϕ1,
where

ϕ0(x) = E
∫ T0(x)

0

c(x+Xt)dt, ϕ1(x) = E(ϕ(x+XT0(x)))

where T0(x) is the exit time of (x+Xt)t≥0 from D0. Then ϕ0 ∈ C2(D0) with −1
2
∆ϕ0 = c in

D0 by the preceding argument. On the other hand, since ϕ is locally bounded, ϕ1 is bounded
so, by the argument of Step II, we have ϕ1 ∈ C2(D0) with ∆ϕ1 = 0 in D0. Since D0 is
arbitrary, this shows that ϕ ∈ C2(D) with −1

2
∆ϕ = c in D. □
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8. Poisson random measures

8.1. Construction and basic properties. For λ ∈ (0,∞) we say that a random variable
X in Z+ ∪ {∞} is Poisson of parameter λ and write X ∼ P (λ) if

P(X = n) = e−λλn/n!

We also write X ∼ P (0) to mean that X ≡ 0 and write X ∼ P (∞) to mean that X ≡ ∞.

Proposition 8.1.1 (Addition property). Let (Nk : k ∈ N) be a sequence of independent
random variables, with Nk ∼ P (λk) for all k. Then∑

k

Nk ∼ P

(∑
k

λk

)
.

Proposition 8.1.2 (Splitting property). Let N ∼ P (λ) and let (Yn : n ∈ N) be a sequence
of independent, identically distributed random variables in N, independent of N . Set

Nk =
N∑
n=1

1{Yn=k}.

Then (Nk : k ∈ N) is a sequence of independent random variables, with Nk ∼ P (λpk) for all
k, where pk = P(Y1 = k).

Let (E,E, µ) be a σ-finite measure space. A Poisson random measure with intensity µ is
a map

M : Ω× E → Z+ ∪ {∞}
satisfying, for all sequences (Ak : k ∈ N) of disjoint sets in E,

(i) M(∪kAk) =
∑

kM(Ak),
(ii) (M(Ak) : k ∈ N) is a sequence of independent random variables,
(iii) M(Ak) ∼ P (µ(Ak)) for all k.

Denote by E∗ the set of Z+ ∪ {∞}-valued measures on E and define, for A ∈ E,

X : E∗ × E → Z+ ∪ {∞}, XA : E∗ → Z+ ∪ {∞}
by

X(m,A) = XA(m) = m(A).

Set E∗ = σ(XA : A ∈ E).

Theorem 8.1.3. There exists a unique probability measure µ∗ on (E∗,E∗) such that X is a
Poisson random measure with intensity µ.

Proof. (Uniqueness.) Consider the subset A of E∗ consisting of sets of the form

A∗ = {m ∈ E∗ : m(A1) = n1, . . . ,m(Ak) = nk}
where k ∈ N, A1, . . . , Ak ∈ E and n1, . . . , nk ∈ Z+. Note that each such set A∗ is a finite
union of elements of A such that the sets A1, . . . , Ak are disjoint. Also, in this disjoint case,
if µ∗ makes X into a Poisson random measure with intensity µ, then

µ∗(A∗) =
k∏
j=1

e−µ(Aj)µ(Aj)
nj/nj!
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This condition thus determines the values of µ∗ on A and, since A is a π-system generating
E∗, this implies that µ∗ is uniquely determined on E∗.

(Existence.) Consider first the case where λ = µ(E) < ∞. There exists a probability space
(Ω,F,P) on which are defined a random variable N ∼ P (λ) and a sequence of independent
random variables (Yn : n ∈ N), independent of N and all having distribution µ/λ. Set

M(A) =
N∑
n=1

1{Yn∈A}, A ∈ E. (8.1)

It is easy to check, using the Poisson splitting property, thatM is a Poisson random measure
with intensity µ.

More generally, if (E,E, µ) is σ-finite, then E = ∪kEk for some sequence (Ek : k ∈ N) of
disjoint sets in E such that µ(Ek) < ∞ for all k. We can construct, on some probability
space, a sequence (Mk : k ∈ N) of independent Poisson random measures, such that Mk has
intensity 1Ek

µ for all k. Set

M(A) =
∑
k∈N

Mk(A), A ∈ E.

