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Preface

These lecture notes are for the University of Cambridge Part III course Random Planar Geometry,

given Lent 2020. Please notify jpmiller@statslab.cam.ac.uk for corrections.

1. Introduction

In the course, we will cover three main topics:

• Random planar trees

• Random planar maps

• Schramm-Loewner evolution
1
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1.1. Random planar trees. A tree is a connected graph without cycles. A plane tree is a tree

with an ordering on the vertices that tells you how to draw it in the plane. If we fix the number of

edges to be some positive integer k, then there are only a finite number of plane trees and therefore

one can pick one uniformly at random. This is an example of a random plane tree. Random plane

trees arise in many contexts in probability. In this course, we will discuss properties of random plane

trees and the continuous object which describes their scaling limit (the continuum random tree).

1.2. Random planar maps. A planar map is a graph together with an embedding into the plane

so that no two edges cross. The faces of a planar map are the connected components of the

complement of its edges. For example, one can consider triangulations (each face has three adjacent

edges) or quadrangulations (each face has four adjacent edges). In this course, we will focus on

quadrangulations since certain aspects of their analysis is simpler than in the case of other types

of planar maps. There are only a finite number of quadrangulations with a fixed positive integer

k number of faces and therefore one can choose one uniformly at random. This is an example of

a random planar map. In this course, we will discuss properties of random planar maps and the

continuous object which describes their scaling limit (the Brownian map).

Figure 1.1. Left: A planar tree with 8 vertices (and 7 edges). Right: A (planar) quadrangulation.
Note that the unbounded face also has four adjacent edges.

1.3. Schramm-Loewner evolution. The Schramm-Loewner evolution (SLE) is a random fractal

curve which lives in a domain D in the complex plane C. It was introduced by Schramm in 1999 to

describe the scaling limits of interfaces in two-dimensional discrete models from statistical mechanics.

It has been a transformative idea which has led to new unexpected links between a number of

probabilistic models and also other areas of mathematics.

Here are three important examples where SLE’s arise.

Example 1.1 (Loop-erased random walk on Z2). A (simple) random walk on Z2 is a particle Xn

which in each time step goes up/down/left/right with equal probability 1/4. The loop-erasure of

Xn is defined by erasing the loops that Xn makes chronologically. It is an important object in

probability because it is connected to many other probabilistic models (e.g., uniform spanning trees,

dimers, sand-pile models). See the left side of Figure 1.2 for a simulation of a long random walk
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Figure 1.2. Left: A random walk (black) on Z2 and its loop-erasure (red). It was proved by
Lawler-Schramm-Werner that the scaling limit of the loop-erasure is given by an SLE2 curve. Right:
The range of a planar Brownian motion shown in black and its outer boundary shown in red. It was
conjectured by Mandelbrot that the dimension of the outer boundary is equal to 4

3 . Mandelbrot’s
conjecture was proved by Lawler-Schramm-Werner using SLE.

together with its loop-erasure. By Donsker’s invariance principle, Xbntc/
√
n converges in the limit to

a two-dimensional Brownian motion. A natural question to ask is what continuous object describes

the scaling limit of the loop-erasure of Xn. It was proved by Lawler-Schramm-Werner that it is

given by an SLE2 curve.

Example 1.2 (Outer boundary of Brownian motion). Suppose that X = (B1, B2) is a planar

Brownian motion. That is, B1, B2 are independent standard Brownian motions. The outer boundary

of X([0, 1]) is the boundary of the unbounded component of C \X([0, 1]). See the right side of

Figure 1.2 for a simulation of a planar Brownian motion with emphasis on its outer boundary.

Mandelbrot conjectured state that the Hausdorff dimension, a measure theoretic notion of dimension,

is equal to 4
3 . This conjecture was proved by Lawler-Schramm-Werner.

Example 1.3 (Percolation interface). Consider the hexagonal lattice in the plane. We color each

hexagon either “white” or “black” independently with equal probability 1
2 . See Figure 1.3 for a

numerical simulation. A famous question in probability for many years was to describe the large

scale behavior of the interfaces between the white and the black sites. This problem was solved by

Smirnov, who showed that they converge in the limit to SLE6 curves.
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Figure 1.3. Critical percolation on a lozenge shaped subset of the hexagonal lattice in C with
black boundary conditions on the left and top sides and red boundary conditions on the bottom
and right sides. This choice of boundary conditions forces the existence of a unique interface (green)
from the bottom corner of the lozenge to the top which has black (resp. red) hexagons on its left
(resp. right) side. It was proved by Smirnov that the scaling limit of this interface converges in the
limit to an SLE6 curve. The left, middle, and right lozenges respectively have side length 10, 25,
and 50.

Famous open question: prove the same thing for any other planar lattice, such as Z2.

2. Plane trees

Throughout, we will let N = {1, 2, . . .} denote the positive integers and we will take the convention

that N0 = {∅}. We let U = ∪∞n=0N
n. Then an element of U is a finite sequence (u1, . . . , un) of

elements of N. We let |u| = n be the number of elements in the sequence u ∈ U . If u = (u1, . . . , uk)

and v = (v1, . . . , v`) are elements of U , then we write uv = (u1, . . . , uk, v1, . . . , v`) and we take the

convention that uφ = φu = u. We let π : U \ {∅} → U be defined by setting π((u1, . . . , un)) =

(u1, . . . , un−1). A plane tree τ is a finite subset of U which satisfies the following properties:

(i) φ ∈ τ (Root)

(ii) For all u ∈ τ \ {∅} we have that π(u) ∈ τ (Parent relation)

(iii) For all u ∈ τ , there exists a non-negative integer ku(τ) so that for all j ∈ N we have that

uj ∈ τ if and only if 1 ≤ j ≤ ku(τ). (Children)

We let T be the set of plane trees. For each τ ∈ T, we let |τ | be the number of edges of τ

which we note is equal to one less than the number of vertices in τ . For each k ≥ 0 we let

Tk = {τ ∈ T : |τ | = k}. One basic fact (Example Sheet 1) is that

|Tk| =
1

k + 1

(
2k

k

)
.

It is natural to encode a plane tree in terms of its contour function (or Dyck path). The contour

function of τ ∈ T is defined as follows.
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Figure 2.1. A plane tree with 8 vertices (and 7 edges) together with its contour function.

• We suppose that τ has been embedded into T so that its edges do not cross and each edge

is a straight line with Euclidean length 1.

• We then start a particle at the root (∅) which travels at unit speed along the edges of τ in a

depth first manner. Note that the time required for the particle to visit every vertex of the

tree and then return to the root is equal to 2|τ | since every edge of τ must be visited twice

(once going away from the root and once going towards the root).

• For each s ≥ 0, we then set C(s) to be equal to the distance on the edges of τ from the

particle to the root at time s. We take the convention that C(s) = 0 for all s ≥ 2|τ |.

A Dyck path of length 2k is a sequence (x0, . . . , x2k) of non-negative integers so that

(i) x0 = 0, x2k = 0 and

(ii) |xi − xi−1| = 1 for all i = 1, . . . , 2k.

We note that if τ ∈ Tk, C is its contour function, then C(0), . . . , C(2k) is a Dyck path of length 2k.

The following proposition will be proved on Example Sheet 1.

Proposition 2.1. The map which takes τ ∈ Tk to (C(0), . . . , C(2k)) where C is the contour

function of τ is a bijection from Tk to the set of Dyck paths of length 2k.

It follows from Proposition 2.1 that picking τ ∈ Tk uniformly at random is equivalent to picking

a Dyck path of length 2k uniformly at random. Suppose that C(0), . . . , C(2k) is a Dyck path of

length 2k. Let (ξi) be a sequence of i.i.d. random variables with P[ξ1 = 1] = P[ξ1 = −1] = 1
2 so

that S(j) =
∑k

i=1 ξi is a simple random walk with S(0) = 0. Note that

P[S(j) = C(j), ∀0 ≤ j ≤ 2k] = P[S(j)− S(j − 1) = C(j)− C(j − 1), ∀1 ≤ j ≤ 2k]

= P[ξj = C(j)− C(j − 1), ∀1 ≤ j ≤ 2k] = 2−2k.

In particular, this probability does not depend on the particular choice of Dyck path. This implies

that if we let

Dk = {S(j) for 0 ≤ j ≤ 2k is a Dyck path of length 2k}
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then the law of S(j) for 0 ≤ j ≤ 2k conditioned on Dk is given by the uniform measure on Dyck

paths of length 2k. This conditional law is also that of a simple random walk excursion of length 2k

since:

(i) S(0) = S(2k) = 0

(ii) S(j) ≥ 0 for all 0 ≤ j ≤ 2k.

Thus to describe the continuum limit of a uniformly random element of Tk, we need to describe the

continuum limit of a simple random walk excursion, which will be the focus of the next section.

3. The Brownian excursion

Roughly speaking, a Brownian excursion e is the stochastic process [0, 1] → R+ which arises by

starting with a Brownian motion Bt, B0 = 0, and then conditioning it so that B1 = 0 and Bt ≥ 0

for all t ∈ [0, 1]. This is a zero probability event for Brownian motion, so one must be careful with

its definition. One possible way of making this rigorous is as follows. For each ε > 0, we can let

Aε = {B1 ∈ [0, ε], Bt ≥ −ε ∀t ∈ [0, 1]}. Then P[Aε] > 0 so that the conditional law of B|[0,1] given

Aε makes sense. It is then possible to show that the conditional law of B|[0,1] given Aε converges

as ε → 0. It takes a bit of work to prove that this is the case. We will instead give a different

construction of the Brownian excursion which is more direct and will be analogous to the usual

construction of Brownian motion.

For t, x > 0, we let

qt(x) =
x√
2πt3

exp

(
−x

2

2t

)
.

Note that for x > 0 fixed, qt(x) gives the density at t of the first time that a Brownian motion

hits x. We also let

pt(x, y) =
1√
2πt

exp

(
−(x− y)2

2t

)
.

Then pt(x, y) is the usual transition density for Brownian motion. For each k ∈ N and 0 < t1 <

· · · < tk < 1, we define the probability measure with density given by

BEt1,...,tk(x1, . . . , xk) = 2
√

2πqt1(x1)p
∗
t2−t1(x1, x2) · · · p∗tk−tk−1

(xk−1, xk)q1−tk(xk)

where p∗t (x, y) = pt(x, y) − pt(x,−y) for t, x, y > 0. Then BEt1,...,tk defines a consistent family of

probability measures. This means that for all 0 < t1 < · · · < tk+1 < 1, we have that∫ ∞
0

BEt1,...,tk+1
(x1, . . . , xk+1)dxj = BEt1,...,tj−1,tj+1,...,tk+1

(x1, . . . , xj−1, xj+1, . . . , xk+1).

Then it is possible to show that there exists a continuous process e whose finite dimensional

distributions are given by BEt1,...,tk (Example Sheet 1) and this is the Brownian excursion.

Remark 3.1. (1) There are many different constructions of the Brownian excursion. Its most

common use in probability theory is in so-called excursion theory, which in the context of
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Brownian motion gives a representation of a Brownian motion as a Poisson point process of

Brownian excursions.

(2) The properties of the Brownian excursion are very similar to the properties of Brownian

motion. For example, for every ε > 0 it is (12 − ε)-Hölder continuous (Example Sheet 1).

(3) The function p∗ in the definition of the Brownian excursion has an interpretation. Namely,

it is the transition density for Bt∧τ where Bt is a Brownian motion with B0 > 0 and

τ = inf{t ≥ 0 : Bt = 0} (Example Sheet 1).

4. Real trees and the Gromov-Hausdorff distance

4.1. Real trees.

Definition 4.1. A compact metric space (T , d) is called an R-tree if for all a, b ∈ T we have that:

(i) There is a unique isometric map fa,b : [0, d(a, b)]→ T so that fa,b(0) = a, fa,b(d(a, b)) = b.

(ii) If q : [0, 1] → T is a continuous injective map with q(0) = a, q(1) = b, then q([0, 1]) =

fa,b([0, d(a, b)]).

A rooted R-tree is an R-tree (T , d) with a distinguished point ρ ∈ T called the root.

Properties (i) and (ii) are the continuum analogs of the connectivity and no-cycles condition in the

graph definition of a tree.

Suppose that (T , d) is a rooted R-tree. We will write [[a, b]] for the range of fa,b. If a, b ∈ T , then

there is a unique c ∈ T so that [[ρ, a]] ∩ [[ρ, b]] = [[ρ, c]]. We will use the notation c = a ∧ b and call

c the most recent common ancestor of a, b. The multiplicity of a ∈ T is equal to the number of

connected components of T \ {a}. We call a ∈ T a leaf if it has multiplicity 1.