It is easy to check, using the Poisson addition property, thatM is a Poisson random measure
with intensity µ. The law µ∗ ofM on E∗ is then a measure with the required properties. □

8.2. Integrals with respect to a Poisson random measure.

Theorem 8.2.1. Let M be a Poisson random measure on E with intensity µ. Assume that
µ(E) <∞. Let g be a measurable function on E. Define

M(g) =

{∫
E
g(y)M(dy), if M(E) <∞,

0, otherwise.

Then M(g) is a well-defined random variable and

E(eiuM(g)) = exp

{∫
E

(eiug(y) − 1)µ(dy)

}
.

Moreover, if g ∈ L1(µ), then M(g) ∈ L1(P) and

E(M(g)) =

∫
E

g(y)µ(dy), var(M(g)) =

∫
E

g(y)2µ(dy).

Proof. Set E∗
0 = {m ∈ E∗ : m(E) < ∞} and note that M ∈ E∗

0 almost surely. For any
m ∈ E∗

0 , we have m(|g| > n) = 0 for sufficiently large n ∈ N, so g ∈ L1(m). Moreover
the map m 7→ m(g) : E∗

0 → R is measurable. To see this, we note that in the case g = 1A
for A ∈ E, this is by definition of E∗. This extends to g simple by linearity, then to g
non-negative by monotone convergence, then to all g by linearity again.

NowM(g) is given by the composition of measurable maps ω 7→M(ω)1{M(ω)∈E∗
0} : Ω → E∗

0

and m 7→ m(g) : E∗
0 → R, so is well-defined random variable, and moreover

E(eiuM(g)) =

∫
E∗

0

eium(g)µ∗(dm).
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It will suffice then to prove the claimed formulas in the case where M is given as in (8.1).
Then

E(eiuM(g)|N = n) = E(eiug(Y1))n =

(∫
E

eiug(y)µ(dy)

)n
λ−n

so

E(eiuM(g)) =
∞∑
n=0

E(eiuM(g)|N = n)P(N = n)

=
∞∑
n=0

(∫
E

eiug(y)µ(dy)

)n
e−λ/n! = exp

{∫
E

(eiug(y) − 1)µ(dy)

}
.

If g ∈ L1(µ) is integrable, then formulae for E(M(g)) and var(M(g)) may be obtained by a
similar argument. □

We now fix a σ-finite measure space (E,E, K) and denote by µ the product measure on
(0,∞)× E determined by

µ((0, t]× A) = tK(A), t ≥ 0, A ∈ E.

Let M be a Poisson random measure with intensity µ and set M̃ = M − µ. We call M̃ a
compensated Poisson random measure with intensity µ. We use the filtration (Ft)t≥0 given
by Ft = σ(FMt ,N), where

FMt = σ(M((0, s]× A) : s ≤ t, A ∈ E), N = {B ∈ FM∞ : P(B) = 0}.

Proposition 8.2.2. Assume that K(E) <∞. Let g ∈ L1(K). Set

M̃t(g) =

{∫
(0,t]×E g(y)M̃(ds, dy), if M((0, t]× E) <∞ for all t ≥ 0,

0, otherwise.

Then (M̃t(g))t≥0 is a cadlag martingale with stationary independent increments. Moreover

E(M̃2
t (g)) = t

∫
E

g(y)2K(dy) (8.2)

and

E(eiuM̃t(g)) = exp

{
t

∫
E

(eiug(y) − 1− iug(y))K(dy)

}
. (8.3)

Theorem 8.2.3. Let g ∈ L2(K). Let (En : n ∈ N) be a sequence in E with En ↑ E and
K(En) < ∞ for all n. Then the restriction M̃n of M̃ to (0,∞) × En is a compensated
Poisson random measure with intensity 1Enµ. Set Xn

t = M̃n
t (g). Then there exists a cadlag

martingale (Xt)t≥0 such that, for all t ≥ 0,

E
(
sup
s≤t

|Xn
s −Xs|2

)
→ 0.

Set M̃t(g) = Xt. Then (M̃t(g))t≥0 has stationary independent increments and (8.2) and (8.3)
remain valid.