4.2. Encoding an R-tree with a continuous function. Suppose that g : [0, 1] → [0,∞) is a

continuous function with g(0) = g(1) = 0. For s, t ∈ [0, 1], we let

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r)

and

dg(s, t) = g(s) + g(t)− 2mg(s, t).

Then it follows that dg(s, t) = dg(t, s) and dg(s, t) ≤ dg(s, u) + dg(u, t) for all u ∈ [0, 1]. However, it

is not the case in general that dg(s, t) = 0 implies s = t so dg(s, t) only defines a pseudometric on

[0, 1]. We say that s ∼ t if and only if dg(s, t) = 0 which is equivalent to g(s) = g(t) = mg(s, t). We

then set Tg = [0, 1]/ ∼ and let πg : [0, 1]→ Tg be the associated projection map.

Theorem 4.2. The metric space (Tg, dg) is an R tree.

This will be proved on Example Sheet 1.
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4.3. The continuum random tree.

Definition 4.3. The continuum random tree (CRT) is the random R-tree which is encoded by the

Brownian excursion e.

One can think of the CRT as the “uniform measure” on R-trees. We will make this rigorous by

showing that it arises as the limit of uniformly random discrete trees.

Properties of the CRT correspond to properties of the Brownian excursion e. The following properties

will be established on Example Sheet 1.

Theorem 4.4. Suppose that (Te, de) is a CRT and let πe : [0, 1]→ Te is the associated projection

map. The following properties hold almost surely.

(i) For Lebesgue a.e. t ∈ [0, 1], πe(t) is a leaf of Te.

(ii) The degree of every x ∈ Te is at most 3.

(iii) The set of x ∈ Te with degree 3 is countable.

4.4. The Gromov-Hausdorff distance. The Gromov-Hausdorff distance is a metric on the space

of compact metric spaces. The starting point for its definition is the Hausdorff distance on compact

subsets of a metric space. Suppose that (X, d) is a metric space. For Y ⊆ X and ε > 0, we let

Yε = {x ∈ X : d(x, Y ) ≤ ε}

be the ε-neighborhood of Y . For K,K ′ ⊆ X compact, we then define the Hausdorff distance between

K and K ′ to be

dH(K,K ′) = inf{ε > 0 : K ⊆ K ′ε, K ′ ⊆ Kε}.

Theorem 4.5. The Hausdorff distance dH defines a metric on the set of compact subsets of (X, d).

Proof. Suppose that K,K ′,K ′′ ⊆ X are compact. It is obvious from the definition of dH that

dH(K,K ′) = dH(K ′,K). It also not difficult to see from the triangle inequality for d that dH(K,K ′) ≤
dH(K,K ′′)+dH(K ′′,K). It is left to show that dH(K,K ′) = 0 implies that K = K ′. If dH(K,K ′) = 0,

then we have that K ⊆ K ′ε for all ε > 0. Since K ′ is compact, we have that K ′ = ∩ε>0K
′
ε. Therefore

K ⊆ K ′ and the same argument implies that K ′ ⊆ K so that K = K ′. �

If (X, d) is a compact metric space, then it is also possible to show that dH defines a compact metric

on the compact subsets of X and the finite sets are dense.

Suppose that (X, d), (X ′, d′) are compact metric spaces. We define the Gromov-Hausdorff distance

between X and X ′ as

dGH(X,X ′) = inf{DH(ϕ(X), ϕ′(X ′))}

where the infimum is over all possible metric spaces (E,D) and isometric embeddings ϕ : X → E,

ϕ′ : X ′ → E′. In order to show that dGH(X,X ′) is finite, we need to show that there even exists a
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metric space (E,D) into which both X, X ′ both embed isometrically. One convenient way to do

this is to use that every compact metric space has an embedding into `∞ (the space of bounded

real sequences equipped with the metric d∞((xn), (yn)) = supn |xn − yn|). This will be proved on

Example Sheet 1.

We say that compact metric spaces (X, d), (X ′, d′) are equivalent if there exists a bijective isometry

ϕ : X → X ′. We let K be the set of all equivalence classes of compact metric spaces.

Theorem 4.6. We have that dGH defines a metric on K.

Remark 4.7. It is also possible to show that (K, dGH) is complete and separable and that the finite

metric spaces are dense.

Proof of Theorem 4.6. Suppose that (X, d), (X ′, d′) are compact metric spaces. It is obvious that

dGH(X,X ′) = dGH(X ′, X). That dGH satisfies the triangle inequality will be proved on Example

Sheet 1. It is left to show that dGH(X,X ′) = 0 implies that X is equivalent to X ′. Suppose that

dGH(X,X ′) = 0. Let (xn) be a countable dense subset of X. Fix ε > 0. Then there exist a metric

space (E,D) and isometries ϕ : X → E, ϕ′ : X ′ → E so that DH(ϕ(X), ϕ′(X ′)) ≤ ε. Therefore for

every n ∈ N, there exists y′n ∈ ϕ′(X ′) so that D(ϕ(xn), y′n) ≤ ε. Let ψε(xn) = (ϕ′)−1(y′n). Since

(X ′, d′) is compact, it follows that for each fixed n ∈ N we can find a sequence (εj) so that εj > 0

and εj → 0 as j →∞ so that ψεj (xn) converges as j →∞. By passing to a diagonal subsequence,

we can in fact assume that ψεj (xn) converges for every n ∈ N. Define

ψ(xn) = lim
j
ψεj (xn).

Note from the construction that we have that

|d′(ψεj (xn), ψεj (xm))− d(xn, xm)| ≤ 2εj for all n,m ∈ N.

Taking a limit as j →∞, we see that

d′(ψ(xn), ψ(xm)) = d(xn, xm) for all n,m ∈ N.

That is, ψ is an isometry on (xn). We can extend ψ to an isometry of X into X ′ as follows. Suppose

that x ∈ X and (xnj ) is a subsequence of (xn) which converges to x. Then it follows that (ψ(xnj ))

is a Cauchy sequence and we set ψ(x) to be its limit. Note that the limit does not depend on the

choice of subsequence (xnj ) because if (xmk) is another subsequence of (xn) which converges to x

then the subsequence obtained by interleaving (xnj ) and (xmk) also converges to x and ψ applied

to it will be Cauchy hence have the same limit as that of (ψ(xnj )). If we perform an analogous

construction with the roles of X and X ′ swapped, we can also construct an isometry ψ′ of X ′ into

X so that ψ′ ◦ ψ is the identity so that X and X ′ are equivalent. �

We call a metric space (X, d) pointed if it has a distinguished point ρ ∈ X. Two pointed metric spaces

(X, d, ρ) and (X ′, d′, ρ′) are said to be equivalent if there exists a bijective isometry ϕ : X → X ′ with
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ϕ(ρ) = ρ′. Let K• denote the set of equivalence classes of pointed compact metric spaces. Then one

can generalize the Gromov-Hausdorff metric to K• by setting

dGH((X, ρ), (X ′, ρ′)) = inf{DH(ϕ(X), ϕ′(X ′)) +D(ϕ(ρ), ϕ′(ρ′))}

where the infimum is over all metric spaces (E,D) and isometries ϕ : X → E, ϕ′ : X ′ → E.

There is an equivalent formulation of the Gromov-Hausdorff metric which does not require one

to consider embeddings into a larger ambient space. The starting point is the definition of a

correspondence between metric spaces X, X ′, which is a subset R fo X ×X ′ so that every x ∈ X
there exists x′ ∈ X ′ so that (x, x′) ∈ R and vice-versa. The distortion of a correspondence R is

defined by

dis(R) = sup{|d(x, y)− d′(x′, y′)| : (x, x′), (y, y′) ∈ R}.

The following will be proved on Example Sheet 1.

Theorem 4.8. Suppose that X,X ′ ∈ K. Then

dGH(X,X ′) =
1

2
inf
R

dis(R)

where the infimum is over all correspondences of X and X ′. If X,X ′ are pointed by ρ, ρ′, respectively,

then the same is true except the infimum is over all correspondences X and X ′ which contain (ρ, ρ′).

Corollary 4.9. Suppose that f, g : [0, 1] → [0,∞) are continuous functions with f(0) = f(1) =

g(0) = g(1) = 0. Then

dGH(Tf , Tg) ≤ 2‖f − g‖∞.

Proof. Let πf : [0, 1]→ Tf , πg : [0, 1]→ Tg be the canonical projection maps. Let

R = {(a, a′) : ∃t ∈ [0, 1] such that a = πf (t), a′ = πg(t)}.

Note that (πf (0), πg(0)) ∈ R (i.e., the roots of Tf and Tg). Then R is a correspondence of Tf and Tg.
Suppose that (a, a′), (b, b′) ∈ R. Then there exists s, t ∈ [0, 1] so that πf (s) = a, πg(s) = a′, πf (t) = b,

πg(t) = b′. Recall that df (a, b) = f(s) + f(t) − 2mf (s, t) and dg(a
′, b′) = g(s) + g(t) − 2mg(s, t).

Therefore |df (a, b)− dg(a′, b′)| ≤ 4‖f − g‖∞ which implies that dis(R) ≤ 4‖f − g‖∞. �

5. Convergence of discrete trees to the continuum random tree

Theorem 5.1. For each k ∈ N, let τk be uniformly distributed over Tk and let Ck be its contour

function. Then ((2k)−1/2C(2kt))0≤t≤1 converges to the Brownian excursion as k →∞ in the sense

of weak convergence of probability measures on C([0, 1], [0,∞)).

Combining Theorem 5.1 with Corollary 4.9 implies that τk equipped with its graph metric rescaled

by (2k)−1/2 converges to the continuum random tree as k →∞ weakly in the Gromov-Hausdorff

topology.
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Before we proceed to the proof of Theorem 5.1, let us first describe the setup. Let S(n) be a simple

random walk on Z with S(0) = 0. Let σ = min{n ≥ 1 : S(n) = −1}. Then we need to show that

((2k)−1/2S(b2ktc))0≤t≤1 under the law P[· |σ = 2k + 1] converges to the Brownian excursion. There

are two main steps:

(1) Convergence of the finite dimensional distributions and

(2) Tightness (Example Sheet 1)

We will being by proving the convergence of a single marginal by showing that for each t ∈ (0, 1) we

have that

lim
k→∞

√
2kP[S(b2ktc) = bx

√
2kc or bx

√
2kc |σ = 2k + 1] = 4

√
2πqt(x)q1−t(x)

uniformly for any x in a compact subset of (0,∞).

We will need two lemmas as input. The first is a special case of the local central theorem, which

will be proved on Example Sheet 1.

Lemma 5.2. For every ε > 0,

lim
n→∞

sup
x∈R

sup
s≥ε

∣∣√nP[S(bnsc) = bx
√
nc or bx

√
nc+ 1]− 2ps(0, x)

∣∣ = 0.

Lemma 5.3. For all `, n ∈ N we have that

P`[σ = n] =
`+ 1

n
P`[S(n) = −1].

Proof. We have that

P`[σ = n] =
1

2
P`[S(n− 1) = 0, σ > n− 1].

We also have that

P`[S(n− 1) = 0, σ > n− 1] = P`[S(n− 1) = 0]−P`[S(n− 1) = 0, σ ≤ n− 1]

= P`[S(n− 1) = 0]−P`[S(n− 1) = −2, σ ≤ n− 1] (by reflection)

= P`[S(n− 1) = 0]−P`[S(n− 1) = −2].

The last equality follows since S(n− 1) = −2 implies σ ≤ n− 1. We thus have that

P`[σ = n] =
1

2
(P`[S(n− 1) = 0]−P`[S(n− 1) = −2]) .

Since S(n − 1), S(n) are binomial random variables, it follows that the right hand side above is

equal to
`+ 1

n
P`[S(n− 1) = −1].

�

Proof of Theorem 5.1. For 1 ≤ i ≤ 2k and ` ≥ 1, we have that

P[S(i) = ` |σ = 2k + 1] =
P[S(i) = `, σ = 2k + 1]

P[σ = 2k + 1]
.
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Applying the Markov property at time i, the numerator is equal to

P[S(i) = `, σ > i]P`[σ = 2k + 1− i].

We also have that

P[S(i) = `, σ > i] = 2P`[σ = i+ 1].

Therefore

P[S(i) = ` |σ = 2k + 1] =
2P`[σ = i+ 1]P`[σ = 2k + 1− i]

P[σ = 2k + 1]

=
2(2k + 1)(`+ 1)2

(i+ 1)(2k + 1− i)
P`[S(i+ 1) = −1]P`[S(2k + 1− i) = −1]

P[S(2k + 1) = −1]
(by Lemma 5.3).

The proof for the convergence of the first order marginals then follows by applying the local CLT

(Lemma 5.2). �

6. Planar maps

Figure 6.1. Two planar maps m and m′ which are associated with isomorphic graphs but are not
equivalent as maps.

6.1. Basic definitions. A planar map is a graph drawn on the two-dimensional sphere S2. As

oriented edge is a continuous map e : [0, 1]→ S2 such that either e is injective or e|[0,1) is injective

and e(0) = e(1) (corresponding to a loop). We will always consider oriented edges modulo

reparameterization. The origin (resp. target) of an oriented edge e is e− = e(0) (resp. e+ = e(1)).

The time-reversal e of e is defined by e(·) = e(1 − ·). An edge is a pair e = {e, e} where e is an

oriented edge. We will sometimes abuse notation and not distinguish between edges and oriented

edges for quantities which do not depend on the direction of time. The interior of e is defined to be

e(0, 1). An embedded graph on S2 is a graph G = (V,E) (assumed to be finite but multiple edges

and self-loops allowed) such that:

• V is a finite subset of S2

• E is a finite set of edges

• The vertices incident to e ∈ E are e+, e− ∈ V
• The interior of an edge e ∈ E does not intersect V or the other edges in E
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The support of G is

supp(G) = V ∪
⋃
e∈E

e([0, 1]).

The faces of G are the components of S2 \ supp(G). Let m = (V,E) be a (planar) map. We let
−→
E = {e ∈ e : e ∈ E} be the set of oriented edges. For each oriented edge e ∈

−→
E , there is a face fe

of m which is to the left of e. The degree of F is defined be

deg(f) = #{e ∈
−→
E : fe = f}.

For a vertex u ∈ V , we also set

deg(u) = #{e ∈
−→
E : e− = u}.

A rooted map is a pair (m, e) where m = (V,E) is a map and e ∈
−→
E is the root (oriented edge).

We say that maps m,m′ are equivalent if there exists an orientation preserving homeomorphism

φ : S2 → S2 which makes m to m′. We emphasize that even if the graph structure associated with

two maps m,m′ are isomorphic, it may not be that the maps are equivalent. We also say that

rooted maps (m, e), (m′, e′) are equivalent if there exists an orientation preserving homeomorphism

φ : S2 → S2 which takes m to m′ and e to e′. Throughout, we will consider equivalent maps to be

the same.

We let Mn be the set of rooted maps with n edges. It was proved by Tutte that

#Mn =
2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)
.

We let Qn be the set of rooted quadrangulations (i.e., maps whose faces all have degree 4) with n

faces. It turns out that Mn and Qn are in bijective correspondence through the so-called “trivial

bijection”. Given m ∈Mn, one can produce an element q ∈ Qn using the following steps:

• Add to each face f of m a new vertex v(f)

• For each face f of m, connect v(f) to the vertices incident to f

• Let q be the rooted quadrangulation whose vertices consist of the vertices of m, the new

vertices v(f), and the new edges (but not the original edges of m). Make the root edge of q

be the first edge with the same origin as the root of m in the clockwise direction.

6.2. Cori-Vauquelin-Schaeffer bijection. Suppose that τ ∈ Tk. A labelling of τ is a map

` : τ → Z such that:

• `(∅) = 0

• For all v ∈ τ \ {∅}, we have that `(v)− `(π(v)) ∈ {−1, 0, 1}

We let LTk be the set of labelled trees with k edges. Note that

#LTk = 3k#Tk =
3k

k + 1

(
2k

k

)
.
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Figure 6.2. An illustration of the “trivial bijection” between Mn and Qn. Left: An element
m of M7 with vertices and edges drawn in black. Right: The corresponding element q of Q7

superimposed on m with edges in red and vertices in black and red. Bottom: The quadrangulation
q on its own. We note that m can be recovered from q by coloring the origin (resp. target) of the
root edge black (resp. red) and the rest of the vertices accordingly (as q is bipartite), adding a black
edge between the opposing black vertices in each face, and then erasing the red edges.

The reason for this is that there are 3 possible choices for the change in label across each edge.

We will now describe the Cori-Vauquelin-Schaeffer (CVS) bijection, which serves to construct a

quadrangulation with k faces from a labelled plane tree with k edges. Suppose that (`, τ) ∈ LTk. We

view τ as a planar map (i.e., embedded into S2). Let φ = v0, v1, . . . , v2n be the contour exploration

of τ . For each i, we let ei be the edge from vi to vi+1. We write

`(ei) = `(e−i ) = `(vi).

We also let

s(i) = min{j > i : `(ej) = `(ei)− 1}.

We call s(i) the “successor” of i. We will sometimes abuse notation and write s(ei) for es(i). We

now construct a new planar map as follows. We add a point v∗ ∈ S2 in S2 \ supp(τ). For each i,

we also define the “corner” of ei to be a simply connected neighborhood of e− in S2supp(τ) which
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0

−1

0 0

1

−2 v∗

∅

Figure 6.3. A labeled tree with 4 edges together with the element of Q•4 constructed using the
CVS bijection. The edges of the quadrangulation are shown in blue and red, where the red edge
is the root, all other edges are blue, and we have taken ε = 1. The edges of the labelled tree are
shown in black.

is to the left of e−i . We will also sometimes abuse notation and write ei for the corner associated

with ei. For each i ∈ {0, . . . , 2n− 1}, we then draw an edge from the corner ei to the corner s(ei) in

S2 \ ({v∗} ∪ supp(τ)). If `(ei) = min{j : `(ej)}, then we instead drawn an edge from the corner ei

to v∗. Suppose that we have ε ∈ {−1, 1}. We then root the map by taking the distinguished edge to

be:

• From e0 to s(e0) if ε = 1

• From s(e0) to e0 if ε = −1.

Then we obtain a rooted, pointed map (m, e, v∗). We let Q•n be the set of rooted, pointed quadran-

gulations with n faces.

Theorem 6.1. The procedure QCVS described above defines a bijection LTn × {−1, 1} → Q•n.

Corollary 6.2. We have that

#Q•n =
2 · 3n

n+ 1

(
2n

n

)
.

We also have that

#Mn = #Qn =
2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)
.
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Proof. The first part of the corollary is immediate from Theorem 6.1. The second part of the

corollary follows from the trivial bijection and the first part since Euler’s formula (Example Sheet

1) implies that if q ∈ Qn then q has n+ 2 vertices. In particular, #Q•n = (n+ 2)#Qn. �

To prove Theorem 6.1, we will first show that QCVS(`, τ, ε) is in Q•n. We will describe the inverse

procedure.

u

u−1

u−2

u−1

e
e

s(e) = s(s(e′))

s(e′)
e′

u

u

e
eu−1 u−1

e′

e′′

s(e) = s(e′)

s(e) = s(e′′)

Figure 6.4. Left: Illustration of the proof that one obtains a quadrilateral in the first case for the
CVS procedure. Here, s(e′) comes before s(e) in contour order and therefore s(s(e′)) = s(e). This
is an example of a “simple face”. Note that the edge of τ in the face is incident to the vertex on
the face boundary with largest label. Right: Illustration of the second case. This is an example of
a “confluent face”. Notice that the edge of τ connects the vertices on the face boundary with the
largest label.

Lemma 6.3. Let (`, τ, ε) ∈ LTn ∈ {−1, 1} and let q = QCVS(`, τ, ε) constructed using the CVS

procedure. Then q ∈ Q•n.

Proof. We begin by observing that q is connected. This follows since every vertex in q has a path of

vertices connecting it to v∗ which is obtained by applying the successor operation.

Consider an edge of τ which corresponds to the oriented edges e, e. We assume that `(e+) = `(e−)−1.

Then s(e) is incident to e+ and the CVS procedure gives an arc starting from e− and ending at e+.

Let e′ be the corner following e in the contour exploration around τ . Then `(e′) = `(e−) = `(e) + 1

and s(e) = s(s(e′)). Indeed, s(e′) is the first corner coming after e′ in contour order and with label

`(e′) − 1 = `(e) − 1 while s(s(e′)) is the first corner after e′ with label `(e) − 2. Therefore it has

to be the first corner coming after e with label `(e)− 2 = `(e)− 1. Therefore the arcs joining the

corners e to s(e), e to s(e), e′ to s(e′), and s(e′) to s(s(e′)) form a quadrilateral which contains

{e, e} and no other edge of τ .

If `(e+) = `(e−) + 1, then exactly the same argument as above applies.

If `(e+) = `(e−), and we let e′, e′′, respectively, be the corners following e, e, respectively, in the

contour exploration of τ , then `(e) = `(e′) = `(e) = `(e′′). Therefore s(e) = s(e′) and s(e) = s(e′′).
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This gives that {e, e} is the diagonal across a quadrilateral with arcs connecting e to s(e), e′ to

s(e′) = s(e), e to s(e), and e′′ to s(e′′) = s(e). We note that q has 2n edges (one per corner) and

n+ 2 vertices. Euler’s formula (Example Sheet 1) thus implies that q has n faces. �

We will now describe the inverse to QCVS. Suppose that q ∈ Q•n. We let φ(x) = d(x, v∗) where d

denotes the graph distance, x ∈ V(q), and v∗ is the marked point in q. Then we have the following

observations:

• q is a bipartite graph (Example Sheet 1)

• If x, y ∈ V(q) are joined by an edge, then |φ(x)− φ(y)| = 1. If we color v∗ black, then φ(x)

is even if and only if x ∈ V(q) is black.

• Around each face, we have vertices x1 (black), y1 (white), x2 (black), y2 (white). Then at

least one of φ(x1) = φ(x2) or φ(y1) = φ(y2) is satisfied.

We call a face f ∈ F(q) simple if precisely one of the above equalities holds and we call f confluent

if both equalities hold.

We label V(q) with the function φ(x)− φ(e−) where e is the root edge of q. We then define a map

TCVS as follows.

• In each confluent face, we draw a diagonal connecting the opposing vertices which have

maximal label.

• In each simple face f , we take the edge with maximal label which has f on its right.

Lemma 6.4. Suppose that q ∈ Q•n and (`, τ) = TCVS(q) as defined above. Then (`, τ) ∈ LTn.

Proof. Suppose that x ∈ V(q) with x 6= v∗. Then it has a neighbor y with `(y) = `(x)− 1. Then

{x, y} can be incident to:

• A confluent face

• A simple face where x is the maximal label (among vertices of the face)

• Two simple faces where x has an intermediate label (among the vertices of the faces)

(See Figure 6.5.) In each of the three possibilities, x is incident to an edge of τ . Therefore

V(τ) = V(q) \ {v∗}. This implies that #V(τ) = #V(q)− 1 = n+ 1. We also have that #E(τ) = n

since we defined on edge of τ for each face of q. Moreover, since q is planar we have that τ is planar.

We will now prove that τ is a tree. Suppose that τ has a cycle C and let u be the value of the

smallest label along C. Either all of the labels on C are equal to u or the cycle contains edges with

labels (u, u+ 1) and (u+ 1, u). (See Figure 6.6.) In either case, it follows from the procedure for

constructing τ that there would be x, y ∈ V(q), one in each of the two complementary components

of C, with label u− 1. Note that the shortest path from x to v∗ or y to v∗ has to pass through the

cycle. This cannot happen because the distances along the shortest such path to v∗ decrease by 1 at

each step.
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u

u−1

u−2

u−1

u−1

u u−1

u

u−1

u

u−1

u−2

u−1

u

x

y

x

y

x

y

Figure 6.5. Illustration of the three cases from the proof of Lemma 6.4.

u

u

u

u
u

u

u

u−1
u−1

u

u+1

u+1

u−1

u

uu−1

Figure 6.6. Illustration of the proof that τ cannot have a cycle in the proof of Lemma 6.4. In
each of the two cases, both of the complementary components of C will contain vertices x, y with
label u− 1.

We have shown that τ does not have cycles. This implies that it is a forest (a finite union of trees).