The process (M̃t(g))t≥0 is (a version of ) the stochastic integral of g with respect to M̃ . We
write

(M̃t(g))t≥0 =

∫
(0,t]×E

g(y)M̃(ds, dy) almost surely.
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Note that there is in general no preferred version and this ‘integral’ does not converge
absolutely.

Proof. Set gn = 1Eng. Fix t > 0. By Doob’s L2-inequality and Proposition 8.2.2,

E
(
sup
s≤t

|Xn
s −Xm

s |2
)

≤ 4E((Xn
t −Xm

t )2) = 4t

∫
E

(gn − gm)
2dK → 0

as n,m → ∞. Then there is a subsequence (nk) such that, almost surely as j, k → ∞, for
all t ≥ 0,

sup
s≤t

|Xnk
s −Xnj

s | → 0.

The uniform limit of cadlag functions is cadlag, so there is a cadlag process (Xt)t≥0 such
that, almost surely as k → ∞, for all t ≥ 0,

sup
s≤t

|Xnk
s −Xs| → 0.

Then, by Fatou’s lemma, as n→ ∞,

E
(
sup
s≤t

|Xn
s −Xs|2

)
≤ 4t

∫
E

(gn − g)2dK → 0.

In particular Xn
t → Xt in L

2 for all t, from which it is easy to deduce (8.2) and that (Xt)t≥0

inherits the martingale property. Moreover, using the inequality

|eiug − 1− iug| ≤ u2g2/2,

for s, t ≥ 0 with s < t and A ∈ Fs, we can pass to the limit in the identity

E(eiu(Xn
t −Xn

s )1A) = exp

{
(t− s)

∫
En

(eiug(y) − 1− iug(y))K(dy)

}
P(A)

to see that (Xt)t≥0 has stationary independent increments and (8.3) holds. □
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9. Lévy processes

9.1. Definition and examples. A Lévy process is a cadlag process starting from 0 with
stationary independent increments. We call (a, b,K) a Lévy triple if a ∈ [0,∞), b ∈ R and
K is a Borel measure on R with K({0}) = 0 and∫

R
(1 ∧ |y|2)K(dy) <∞.

We call a the diffusivity, b the drift and K the Lévy measure. These notions generalize
naturally to processes with values in Rd but we will consider only the case d = 1. Let B
be a Brownian motion and let M be a Poisson random measure, independent of B, with
intensity µ on (0,∞)× R, where µ(dt, dy) = dt⊗K(dy), as in the preceding section. Since
K({|y| > 1}) < ∞, by modifying M on an event of probability 0 if necessary, we can and
do assume that M((0, t]× {|y| > 1}) <∞ for all t ≥ 0. Set

Xt =
√
aBt + bt+

∫
(0,t]×{|y|≤1}

yM̃(ds, dy) +

∫
(0,t]×{|y|>1}

yM(ds, dy).

Then (Xt)t≥0 is a Lévy process and, for all t ≥ 0,

E(eiuXt) = etψ(u)

where

ψ(u) = ψa,b,K(u) = ibu− 1
2
au2 +

∫
R
(eiuy − 1− iuy1|y|≤1)K(dy).

Thus, to every Lévy triple there corresponds a Lévy process. Moreover, given (Xt)t≥0, we
can recover M by

M((0, t]× A) = #{s ≤ t : Xs −Xs− ∈ A}
and so we can also recover b and

√
aB. Hence the law of the Lévy process (Xt)t≥0 determines

the Lévy triple (a, b,K).

9.2. Lévy–Khinchin theorem.

Theorem 9.2.1 (Lévy–Khinchin theorem). Let X be a Lévy process. Then there exists a
unique Lévy triple (a, b,K) such that, for all t ≥ 0 and all u ∈ R,

E(eiuXt) = etψa,b,K(u).

Proof. For t ≥ 0 and u ∈ R, set ϕt(u) = E(eiuXt). Then ϕt : R → C is continuous. Since
(Xt)t≥0 has stationary independent increments and

Xnt = Xt + (X2t −Xt) + · · ·+ (Xnt −X(n−1)t)

we obtain, on taking characteristic functions, for all n ∈ N,
ϕnt(u) = (ϕt(u))

n.