Since it has n edges and n+ 1 vertices, it is in fact a tree. �

If one examines the proof of Lemma 6.3, then one can notice that TCVS(QCVS(`, τ, ε)) = (`, τ, ε) for

all (`, τ, ε) ∈ LTn ∈ {−1, 1}. It was proved by Tutte that #LTn × {−1, 1} = #Q•n, which implies

that QCVS is surjective. However, one can show directly that QCVS(TCVS(q)) = q for all q ∈ Q•n
(Example Sheet 2).
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7. Random planar maps

7.1. General comments. Recall that one can think of Brownian motion as being in some sense

the “uniform measure” on continuous paths. The way that this is made rigorous sense of is by

discretizing and considering simple random walk on Z which is the uniform measure on paths in Z

which change by 1 in each time step. Since simple random walk converges to Brownian motion in the

scaling limit, one can think of Brownian motion as the uniform measure on continuous paths because

it is the scaling limit of the uniform measure on paths in Z. Similarly, the continuum random tree

(CRT) can be thought of as the “uniform measure” on planar trees. We made sense of this earlier by

discretizing and showing that it arises as the scaling limit of uniformly random (discrete) plane trees

(i.e., elements of Tk). Finally, the Brownian map can be thought of as the “uniform measure” on

surfaces homeomorphic to S2. The way that this made sense of is by discretizing the problem and

considering random quadrangulations and showing that they converge in the limit to the Brownian

map. Note that one can think of a quadrangulation as corresponding to a surface by identifying

each of its faces with a copy of [0, 1]2 and then gluing together adjacent copies of [0, 1]2 according

to Euclidean length.

Random plane tree Contour function

Brownian excursionContinuum random tree

Scaling limit
‖ · ‖∞ topology

Scaling limit
Gromov-Hausdorff
topology

Random quadrangulation Labelled tree

Brownian snakeBrownian map

Scaling limit
‖ · ‖∞ topology

Scaling limit
Gromov-Hausdorff
topology

Figure 7.1. Top: Schematic illustration of the strategy to prove that uniformly random plane
trees converge in the scaling limit to the Continuum random tree in the Gromov-Hausdorff topology.
Bottom: Schematic illustration of the strategy to prove that uniformly random quadrangulations
converge in the scaling limit to the Brownian map in the Gromov-Hausdorff topology. Unlike the
case of trees, the Gromov-Hausdorff convergence for quadrangulations does not immediately follow
from the scaling limit result for the encoding process (labelled trees to the Brownian snake). This
in fact a very difficult result which was proved relatively recently in works of Le Gall and Miermont
(2011).

Why does one study random planar maps and random surfaces? This has become a very active

topic of research in probability theory in the last 20 or so years. There are a number of different
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motivations for this, but let us focus on one here. There are many different models from statistical

mechanics that probabilists have been studying in the last century (Brownian motion, the percolation

model, the Ising model, the self-avoiding walk, etc...) In two dimensions, physicists developed an

accurate picture as to how they should behave in the 1970s-2000s using non-rigorous methods. A

number of these predictions were later verified by mathematicians using Schramm-Loewner evolution

(SLE), the next topic in this course.

One very famous example of this type is Mandelbrot’s conjecture, as described in Example 1.2.

Recall that this states that the dimension of the outer boundary of a planar Brownian motion is

4/3 (roughly speaking, this means that the number of disks of radius ε necessary to cover it grows

to leading order like ε−4/3 as ε→ 0). Proving Mandelbrot’s conjecture as well as the derivation of

a number of other properties of planar Brownian motion amounts to studying “non-intersection

probabilities” for Brownian motion. This means the following. Suppose that we have k independent

planar Brownian motions X1, . . . , Xk which start from equally spaced points on ∂B(0, ε). For each

j, let τj = inf{t ≥ 0 : Xj(t) /∈ B(0, 1)}. The question is how unlikely is it that the ranges Xj([0, τj ])

are pairwise disjoint for 1 ≤ j ≤ k. Since planar Brownian motion is neighborhood recurrent, this is

a are event and its probability turns out to behave like a power of ε as ε→ 0.

One can also formulate the problem in terms of k independent simple random walks in Z2 starting

from points which are of constant order distance from the origin and ask for the probability that

they travel distance n without intersecting. When phrased in this way, the problem is purely

combinatorial and amounts to counting numbers of non-intersecting paths in Z2. This turns out to

be a very difficult question. Physicists realized that this type of counting question becomes a lot

easier when the underlying graph is random (i.e., simple random walk on a random planar map).

When one solves the problem in the setting of a random planar map, one gets a different answer

than if one were to solve it on Z2 since the underlying graph is different. They also developed

a method (the so-called KPZ relation) for converting the probabilities of this type computed in

the setting of random graphs to the setting of Z2 (or another planar lattice). Since the methods

employed are non-rigorous, this only leads to a prediction. Many of these predictions were then

verified rigorously by mathematicians (including Mandelbrot’s conjecture) using SLE.

7.2. The Brownian snake. Recall that a random quadrangulation can be encoded in terms of a

random labelled tree (an element of LTn) using the CVS bijection. One can think of sampling a

random element of LTn in two steps:

(1) Sample τ ∈ Tn uniformly at random

(2) Given τ , sample the labels ` uniformly at random

As one travels along a branch of τ , the labels change by −1, 0, or 1 along each edge. This means

that the labels along a given branch evolve as a random walk. If one considers multiple branches,

then the random walks for each branch are the same until the branches separate.
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The Brownian snake is a way to construct the continuous version of this process. Roughly, the way

works is the following:

(1) Sample a CRT

(2) Given the realization of the CRT, sample Brownian motions on the branches which are

coupled together to be the same until the branch points after which they become independent.

We are now going to describe how to make this construction rigorous. Suppose that g : [0, 1]→ R+

is a continuous function with g(0) = g(1) = 0. We will further assume that g is Hölder continuous,

which we recall means that there exist constants C > 0 and α ∈ (0, 1] so that |g(s)−g(t)| ≤ C|t−s|α

for all s, t ∈ [0, 1]. We also let mg(s, t) = infr∈[s∧t,s∨t] g(r). The following lemma will be proved on

Example Sheet 2.

Lemma 7.1. The function mg(s, t) is non-negative definite. That is, for all s1, . . . , sn ∈ [0, 1] and

λ1, . . . , λn ∈ R, we have that
n∑

i,j=1

λiλjmg(si, sj) ≥ 0.

Lemma 7.1 implies that there exists a mean-zero Gaussian process Z on [0, 1] with EZsZt = mg(s, t).

The process Z is the “Brownian snake driven by g”. We note that

E|Zs − Zt|2 = EZ2
s + EZ2

t − 2EZsZt

= g(s) + g(t)− 2mg(s, t)

≤ 2C|s− t|α.

This further implies that for every n ∈ N we have that

E|Zs − Zt|2n ≤ cn|s− t|n

for a constant cn > 0. Therefore the Kolmogorov-Centsov continuity criterion implies that Z has a

modification which is (α/2− ε)-Hölder continuous for every ε > 0.

The “Brownian snake” is the process Z obtained by:

(1) Sampling a Brownian excursion e

(2) Given e, taking Z to be the Brownian snake driven by e.

Sine the Brownian excursion is (1/2 − ε)-Hölder continuous for every ε > 0, it follows that the

Brownian snake is (1/4− ε)-Hölder continuous for every ε > 0.

7.3. Convergence of labeled trees to the Brownian snake. Suppose that (`, τ) ∈ LTn. Let

v0, . . . , v2n be its contour exploration. For each j ∈ {0, . . . , 2n}, we let V (j) = `(vj). We then

extend V to be a function on [0, 2n] by linear interpolation. We call V the contour label function

for (`, τ).
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Theorem 7.2. For each k ∈ N, let (`k, τk) be uniformly distributed on LTk. Let Ck, Vk be the

contour and label contour functions for (`k, τk). Then we have that(
1√
2k
Ck(2kt),

(
9

8k

)1/4

Vk(2kt)

)
0≤t≤1

d→ (e, Z)

where (e, Z) is the Brownian snake and the convergence is in the sense of distributions on

C([0, 1],R2).

Proof. We have already showed that ((2k)−1/2Ck(2kt))0≤t≤1
d→ e. By the Skorokhod representation

theorem for weak convergence, we can put the sequence (τk) and e on a common probability space

so that ((2k)−1/2Ck(2kt))0≤t≤1 → e a.s. with respect to the ‖ · ‖∞ distance.

The remainder of the proof has two steps:

(1) Show that the finite dimensional distributions converge

(2) Establish tightness (Example Sheet 2)

To prove the convergence of the finite dimensional distributions, we need to show that for each

0 < t1 < · · · < tr < 1 we have that

(7.1)

(
1√
2k
Ck(2kti),

(
9

8k

)1/4

Vk(2kti)

)
1≤i≤r

d→ (eti , Zti)1≤i≤r.

We note that we have both

|Ck(2kti)− Ck(b2ktic)| ≤ 1 and |Vk(2kti)− Vk(b2ktic)| ≤ 1.

Therefore it suffices to prove (7.1) with the integer part b2ktic in place of 2kti.

We will give the proof in the case that r = 1. Fix 0 < t < 1 and let Tk = b2ktc. Recall that the

labels `k of τk are given by performing a random walk on the branches of τk with increments in

{−1, 0, 1}. Therefore we can write

(Ck(Tk), Vk(Tk))
d
=

Ck(Tk), Ck(Tk)∑
i=1

ηi


where the (ηi) are i.i.d. random variables which are uniform on {−1, 0, 1} and are independent of

the τk. By the central limit theorem, we have that

1√
n

n∑
i=1

ηi
d→
(

2

3

)1/2

N where N ∼ N(0, 1).

This implies that

Φ(n, λ) = E

exp

 iλ√
n

n∑
j=1

ηj

→ exp

(
−λ

2

3

)
as n→∞.
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Therefore if we condition on τk we have for all λ, θ ∈ R that

E

exp

 iλ√
2k
Ck(Tk) +

iθ√
Ck(Tk)

Ck(Tk)∑
j=1

ηj

 = E

[
exp

(
iλ√
2k
Ck(Tk)

)
Φ(Ck(Tk), θ)

]
.

Since we have that Ck(Tk)/
√

2k → e(t) a.s. (recall the usage of the Skorokhod representation

theorem at the beginning of the proof), it thus follows (using also dominated convergence) that the

above converges as k →∞ to

E[exp(iλe(t))] exp(−θ2/3).

Combining, we have show that 1√
2k
Ck(Tk),

1√
Ck(Tk)

Ck(Tk)∑
j=1

ηj

 d→ (e(t), (2/3)1/2N)

where N ∼ N(0, 1) is independent of e.

We now write(
1√
2k
Ck(Tk),

(
9

8k

)1/4

Vk(Tk)

)
d
=

Ck(Tk)√
2k

,

(
3

2

)1/2(Ck(Tk)√
2k

)1/2 1√
Ck(Tk)

Ck(Tk)∑
j=1

ηj


→ (e(t),

√
e(t)N)

d
= (e(t), Zt).

This completes the proof of the convergence of the first order marginal. General finite dimensional

distributions are proved in the same manner, but there is more bookkeeping. We will therefore omit

the details. �

Recall that if (`, τ, ε) ∈ LTn × {−1, 1} and q ∈ Q•n is the corresponding quadrangulation, then for

x ∈ V(q) = V(τ) ∪ {v∗} we have that `(x) − `(v∗) gives the distance of x to v∗ in q. therefore

the convergence statement from the theorem implies that the typical diameter of q ∈ Q•n chosen

uniformly at random is of order n1/4. In fact,(
9

8n

)1/4

max
x∈V(q)

(
`(x)− `(v∗)

) d→ sup
t
Zt − inf

t
Zt.

Let us make a few further comments:

(1) It is possible to deduce from the theorem the tightness of (qn, (9/(8n))1/4dn), where qn is

uniformly random in Q•n and dn is its graph metric, with respect to the Gromov-Hausdorff

topology. It is then a difficult result of Le Gall and Miermont that the subsequential limit

exists as a true limit (giving rise to the Brownian map).

(2) There is a generalization of the CVS bijection to 2p-angulations called the BDG bijection

and also to triangulations. An argument analogous to the theorem above also gives the

convergence of the analog of the contour label function to the Brownian snake.
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(3) In general, one has the “same behavior” for planar maps chosen uniformly at random from

any reasonable class (in the same way that many different types of random walks converge

in the limit to Brownian motion).

(4) There are also many other types of random planar maps that one studies which are not

chosen uniformly at random. In these cases, the behavior is very different. There are a

number of bijections that one uses to study these types of maps and they are always based

on an encoding in terms of trees.

8. Conformal mapping review

Suppose that U, V are domains in C and that f : U → V is a map. We say that f is holomorphic if

it is complex differentiable, i.e., for each z ∈ U then limit

f ′(z) = lim
w→z

f(w)− f(z)

w − z
exists.

A conformal transformation is a map which is a bijection (also sometimes called a “conformal

equivalence” or just “conformal”).

A domain U ⊆ C is called simply connected if C \ U is connected. Important examples of simply

connected domains include the complex plane C, the unit disk D = {z ∈ C : |z| < 1}, and the

upper half-plane H = {z ∈ C : Im(z) > 0}.

Theorem 8.1 (Riemann mapping theorem). Suppose that U is a simply connected domain with

U 6= C and z ∈ U . Then there exists a unique conformal transformation f : D→ U with f(0) = z

and f ′(0) > 0.

We will not give a proof of the Riemann mapping theorem here. It can be found in most complex

analysis textbooks. An immediate consequence of the Riemann mapping theorem is that any two

simply connected domains which are both distinct from C can be mapped to each other using a

conformal transformation.

Corollary 8.2. If U, V are simply connected domains with U, V 6= C and z ∈ U and w ∈ V , then

there exists a unique conformal transformation f : U → V with f(z) = w and f ′(z) > 0.

8.1. Examples. Conformal transformations of D. Suppose that U = D and z ∈ D. Then

f : D→ D given by

f(w) =
w + z

1 + zw
is the unique conformal transformation with f(0) = z and f ′(0) > 0. More generally, every conformal

transformation f : D→ D is of the form

f(w) = λ
w − z
zw − 1
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where λ ∈ ∂D and z ∈ D. So, there is a three-real-parameter family of such maps (z corresponds to

two parameters and λ to one).

The map f : H→ D given by

f(z) =
z − i
z + i

is a conformal transformation. It is the so-called Cayley transform. Its inverse g : D→ H is given

by

g(w) =
i(1 + w)

1− w
and is also a conformal transformation.

The conformal transformations H→ H consist of the maps of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ R with ad− bc = 1.

More generally, if U, V are simply connected domains with U, V 6= C, then there is a three-parameter

family of conformal transformations f : U → V .

Here is another important example which motivates the definition of SLE. For each t ≥ 0, let

Ht = H\[0, 2
√
ti]. Let gt : Ht → H be the map z 7→

√
z2 + 4t. Then gt is a conformal transformation

Ht → H.

We make two observations about the family of conformal maps (gt). First, we have that

|gt(z)− z| = |
√
z2 + 4t− z| → 0 as z →∞.

That is, “gt looks like the identity map at ∞.”

Second, we have that

∂tgt(z) =
1

2
√
z2 + 4t

· 4 =
2

gt(z)
.

So, for each z ∈ H fixed we have that gt(z) solves the ODE

(8.1) ∂tgt(z) =
2

gt(z)
, with g0(z) = z.

For each z ∈ H, the basic existence and uniqueness theorem for ODEs implies that (8.1) has a

unique solution up until the denominator on the right hand side explodes, i.e.

τ(z) = inf{t ≥ 0 : Im(gt(z)) = 0}.

In other words, the family of conformal transformations (gt) are characterized by (8.1). In particular,

the curve γ(t) = 2
√
ti is encoded by (8.1). This is a special case of Loewner’s theorem.

Here is a preview for later on in the course. Suppose that γ is any simple curve (i.e., non-self-

intersecting) in H starting from 0. For each t ≥ 0, let gt be the unique conformal transformation

which maps Ht := H \ γ([0, t]) to H with |gt(z)− z| → ∞. (We will later prove that there indeed
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does exist a unique such conformal transformation.) Then Loewner’s theorem states that there

exists a continuous, real-valued function W such that

∂tgt(z) =
2

gt(z)−Wt
, with g0(z) = z.

This is the so-called chordal Loewner equation. Using this equation, we see that there is a corre-

spondence between simple curves in H and continuous, real-valued functions.

The case γ(t) = 2
√
ti corresponds to W = 0.

SLEκ corresponds to the case W =
√
κB where B is a standard Brownian motion.

9. Brownian motion, harmonic functions, and conformal maps

Recall that f = u+ iv is holomorphic if and only if u satisfy the Cauchy-Riemann equations

(9.1)
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

One important consequence of the Cauchy-Riemann equations is that if f is holomorphic then u, v

are harmonic. This means that

∆u =

(
∂2

∂x2
+

∂2

∂y2

)
u = 0 and ∆v = 0.

Indeed,
∂2u

∂x2
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= −∂

2u

∂y2
.

We will now recall a few results which were proved in Advanced Probability which serve to relate

harmonic functions and Brownian motion. Throughout, we say that a process B = B1 + iB2 is a

complex Brownian motion if B1, B2 are independent standard Brownian motions in R.

Theorem 9.1. Let u be a harmonic function on a bounded domain D which is continuous on D.

Fix z ∈ D and let Pz be the law of a complex Brownian motion B starting from z and let

τ = inf{t ≥ 0 : Bt /∈ D}. Then

u(z) = Ez[u(Bτ )].

Proof. This was proved in Advanced Probability. Another proof based on Itô’s formula will be given

in Stochastic Calculus. �

Theorem 9.2 (Mean-value property for harmonic functions). In the setting of the prevoius theorem

if z ∈ D and r > 0 are such that B(z, r) = {w ∈ C : |w − z| < r} ⊆ D, then

u(z) =
1

2π

∫ 2π

0
u(z + reiθ)dθ.

Proof. This was proved in Advanced Probability. �
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Theorem 9.3 (Maximum principle). Suppose that u is harmonic in a domain D. If u attains its

maximum at an interior point in D, then u is constant.

Proof. Assume that u attains its maximum at z0 ∈ D. Let D0 = {z ∈ D : u(z) = u(z0)}. Then

D0 6= ∅ since z0 ∈ D0. The continuity of u in D implies that D0 is (relatively) closed in D. Suppose

that z ∈ D0 and r > 0 is such that B(z, r) ⊆ D. Then u|∂B(z,r) = u(z0) for otherwise there exists

w ∈ ∂B(z, r) and ε > 0 such that u is at most u(z0) − ε on B(w, ε) which, by the mean-value

property, would contradict that u(z) = u(z0). Combining this with Theorem 9.1 implies that u is

constant on B(z, r). Therefore D0 is open hence D0 = D. �

Theorem 9.4 (Maximum modulus principle). Let D be a domain and let f : D → C be a holomor-

phic map. If |f | attains its maximum in the interior of D, then f is constant.

Proof. Assume that f attains its maximum at z0 ∈ D. Let K be compact in D with z0 ∈ K.

Assume further that the interior of K is connected and that K is the closure of its interior. By

replacing f with f +M for M ∈ R sufficiently large, we can assume that |f | 6= 0 on K. Note that

log |f | is a harmonic function on K. As |f | attains its maximum in D on K, it follows that log |f |
does as well, hence log |f | is constant on K by the maximum principle. Therefore |f | is constant on

K as well. Since K was an arbitrary compact subset of D containing z0 (which is connected and is

the closure of its interior), we deduce that |f | is constant on all of D. This implies that f(D) is

contained in a circle in C hence the Lebesgue measure of f(D) is equal to 0. It is easy to see that

if f ′(z) 6= 0 for some z ∈ D, then the area of f(D) is strictly positive. Therefore f ′(z) = 0 for all

z ∈ D, which implies that f is constant on D. �

Theorem 9.5 (Schwarz Lemma). Suppose that f : D → D is a holomorphic map with f(0) = 0.

Then |f(z)| ≤ |z| for all z ∈ D. If |f(z)| = |z| for some z ∈ D, then there exists θ ∈ R so that

f(w) = weiθ (i.e., f is a rotation map).

Proof. Let

g(z) =

f(z)/z if z 6= 0,

f ′(0) if z = 0.

Then g is a holomorphic map on D and |g(z)| ≤ 1 for all z ∈ D by the maximum modulus principle.

If |f(z0)| = |z0| for some z0 ∈ D \ {0} then the maximum modulus principle implies that there

exists c ∈ C such that g(z) = c for all z ∈ D. As |g(z0)| = 1 it follows that |c| = 1. That is, there

exists θ ∈ R so that c = eiθ. Hence, f(w) = eiθw as claimed. �

10. Half-plane capacity

Definition 10.1. A set A ⊆ H is called a compact H-hull if A = H ∩A, A is compact, and H \A
is simply connected. We let Q be the collection of compact H-hulls.
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In this section, we will be interested in

• Analyzing the “correct” conformal transformation gA : H \A→ H and

• A notion of “size” for A ∈ Q (half-plane capacity).

Proposition 10.2. For each A ∈ Q, there exists a unique conformal transformation gA : H\A→ H

with |gA(z)− z| → 0 as z →∞.

In order to prove Proposition 10.2, we will need to make use of the so-called Schwarz reflection

principle.

Proposition 10.3 (Schwarz reflection principle). Let D ⊆ H be a simply connected domain

and let φ : D → H be a conformal transformation which is bounded on bounded sets. Then φ

extends by reflection to a conformal transformation on D∗ = D ∪ {z : z ∈ D} ∪ {x ∈ ∂H :

D is a neighborhood of x in H} by setting φ(z) = φ(z).

We will not provide a proof of Proposition 10.3.

Proof of Proposition 10.2. The Riemann mapping theorem implies that there exists a conformal

transformation g : H \A→ H. By post-composing H with a conformal transformation H→ H if

necessary, we may assume without loss of generality that |g(z)| → ∞ as |z| → ∞ (i.e., g fixes∞). By

Schwarz reflection, we can extend g to a conformal transformation defined on C \ ({z : z ∈ A} ∪A)

by setting g(z) = g(z). By performing a series expansion for 1/g(1/z), we see that g admits the

Laurent expansion

g(z) = b−1z + b0 +

∞∑
n=1

bn
zn
.

If z ∈ R, then z = z and g(z) = g(z) = g(z). That is, if z ∈ R \A then g(z) ∈ R. Consequently,

b−1z + b0 +

∞∑
n=1

bn
zn

= b−1z + b0 +

∞∑
n=1

bn
zn

for all z ∈ R \A.

This implies that bj = bj for each j. In other words, each bj is real. Set

gA(z) =
g(z)− b0
b−1

.

As b−1, b0 ∈ R, we have that gA : H \A→ H is a conformal transformation with |gA(z)− z| → 0 as

z →∞. This completes the proof of existence.

To see the uniqueness, suppose that g̃A : H \A→ H is another conformal transformation such that

|g̃A(z)− z| → 0 as z →∞. Then g̃A ◦ g−1A is a conformal transformation H→ H. This implies that

there exists a, b, c, d ∈ R with ad− bc = 1 such that

g̃A ◦ g−1A (z) =
az + b

cz + d
.
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Since |g̃A ◦ g−1A (z) − z| → 0 as z → ∞, it follows that a = c = 1 and b = d = 0. That is,

g̃A ◦ g−1A (z) = z which implies that g̃A = gA. �

Definition 10.4. Suppose that A ∈ Q. The half-plane capacity of A is defined by

hcap(A) = lim
z→∞

z(gA(z)− z).

Equivalently, we have that

gA(z) = z +
hcap(A)

z
+

∞∑
n=2

bn
zn
.

One should think of hcap(A) as a notion of “size” for A. We will shortly show that it is non-negative

and monotone.

Example 10.5. Recall that z 7→
√
z2 + 4t is a conformal transformation H \ [0, 2

√
ti]→ H with

|
√
z2 + 4t− z| → 0 as z →∞. Note that√

z2 + 4t = z +
2t

z
+ · · · .

Therefore hcap([0, 2
√
ti]) = 2t.

Example 10.6. The map z 7→ z + 1/z maps H \ D → H and |(z + 1/z) − z| → 0 as z → ∞.

Therefore hcap(H ∩D) = 1.

We are now going to collect several properties of the half-plane capacity.

(i) Scaling. Suppose that r > 0, A ∈ Q. Then hcap(rA) = r2hcap(A) and grA(z) = rgA(z/r).

(ii) Translation invariance. Suppose that x ∈ R and A ∈ Q. Then hcap(A + x) = hcap(A)

and gA+x(z) = gA(z − x) + x.

(iii) Monotonicity. Suppose that A, Ã ∈ Q with A ⊆ Ã. Then

hcap(Ã) = hcap(A) + hcap(gA(Ã \A)).

Upon showing that hcap ≥ 0, this will imply that hcap(Ã) ≥ hcap(A). That is, hcap is

monotone.

By combining the scaling and monotonicity properties of the half-plane capacity, we note that if

A ∈ Q and A ⊆ rD ∩H, then we have that

hcap(A) ≤ hcap(rD ∩H) = r2hcap(D ∩H) = r2.

We now turn to derive a representation for the half-plane capacity in terms of Brownian motion,

which in particular implies that the half-plane capacity is non-negative.