Since (Xt)t≥0 is cadlag, as t→ s with t > s, we have Xt → Xs, so

|ϕt(u)− ϕs(u)| ≤ E|eiu(Xt−Xs) − 1| ≤ E((u|Xt −Xs|) ∧ 2) → 0

uniformly on compacts in u. In particular, ϕt(u) → 1 as t→ 0, so

|ϕt(u)|1/n = |ϕt/n(u)| → 1 as n→ ∞
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which implies that ϕt(u) ̸= 0 for all t ≥ 0 and all u ∈ R. Set

ψt(u) =

∫ ϕt(u)

1

dz

z

where we integrate along a contour homotopic to (ϕt(r) : r ∈ [0, u]) in C \ {0}. Then
ψt : R → C is the unique continuous function such that ψt(0) = 0 and, for all u ∈ R,

ϕt(u) = eψt(u).

Moreover, we then have, for all n ∈ N,
ψnt(u) = nψt(u)

and
ψt(u) → ψs(u) as t→ s with t > s.

Hence, by a standard argument, for all t ≥ 0,

ϕt(u) = etψ(u)

where ψ = ψ1, and it remains to show that ψ = ψa,b,K for some Lévy triple (a, b,K).

Write νn for the law of X1/n. Then, uniformly on compacts in u, as n→ ∞,∫
R
(eiuy − 1)nνn(dy) = n(ϕ1/n(u)− 1) → ψ(u)

so ∫
R
(1− cosuy)nνn(dy) → −Reψ(u).

There is a constant C <∞ such that, for all y ∈ R
y21{|y|≤1} ≤ C(1− cos y)

and, for all λ ∈ (0,∞),

1{|y|≥λ} ≤ Cλ

∫ 1/λ

0

(1− cosuy)du.

Consider the measure ηn on R, given by

ηn(dy) = n(1 ∧ |y|2)νn(dy).
Then, as n→ ∞,

ηn([−1, 1]) =

∫
R
y21{|y|≤1}nνn(dy)

≤ C

∫
R
(1− cos y)nνn(dy) → −C Reψ(1)

and, for λ ≥ 1,

ηn(R \ (−λ, λ)) =
∫
R
1{|y|≥λ}nνn(dy)

≤ Cλ

∫ 1/λ

0

∫
R
(1− cosuy)nνn(dy)du

→ −Cλ
∫ 1/λ

0

Reψ(u)du.
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Note that, since ψ(0) = 0, the final limit can be made arbitrarily small by choosing λ
sufficiently large. Hence the sequence (ηn : n ∈ N) is bounded in total mass and tight.
By Prohorov’s theorem, there is a subsequence (nk) and a finite measure η on R such that
ηnk

→ η weakly on R. Fix a continuous function χ on R with

1{|y|≤1} ≤ χ(y) ≤ 1{|y|≤2}.

We have ∫
R
(eiuy − 1)nνn(dy) =

∫
R\{0}

(eiuy − 1)
ηn(dy)

1 ∧ y2

=

∫
R\{0}

(eiuy − 1− iuyχ(y))

1 ∧ y2
ηn(dy) +

∫
R\{0}

iuyχ(y)

1 ∧ y2
ηn(dy)

=

∫
R
θ(u, y)ηn(dy) + iubn

where

θ(u, y) =

{
(eiuy − 1− iuyχ(y))/(1 ∧ y2), if y ̸= 0,
−u2/2, if y = 0.

and

bn =

∫
R

yχ(y)

1 ∧ y2
ηn(dy).

Now θ(u, .) is a bounded continuous function for each u ∈ R. So, on letting k → ∞,∫
R
θ(u, y)ηnk

(dy) →
∫
R
θ(u, y)η(dy) =

∫
R
(eiuy − 1− iuyχ(y))K(dy)− 1

2
au2

where
K(dy) = (1 ∧ y2)−11{y ̸=0}η(dy), a = η({0}).

Then bnk
must also converge, to β say, so we obtain

ψ(u) = iβu− 1
2
au2 +

∫
R
(eiuy − 1− iuyχ(y))K(dy) = ψa,b,K(u)

where

b = β −
∫
R
y(χ(y)− 1{|y|≤1})K(dy).

□
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