Proposition 10.7. Suppose that A ∈ Q, B is a complex Brownian motion, and τ = inf{t ≥ 0 :

Bt /∈ H \A} is the first exit time of B from H \A.
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(i) For all z ∈ H \A, Im(z − gA(z)) = Ez[Im(Bτ )].

(ii) hcap(A) = limy→∞ yEiy[Im(Bτ )].

(iii) hcap(A) = 2
π

∫ π
0 Eeiθ [Im(Bτ )] sin(θ)dθ.

Proof. Note that φ(z) = Im(z− gA(z)) is harmonic in H \A as it is the imaginary part of a complex

differentiable function. As gA(z) = z + hcap(A)/z + · · · and Im(gA(z)) = 0 for z ∈ ∂(H \ A), it

follows that φ is bounded and continuous. Therefore (i) follows from Theorem 9.1.

Note that

hcap(A) = lim
z→∞

z(gA(z)− z)

= lim
y→∞

iy(gA(iy)− iy).

The proof of Proposition 10.2 implies that hcap(A) is real (as the coefficients in the series expansion

of gA are real). Taking real parts of both sides, we thus see that

hcap(A) = lim
y→∞

yIm(iy − gA(iy)).

Therefore (ii) follows from (i).

Part (iii) is on Example Sheet 2. �

Before we proceed to derive some estimates for gA, we pause to discuss the conformal invariance of

Brownian motion. Roughly, this says that if B is a complex Brownian motion and f is a conformal

transformation, then the random process f(B) is a Brownian motion up to a random time-change.

This statement can be checked directly in the special case that f(z) = cz + d for c, d ∈ C (i.e., f

can be thought of as first performing a rotation, then a scaling, then a translation) because one

can check directly from the definition of complex Brownian motion then it is rotationally invariant,

scale invariant (up to a time change), and translation invariant. Conformal transformations locally

behave like such f , which is why this fact is intuitive. We now give a formal statement:

Theorem 10.8. Let D, D̃ be domains and let f : D → D̃ be a conformal transformation. Let B, B̃

be complex Brownian motions starting from z ∈ D, z̃ = f(z) ∈ D̃, respectively. Let

τ = inf{t ≥ 0 : Bt /∈ D} and τ̃ = inf{t ≥ 0 : B̃t /∈ D̃}

be the exit times of B, B̃ from D, D̃, respectively. Set

τ ′ =

∫ τ

0
|f ′(Bs)|2ds and σ(t) = inf

{
s ≥ 0 :

∫ s

0
|f ′(Br)|2dr = t

}
for t < τ ′.

With B′t = f(Bσ(t)), we have that

(τ ′, B′t : t < τ ′)
d
= (τ̃ : B̃t : t < τ̃).
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Theorem 10.8 will be given as a problem on an example sheet in Stochastic Calculus. It is proved by

applying Itô’s formula, the Cauchy-Riemann equations, and the Lévy characterization of Brownian

motion.

We can use Theorem 10.8 to deduce the form of the exit distribution of a complex Brownian motion

from a simply connected domain D. Since we will only be concerned with exit distributions, we

emphasize that the random time-change in Theorem 10.8 will not play a role. Here are a few cases

that will be important for what follows:

• If B is a complex Brownian motion in D starting from 0, then its first exit distribution is

given by the uniform distribution on ∂D. This follows because complex Brownian motion is

rotationally invariant.

• Using Theorem 10.8 and applying a conformal transformation D→ D which takes 0 to a

given point z ∈ D, one can show that the density (with respect to Lebesgue measure on

∂D) of the first exit distribution of a complex Brownian motion starting from z at the point

eiθ ∈ ∂D is given by
1

2π

1− |z|2

|eiθ − z|2
for θ ∈ [0, 2π).

This is on Example Sheet 2.

• Again using Theorem 10.8, one can see that the first exit distribution of a complex Brownian

motion starting from z = x+ iy ∈ H from H has density with respect to Lebesgue measure

on R given by
1

π

y

(x− u)2 + y2
for u ∈ ∂H.

This is also on Example Sheet 2.

For A ∈ Q, we let

rad(A) = sup{|z| : z ∈ A}.

That is, rad(A) is the diameter of the smallest ball centered at the origin which contains A.

Proposition 10.9. There exists c > 0 such that for all A ∈ Q and |z| ≥ 2rad(A) we have that∣∣∣∣gA(z)− z − hcap(A)

z

∣∣∣∣ ≤ crad(A)hcap(A)

|z|2
.

Proof. By scaling, we may assume without loss of generality that rad(A) = 1. Throughout, we let

h(z) = z +
hcap(A)

z
− gA(z).

Our goal is then to bound |h(z)|. We will proceed by bounding the modulus of the imaginary part

of h and then deduce the bound for h itself using the Cauchy-Riemann equations. To this end, we

let

v(z) = Im(h(z)) = Im(z − gA(z))− Im(z)hcap(A)

|z|2
.
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Let B be a complex Brownian motion and let σ = inf{t ≥ 0 : Bt /∈ H \ D}. We also let

τ = inf{t ≥ 0 : Bt /∈ H \A}. For θ ∈ [0, π], we let p(z, eiθ) be the density with respect to Lebesgue

measure at eiθ for Bσ. It follows from the strong Markov property for B at time σ together with

part (i) of Proposition 10.7 that

Im(z − gA(z)) =

∫ π

0
Eeiθ [Im(Bτ )]p(z, eiθ)dθ.

Recall that

p(z, eiθ) =
2

π

Im(z)

|z|2
sin(θ)

(
1 +O(|z|−1)

)
(Example Sheet 2, Problem 9)(10.1)

hcap(A) =
2

π

∫ π

0
Eeiθ [Im(Bτ )] sin(θ)dθ (part (iii) of Proposition 10.7).(10.2)

We thus have that

|v(z)| =
∣∣∣∣Im(z − gA(z))− Im(z)

|z|2
hcap(A)

∣∣∣∣
=

∣∣∣∣∫ π

0
Eeiθ [Im(Bτ )]p(z, eiθ)dθ − 2

π

Im(z)

|z|2

∫ π

0
Eeiθ Im(Bτ ) sin(θ)dθ

∣∣∣∣ (by (10.2))

≤ chcap(A)Im(z)

|z|3
(by (10.1)),

where c > 0 is a constant.

As v is harmonic (as it is the imaginary part of a complex differentiable function), it follows from

Example Sheet 1, Problem 8 that we have for a constant c > 0 both

|∂xv(z)| ≤ chcap(A)

|z|3
and |∂yv(z)| ≤ chcap(A)

|z|3
.

By the Cauchy-Riemann equations, this implies that (possibly increasing the value of c)

(10.3) |h′(z)| ≤ chcap(A)

|z|3
.

Hence,

|h(iy)| =
∣∣∣∣∫ ∞
y

h′(is)ds

∣∣∣∣ (as h(iy)→ 0 as y →∞)

≤
∫ ∞
y
|h′(is)|ds

≤ chcap(A)

y2
(by (10.3)),

with another possible increase in the value of c in the last inequality. This proves the bound for

z = iy. For general z = reiθ with r ≥ 2rad(A), we can integrate along ∂(rD) using the bound (10.3)

to see that

|h(z)| ≤ |h(ir)|+ c
hcap(A)

r2
,
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which completes the proof. �

11. The chordal Loewner equation

For T > 0, we also let AT be the collection of families of compact H-hulls which satisfy (??)–(??)

but are only defined on the interval [0, T ] (so that A = A∞).

Theorem 11.1. Suppose that (At) is in A with A0 = ∅. For each t ≥ 0, let gt = gAt . There exists

U : [0,∞)→ R continuous such that

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

Proof. Note that ∩s>tgt(As) contains a single point since (At) is locally growing. Call this point Ut.

It is not difficult to see that in fact Ut is continuous in t since (At) is locally growing.

Recall from Proposition 10.9 that if A ∈ Q then

(11.1) gA(z) = z +
hcap(A)

z
+O

(
hcap(A)rad(A)

|z|2

)
.

If x ∈ R, then as gA+x(z)− x = gA(z − x), it follows from (11.1) that

(11.2) gA(z) = gA+x(z + x)− x = z +
hcap(A)

z + x
+ hcap(A)rad(A+ x)O

(
1

|z + x|2

)
.

Fix ε > 0. Note that hcap(gt(At+ε \ At)) = 2ε. For 0 ≤ s ≤ t, let gs,t = gt ◦ g−1s . Applying (11.2)

with A = gt(At+ε \At) and x = −Ut and using that rad(gt(At+ε \At)− Ut) ≤ diam(gt(At+ε \At)),
we thus see that

gt,t+ε(z) = z +
2ε

z − Ut
+ 2εdiam(gt(At+ε \At))O

(
1

|z − Ut|2

)
.

We thus have that

gt+ε(z)− gt(z) = (gt,t+ε − gt,t) ◦ gt(z)

=
2ε

gt(z)− Ut
+ 2εdiam(gt(At+ε \At))O

(
1

|gt(z)− Ut|2

)
Dividing both sides by ε, sending ε→ 0, and using that (At) is locally growing, we thus see that

∂tgt(z) =
2

gt(z)− Ut
as desired. �

Theorem 11.1 implies that we can encode a family (At) in A with A0 = ∅ in terms of a continuous,

real-valued function U .

Conversely, if U is a continuous, real-valued function and we let

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z,
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then At given by the complement in H of the domain of gt is a family in A with A0 = ∅.

The function U is called the “Loewner driving function” for (At).

12. Derivation of the Schramm-Loewner evolution

The purpose of this section is to explain the derivation and definition of SLE.

Definition 12.1. Suppose that (At) is a random family in A encoded with the Loewner driving

function U . We say that (At) satisfies the conformal Markov property if the following is true. For

each t ≥ 0, let Ft = σ(Us : s ≤ t). Then:

(i) The conditional law of (gt(At+s) − Ut)s≥0 given Ft is equal to that of (As)s≥0. (Markov

property)

(ii) For each r > 0, (rAt/r2)
d
= (At). (Scale invariance)

Note that (i) is equivalent to the statement that, given Ft, (Ut+s−Ut)s≥0 has the same distribution

as (Us)s≥0. That is, U has stationary, independent increments. As U is continuous, this implies that

there exists κ ≥ 0 and a ∈ R such that Ut =
√
κBt + at where B is a standard Brownian motion.

By (ii), we have for r > 0 that

rUt/r2 =
√
κrBt/r2 + ra(t/r2) =

√
κB̃ + at/r

d
= Ut

where B̃ is a standard Brownian motion. The only way that this can be the case is if a = 0.

Combining, we have just obtained Schramm’s theorem.

Theorem 12.2 (Schramm). If (At) satisfies the conformal Markov property, then there exists κ ≥ 0

such that Ut =
√
κBt where B is a standard Brownian motion.

For κ > 0, SLEκ is the random family of hulls (At) which are obtained by solving the Loewner

equation with Ut =
√
κBt where B is a standard Brownian motion.

SLE0 corresponds to the case Ut ≡ 0 for all t ≥ 0, which corresponds to the curve At = [0, 2
√
ti].

Remark 12.3. (i) It turns out that SLEκ is generated by a continuous curve γ. That is, H \At
is equal to the unbounded component of H \ γ([0, t]) for each t ≥ 0. Equivalently, At is equal

to the set obtained by “filling in” the holes cut off from ∞ by γ|[0,t]. This result was first

proved by Rohde-Schramm. In the rest of this course, we will take it as an assumption.

(ii) The behavior of SLEκ depends strongly on κ. We will show later that SLEκ is simple for

κ ∈ (0, 4], self-intersecting for κ ∈ (4, 8), and space-filling for κ ≥ 8.

(iii) As we proved just above, SLEκ is singled out by the conformal Markov property. This is

motivated from conjectures in the physics literature which regarding the behavior of scaling

limits of discrete models in two dimensions (percolation, loop-erased random walk, etc...)

(iv) The main tool to analyze SLEκ is stochastic calculus, which we will review next.
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13. Stochastic calculus review

The general setting that we shall have in mind is a probability space (Ω,F ,P) with a filtration (Ft)
which satisfies the usual conditions:

(i) F0 contains all P-null sets

(ii) (Ft) is right-continuous, i.e., Ft = ∩s>tFs for all t ≥ 0.

The basic object in stochastic calculus is the continuous semi-martingale. This is a process Xt which

can be written as a sum Mt +At where Mt is a continuous local martingale and At is a process of

bounded variation.

The following concepts from stochastic calculus will be important for this course:

• The stochastic integral

• The quadratic variation

• Itô’s fomrula

• Lévy characterization of Brownian motion

• Stochastic differential equations

13.1. The stochastic integral. The stochastic integral of a previsible process Ht against a semi-

martingale Xt = Mt +At is defined by setting∫ t

0
HsdXs =

∫ t

0
HsdMs +

∫ t

0
HsdXs.

The first integral on the right hand is an Itô integral and is a continuous local martingale. The

second integral is a Lebesgue-Stieljes integral and is a process of bounded variation. The Itô integral

is defined and constructed in a way which is similar to the Riemann integral. It exists due to the

cancellation which arises since Mt is a continuous local martingale, even though Mt does not have

finite variation.

13.2. Quadratic variation. The quadratic variation of a continuous local martingale M is

[M ]t = lim
n→∞

d2nte−1∑
k=0

(M(k+1)2−n −Mk2−n)2.

It is the unique non-decreasing continuous process such that

M2
t − [M ]t

is a continuous local martingale. The quadratic variation of a continuous process of finite variation

vanishes. So,

[X]t = [M +A]t = [M ]t.

Also,

[

∫
HsdMs]t =

∫ t

0
H2
sd[M ]s.
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13.3. Itô’s formula. Itô’s formula is the stochastic calculus analog of the fundamental theorem of

calculus. To motiviate it, suppose that f ∈ C(R). If t ≥ 0 and 0 = t0 < · · · < tn = t is a partition

of [0, t], then we can write

f(t) = f(0) +

n∑
k=1

(
f(tk)− f(tk−1)

)
= f(0) +

n∑
k=1

(
f ′(tk−1)(tk − tk−1) + o(tk − tk−1)

)
(Taylor’s theorem)

→ f(0) +

∫ t

0
f ′(s)ds as max

1≤k≤n
(tk − tk−1)→ 0.

Now suppose that B is a standard Brownian motion with B0 = 0. Then we can write

f(Bt) = f(0) +

n∑
k=1

(
f(Btk)− f(Btk−1

)
)

= f(0) +
n∑
k=1

(
f ′(Btk−1

)(Btk −Btk−1
) +

1

2
f ′′(Btk−1

)(Btk −Btk−1
)2 + o((Btk −Btk−1

)2)

)

→ f(0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds as max

1≤k≤n
(tk − tk−1)→ 0.

We have derived a special case of Itô’s formula:

f(Bt) = f(0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.

Here is a more general version. Suppose that f ∈ C1,2(R+×R). The first variable is the time variable

and the second variable is the spatial variable. If Xt = Mt + At is a continuous semimartingale,

then Itô’s formula states that:

f(t,Xt) = f(0, X0) +

∫ t

0
∂sf(s,Xs)ds+

∫ t

0
∂xf(s,Xs)dXs +

1

2

∫ t

0
∂2xf(s,Xs)d[M ]s.

We can rewrite this as:

f(t,Xt) =f(0, X0) +

∫ t

0
∂xf(s,Xs)dMs +

(∫ t

0
∂sf(s,Xs)ds+∫ t

0
∂xf(s,Xs)dAs +

1

2

∫ t

0
∂2xf(s,Xs)d[M ]s

)
.

The first integral is the martingale part of the semimartinagle decomposition of f(t,Xt) and the

other integrals together are the bounded variation part.

13.4. Lévy characterization. Suppose that M is a continuous local martingale. The Lévy

characterization of Brownian motion states that M is a Brownian motion if and only if [M ]t = t for

all t ≥ 0. It is proved by using Itô’s formula to show that the process eiθMt+θ2/2[M ]t is a continuous

martingale.
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13.5. Stochastic differential equations. Suppose that (Ω,F ,P) together with (Ft) is a proba-

bility space satisfying the usual conditions. Let B be a standard Brownian motion which is adapted

to (Ft). If b, σ are measurable functions, then we say that a continuous semimartingale Xt adapted

to (Ft) satisfies the SDE

dXt = b(Xt)dt+ σ(Xt)dBt

provided

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs for all t ≥ 0.

It will be proved in Stochastic Calculus that this SDE has a unique solution when b, σ are Lipschitz

functions.

14. Phases of SLE

Suppose that X = (B1, . . . , Bd) is a d-dimensional Brownian motion. In other words, B1, . . . , Bd

are independent standard Brownian motions. Let

Zt = ‖Xt‖2 = (B1
t )2 + · · ·+ (Bd

t )2.

By Itô’s formula, we have that

Zt = (B1
t )2 + · · ·+ (Bd

t )2 = Z0 + 2

∫ t

0
B1
sdB

1
s + · · ·+ 2

∫ t

0
Bd
sdB

d
s + dt.

Let

Yt =

∫ t

0

1

Z
1/2
s

B1
sdB

1
s + · · ·+

∫ t

0

1

Z
1/2
s

Bd
sdB

d
s .

Then Yt is a continuous local martingale with

[Y ]t =

[∫ ·
0

1

Z
1/2
s

B1
sdB

1
s + · · ·+

∫ ·
0

1

Z
1/2
s

Bd
sdB

d
s

]
t

=

[∫ ·
0

1

Z
1/2
s

B1
sdB

1
s

]
t

+ · · ·+

[∫ ·
0

1

Z
1/2
s

Bd
sdB

d
s

]
t

=

∫ t

0

1

Zs
(B1

s )2ds+ · · ·+
∫ t

0

1

Zs
(Bd

s )2ds

= t.

Consequently, the Lévy characterization implies that Yt = B̃t where B̃ is a standard Brownian

motion. This allows us to write

Zt = Z0 + 2

∫ t

0
Z1/2
s dB̃s + dt.

Equivalently,

dZt = 2Z
1/2
t dB̃t + d · dt.
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This it the “square Bessel SDE of dimension d” and we say that Z is a square Bessel process of

dimension d. Sometimes, this is written as Zt ∼ BESQd. This SDE has a solution for every d ∈ R

which is defined at least up until the first time that the process hits 0. In particular, d need not be

an integer.

By applying Itô’s formula with f(x) =
√
x, we next see that

Z
1/2
t = Z

1/2
0 +

1

2

∫ t

0
Z−1/2s dZs −

1

8

∫ t

0
Z−3/2s d[Z]s

= Z
1/2
0 + B̃t +

d

2

∫ t

0
Z−1/2s ds− 1

2

∫ t

0
Z−1/2s ds

= Z
1/2
0 +

(
d− 1

2

)∫ t

0
Z−1/2s ds+ B̃t.

Thus Ut = Z
1/2
t satisfies

Ut = U0 +

(
d− 1

2

)∫ t

0

1

Us
ds+ B̃t.

Equivalently,

dUt =

(
d− 1

2

)
1

Ut
dt+ dB̃t.

This is the “Bessel SDE of dimension d” and we say that U is a Bessel process of dimension d.

Sometimes this is written as Ut ∼ BESd. As in the case of the square Bessel SDE, the Bessel SDE

has a solution for every d ∈ R which is defined at least up until the first time that the process hits

0. So, as before, d need not be an integer.

Proposition 14.1. Suppose that d ∈ R and Ut ∼ BESd.

(i) If d < 2, then Ut hits 0 a.s.

(ii) If d ≥ 2, then Ut does not hit 0 a.s.

Proof. We will prove the proposition by considering the process U2−d
t . By Itô’s formula, we have

that

U2−d
t = U2−d

0 +

∫ t

0
(2− d)U1−d

s dUs +
1

2

∫ t

0
(2− d)(1− d)U−ds d[U ]s

= U2−d
0 +

∫ t

0
(2− d)U1−d

s dB̃s +

∫ t

0

(d− 2)(d− 1)

2Us
U1−d
s ds+

1

2

∫ t

0
(2− d)(1− d)U−ds ds

= U2−d
0 +

∫ t

0
(2− d)U1−d

s dB̃s.

This proves that U2−d
t is a continuous, local martingale. For each a ∈ R, we let τa = inf{t ≥ 0 :

Ut = a}. If 0 ≤ a < U0 < b < ∞, then the process U2−d
t∧τa∧τb is a bounded, continuous martingale.

The optional stopping theorem thus implies that

U2−d
0 = E[U2−d

τa∧τb ] = a2−dP[τa < τb] + b2−dP[τb < τa].
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If d < 2, then we can take a = 0 to see that

U2−d
0 = b2−dP[τb < τ0].

That is,

P[τb < τ0] =

(
U0

b

)2−d
.

By sending b→∞, we see that P[τ0 <∞] = 1. If d > 2, then we can write

P[τa < τb] =

(
U0

a

)2−d
−
(
b

a

)2−d
P[τb < τa].

Taking a limit as a→ 0, we see that P[τ0 < τb] = 0 for any b. Therefore P[τ0 <∞] = 0. The case

d = 2 is proved similarly but with logUt in place of U2−d
t . �

Suppose that (gt) solves the chordal Loewner equation driven by Ut =
√
κBt where B is a standard

Brownian motion. That is,

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

Let γ be the curve which corresponds to the family of hulls encoded by (gt). For each x ∈ R, let

V x
t = gt(x)−Ut and let τx = inf{t ≥ 0 : V x

t = 0}. Then τx is the first time that x is cut off from ∞
by γ. Note that

dV x
t =

2

gt(x)− Ut
dt− dUt =

2

V x
t

dt−
√
κdBt.

Equivalently,

d(V x
t /
√
κ) =

2/κ

V x
t /
√
κ
dt+ dB̃t where B̃t = −Bt.

That is, V x
t /
√
κ is a BESd with

d− 1

2
=

2

κ
hence

d = 1 +
4

κ
.

Note that d ≥ 2 if and only if κ ≤ 4. Consequently, τx <∞ if and only if κ > 4.

Proposition 14.2. SLEκ corresponds to a simple curve for κ ≤ 4. It is self-intersecting for κ > 4.

Proof. The above considerations imply that SLEκ intersects ∂H if and only if κ > 4. Suppose

that t > 0 is fixed. Then s 7→ gt(γ(s+ t))− Ut is an SLEκ curve. The proposition follows as, for

each t ≥ 0, intersection points between γ|[t,∞) and γ|[0,t] correspond to points where the curve

s 7→ gt(γ(s+ t))− Ut hits the boundary. �

We are now going to show that SLEκ for κ ∈ (4, 8) cuts off regions from ∞ and that SLEκ for κ ≥ 8

fills the boundary and does not cut off regions from ∞. It will be shown on Example Sheet 2 that

SLEκ for κ ≥ 8 in fact fills all H (i.e., is space-filling).

For the rest of this section, we will assume that κ > 4.
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To this end, for 0 < x < y, we let g(x, y) = P[τx = τy] be the probability that both x and y are cut

off from ∞ at the same time. We make two observations about g(x, y):

• g(x, y) = g(1, y/x) since SLEκ is scale-invariant.

• g(1, r) → 0 as r → ∞ since P[τ1 < t] → 1 as t → ∞ and P[τr < t] → 0 as r → ∞ with t

fixed.

We say that events A,B are equivalent if P[A \B] = P[B \A] = 0, i.e., A,B differ by an event of

probability 0.

Lemma 14.3. Fix r > 1. The event {τ1 = τr} is equivalent to the event

E =

{
sup
t<τ1

V r
t − V 1

t

V 1
t

<∞
}
.

Proof. Indeed, if E occurs then we cannot have that τ1 < τr. Therefore E ⊆ {τ1 = τr}. On the

other hand, if M > 0, then we have that

P

[
τ1 = τr | sup

t<τ1

V r
t − V 1

t

V 1
t

≥M
]

= P[τ1 = τr |σM < τ1]

where σM = inf{t ≥ 0 : (V r
t − V 1

t )/V 1
t ≥ M}. By the scale-invariance of SLEκ and the strong

Markov property applied at the stopping time σM , we therefore have that

P[τ1 = τr |σM < τ1] = g(1, 1 +M)→ 0 as M →∞.

This implies that

P [τ1 = τr, E
c] = 0,

which concludes the proof that {τ1 = τr} and E are equivalent. �

Our goal now is to show that

P[sup
t<τ1

(V r
t − V 1

t )/V 1
t <∞]

is positive if κ ∈ (4, 8) and is equal to 0 if κ ≥ 8. Let

Zt = log

(
V r
t − V 1

t

V 1
t

)
.

With d = 1 + 4/κ, we have by Itô’s formula that

dZt =

((
3

2
− d
)

1

(V 1
t )2

+

(
d− 1

2

)(
V r
t − V 1

t

(V 1
t )2V r

t

))
dt− 1

V 1
t

dBt with Z0 = log(r − 1).

We are now going to perform a time-change to turn the local martingale part of Zt into a standard

Brownian motion. Let

σ(t) = inf

{
u ≥ 0 :

∫ u

0

1

(V 1
s )2

ds = t

}
.

Then we have that

t =

∫ σ(t)

0

1

(V 1
s )2

ds hence dt =
dσ(t)

(V 1
σ(t))

2
.
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Note that the process

B̃t = −
∫ σ(t)

0

1

V 1
s

dBs

is a continuous local martingale with

[B̃]t =

[
−
∫ σ(·)

0

1

V 1
s

dBs

]
t

=

∫ σ(t)

0

1

(V 1
s )2

ds = t.

Therefore the Lévy characterization implies that B̃ is a standard Brownian motion. Thus, with

Z̃t = Zσ(t), we have that

dZ̃t =

((
3

2
− d
)

+

(
d− 1

2

)(V r
σ(t) − V

1
σ(t)

V r
σ(t)

))
dt+ dB̃t.

Consequently,

Z̃t = Z̃0 + B̃t +

(
3

2
− d
)
t+

d− 1

2

∫ t

0

V r
σ(s) − V

1
σ(s)

V r
σ(s)

ds

≥ Z̃0 + B̃t +

(
3

2
− d
)
t.

If κ ≥ 8 then d = 1 + 4/κ ≤ 3/2, in which case we have that

Z̃t ≥ Z̃0 + B̃t.

Hence

sup
t≥0

Z̃t ≥ Z̃0 + sup
t≥0

B̃t =∞.

As σ(∞) = τ1, we thus have that

sup
t<τ1

eZt =∞.

We conclude that g(x, y) = 0 for all 0 < x < y if κ ≥ 8. We have just established the following.

Proposition 14.4. An SLEκ for κ ≥ 8 almost surely fills ∂H. In particular, such a process does

not cut regions off from ∞.

Now suppose that κ ∈ (4, 8). Fix ε > 0 and assume that r = 1+ε/2. Note Z̃0 = log(r−1) = log(ε/2).

Let

τ = inf{t ≥ 0 : Z̃t = log ε}.

Then

Z̃t∧τ = Z̃0 + B̃t∧τ +

(
3

2
− d
)
t ∧ τ +

(
d− 1

2

)∫ t∧τ

0

V r
σ(s) − V

1
σ(s)

V r
σ(s)

ds

≤ Z̃0 + B̃t∧τ +

(
3

2
− d
)
t ∧ τ +

(
d− 1

2

)∫ t∧τ

0
eZ̃sds
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≤ Z̃0 + B̃t∧τ

((
3

2
− d
)

+

(
d− 1

2

)
ε

)
t ∧ τ

= Z̃0 + B̃t∧τ + at ∧ τ where a =

(
3

2
− d
)

+

(
d− 1

2

)
ε.

Assume that ε > 0 is taken to be sufficiently small so that a < 0 (recall that d > 3/2 since κ ∈ (4, 8)).

Let

Z∗t = Z̃0 + B̃t + at.

Then

Z∗t∧τ ≥ Z̃t∧τ .

As Z∗t is a Brownian motion with negative drift starting from log(ε/2), it follows that

P[sup
t≥0

Z∗t < log ε] > 0.

Therefore

P[sup
t≥0

Z̃t < log ε] > 0.

Hence

P

[
sup
t<τ1

eZt < ε

]
> 0.

This implies that g(1, 1 + ε/2) > 0. It follows from the scale-invariance and Markov property for

SLEκ that then g(x, y) > 0 for all 0 < x < y as desired (see Example Sheet 2). We have just

established the following:

Proposition 14.5. An SLEκ for κ ∈ (4, 8) almost surely cuts off regions from ∞.

15. Locality of SLE6

So far, we have only defined SLEκ in H from 0 to ∞. If D ⊆ C is a simply connected domain and

x, y ∈ ∂D are distinct, then there exists a conformal transformation φ : H→ D with φ(0) = x and

φ(∞) = y. An SLEκ γ in D from x to y is defined by taking it to be φ(γ̃) where γ̃ is an SLEκ in H

from 0 to ∞. (It will be shown on Example Sheet 3 that this definition is well-defined.)

We will now analyze the question of which SLEκ should correspond to the scaling limit of percolation.

Suppose that D ⊆ C is simply connected, x, y ∈ ∂D are distinct. Consider p = 1/2 (critical)

percolation on the hexagonal lattice with hexagons of size ε which intersect D. We take the hexagons

which intersect the clockwise (resp. counterclockwise) segment of ∂D from x to y to be all black

(resp. white). With this choice of boundary conditions, there exists a unique interface γε which

connects x to y with black (resp. white) hexagons on its left (resp. right) side. (See Figure 15.1 for

an illustration and Figure 1.3 for actual simulations in the special case of a lozenge shaped domain.)

It was conjectured (now proved by Smirnov) that the limit γ of γε is conformally invariant. This

means that if D̃ is another simply connected domain, x̃, ỹ ∈ ∂D̃ are distinct, and ψ : D → D̃ is a
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x

y

γε

D

ψ

ỹ

D̃

x̃

ψ(γε)

Figure 15.1. Percolation exploration γε in the hexagonal lattice with hexagons of size ε in a
simply connected domain D from x to y with black (resp. white) hexagons on the clockwise (resp.
counterclockwise) arc of ∂D from x to y. Some representative hexagons are shown together with
their colors. The scaling limit γ of γε as ε → 0 was conjectured (now proved by Smirnov) to be

conformally invariant, which means that if ψ : D → D̃ is a conformal transformation with x̃ = ψ(x)
and ỹ = ψ(y), then the law of ψ(γ) = limε→0 ψ(γε) is equal in distribution to the scaling limit of the

percolation exploration in D̃ from x̃ to ỹ with the corresponding black/white boundary conditions.

conformal transformation, then ψ(γ) is equal in distribution to the scaling limit of percolation on D̃

from x̃ to ỹ with boundary conditions analogous to those described just above. (See Figure 15.1 for

an illustration.)

Also, percolation satisfies a natural Markov property (this is its spatial Markov property). Namely,

if you condition on γε up to a time t, then the conditional law of the remainder of the percolation

interface is that of a percolation exploration in the remaining domain from γε(t) to y. The reason

for this is that in order to observe γε, one need only observe the black (resp. white) hexagons which

are on its left (resp. right) side.

If the scaling limit γ of the percolation exploration exists and it is conformally invariant, then the

above considerations imply that it must satisfy the conformal Markov property. Therefore there

must exist κ ≥ 0 such that γ is an SLEκ. We will now show that the only κ value which can

correspond to the scaling limit of percolation is κ = 6.

Percolation possesses the extra property which is referred to as “locality”. In special situation that

we consider the percolation exploration on H, it can be formulated as follows (but is indeed a very

general principle). Suppose that D is a simply connected domain in H with 0 on its boundary. Then

a percolation exploration in D with black (resp. white) boundary conditions on R− ∩ ∂D (resp.

R+ ∩ ∂D), run up until hitting ∂D \ ∂H, has the same distribution as a percolation exploration in
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H

D

0

ψ

γ

0

H

ψ(γ)

Figure 15.2. Illustration of the locality property for SLEκ. Shown on the left is an SLEκ curve γ
in H from 0 to ∞ stopped upon leaving a simply connected domain D ⊆ H with 0 ∈ ∂D. SLEκ is
said to satisfy the locality property if γ has the same distribution as an SLEκ in D, stopping upon
hitting ∂D \ ∂H. Equivalently, if ψ is a conformal transformation D → H fixing 0, then ψ(γ) has
the law of an SLEκ in H from 0 to ∞, stopped upon hitting ψ(∂D \ ∂H). It turns out that locality
holds if and only if κ = 6, which implies that the only SLEκ which can correspond to the scaling
limit of percolation is SLE6.

all of H with black (resp. white) boundary conditions on R− (resp. R+), also stopped upon hitting

∂D \ ∂H.

Therefore, the corresponding SLEκ should satisfy an analogous property. That is, we want to figure

out for which value of κ the following is true. Suppose that D ⊆ H is a simply connected domain

with 0 on its boundary. Let γ be an SLEκ in H from 0 and consider γ stopped upon hitting ∂D\∂H.

Then we want that γ has the same law as an SLEκ in D starting from 0 stopped at the analogous

time. Equivalently, if ψ : D → H is a conformal transformation with ψ(0) = 0, then we want that

ψ(γ) is an SLEκ in H. This is the so-called ”locality property.”

We will now show that locality holds if and only if κ = 6.

In order to establish this, we need to understand how the Loewner evolution changes when we

apply a conformal transformation. Suppose that (At) is a non-decreasing family of compact H-hulls

which are locally growing and are parameterized by capacity and assume that T > 0 is such that

AT ⊆ D. For each t ∈ [0, T ], let Ãt = ψ(At). Then (Ã)t∈[0,T ] is a family of compact H-hulls which

are non-decreasing, locally growing, and with Ã0 = ∅.

For each t ≥ 0, let g̃t = g
Ãt

be the unique conformal transformation H \ Ãt → H with g̃t(z)− z → 0

as z →∞. Let ã(t) = hcap(Ãt). It will be shown on Example Sheet 3 that (g̃t) satisfies

(15.1) ∂tg̃t(z) =
∂tã(t)

g̃t(z)− Ũt
, g̃0(z) = z

where Ũt = ψt(Ut) for ψt = g̃t ◦ ψ ◦ g−1t , (gt) the Loewner evolution associated with (At), and Ut its

Loewner driving function. Also, (see Example Sheet 3)

(15.2) ã(t) =

∫ t

0
2(ψ′s(Us))

2ds.
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(The formula (15.2) is intuitive — and indeed derived — if one recalls the scaling property for

half-plane capacity deduced earlier.)

We will want to apply Itô’s formula to deduce the semi-martingale form of Ũt = ψt(Ut). In order to

do so, we need to identify the time-derivative of ψt evaluated at Ut.

Proposition 15.1. The maps (ψt) satisfy

∂tψt(z) = 2

(
(ψ′t(Ut))

2

ψt(z)− ψt(Ut)
− ψ′t(z)

1

z − Ut

)
.

Moreover, at z = Ut, we have

∂tψt(Ut) = lim
z→Ut

∂tψt(z) = −3ψ′′t (Ut).

Proof. We have that

∂tψt(z) = (∂tg̃t)(ψ(g−1t (z))) + g̃′t(ψ(g−1t (z)))ψ′(g−1t (z))∂t(g
−1
t (z))

=
2(ψ′t(Ut))

2

ψt(z)− ψt(Ut)
− ψ′t(z)

2

z − Ut
.

This proves the first assertion of the proposition, where we have used the identity

0 = ∂t(g
−1
t (gt(z))) = (∂tg

−1
t )(gt(z)) + (g−1t )′(gt(z))

2

gt(z)− Ut
in order to derive the formula for ∂tg

−1
t (z).

The second assertion of the proposition is on Example Sheet 3. �

Suppose that Ut =
√
κBt where B is a standard Brownian motion. By Itô’s formula, we have that

dUt = dψt(Ut)

=
(
∂tψt(Ut) +

κ

2
ψ′′t (Ut)

)
dt+

√
κψ′t(Ut)dBt

=
(
−3ψ′′t (Ut) +

κ

2
ψ′′t (Ut)

)
dt+

√
κψ′t(Ut)dBt (by Proposition 15.1)

=
κ− 6

2
ψ′′t (Ut)dt+

√
κψ′t(Ut)dBt.

We now let

σ(t) = inf{u ≥ 0 :

∫ u

0
(ψ′s(Us))

2ds = t}.

Then

∂tg̃σ(t)(z) =
2

g̃σ(t) − Ũσ(t)
dt, g̃σ(0)(z) = z.

Also, if we let Ũ∗t = Ũσ(t), then we have that

dŨ∗t =
κ− 6

2

ψ′′σ(t)(Uσ(t))

(ψ′σ(t)(Uσ(t)))
2
dt+

√
κdB̃t
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where

B̃t =

∫ σ(t)

0
ψ′s(Us)dBs

is a standard Brownian motion (by the Lévy characterization). In particular, if κ = 6 then we have

that Ũ∗t =
√

6B̃t. That is, (Ãσ(t)) is equal in distribution to the family of hulls associated with an

SLE6. We have now obtained the following theorem:

Theorem 15.2. If γ is an SLE6 curve, then ψ(γ) is an SLE6 (up until first hitting ψ(∂D \ ∂H)

and considered modulo a time-change).

We conclude that SLE6 is the only possible SLE curve which could describe the scaling limit of

percolation.
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