RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 3

Please send corrections to jpmiller@statslab.cam.ac.uk
Problem 1. Suppose that $\gamma:[0, T] \rightarrow \overline{\mathbf{H}}$ is a simple curve (i.e., $s \neq t$ implies $\gamma(s) \neq \gamma(t)$) with $\gamma(0)=0$ and $\gamma(t) \in \mathbf{H}$ for all $t \in(0, T]$. Show that $A_{t}=\gamma((0, t])$ for $t \in[0, T]$ is a family of locally growing compact \mathbf{H}-hulls. Show, moreover, that there exists a homeomorphism $\phi:[0, T] \rightarrow\left[0, \frac{1}{2} \mathrm{hcap}\left(A_{T}\right)\right]$ so that hcap $\left(A_{\phi^{-1}(t)}\right)=2 t$ for all $t \in\left[0, \frac{1}{2} \mathrm{hcap}\left(A_{T}\right)\right]$. (This is the so-called capacity parameterization of γ.)
Problem 2. Suppose that $U:[0, T] \rightarrow \mathbf{R}$ is a continuous function. Let $g_{t}(z)$ solve the chordal Loewner equation

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z .
$$

Show for each $t \in[0, T]$ that g_{t} is a conformal transformation from its domain onto \mathbf{H} with $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$ using the following steps.

- Show that $t \mapsto \operatorname{Im}\left(g_{t}(z)\right)$ is decreasing in t, hence for each $z \in \mathbf{H}, t \mapsto g_{t}(z)$ is defined up until $\tau_{z}=\sup \left\{t \geq 0: \operatorname{Im}\left(g_{t}(z)\right)>0\right\}$. Conclude that $H_{t}=\left\{z: \tau_{z}>t\right\}$ is the domain of g_{t}.
- Show for each $t \in[0, T]$ that $z \mapsto g_{t}(z)$ is complex differentiable on H_{t}.
- Show for each $t \in[0, T]$ that $z \mapsto g_{t}(z)$ has an inverse defined on \mathbf{H} by showing that $g_{t}\left(f_{t}(w)\right)=w$ for all $w \in \mathbf{H}$ where f_{s} for $s \in[0, t]$ solves the so-called reverse chordal Loewner equation

$$
\partial_{s} f_{s}(w)=-\frac{2}{f_{s}(w)-U_{t-s}}, \quad f_{0}(w)=w .
$$

Problem 3. Suppose that $U_{t}=\sqrt{\kappa} B_{t}$ where B is a standard Brownian motion and let $\left(g_{t}\right)$ solve

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z .
$$

- (Markov property) Suppose that τ is a stopping time for U which is almost surely finite and let $\widetilde{g}_{t}=g_{\tau+t}\left(g_{\tau}^{-1}\left(z+U_{\tau}\right)\right)-U_{\tau}$. Show that the maps $\left(\widetilde{g}_{t}\right)$ have the same distribution as the maps $\left(g_{t}\right)$.
- (Scale invariance) Fix $r>0$ and let $\widetilde{g}_{t}(z)=r g_{t / r^{2}}(z / r)$. Show that the maps $\left(\widetilde{g}_{t}\right)$ have the same distribution as the maps $\left(g_{t}\right)$.
Suppose that D is a simply connected domain, $x, y \in \partial D$ are distinct, and $\varphi: \mathbf{H} \rightarrow D$ is a conformal transformation with $\varphi(0)=x$ and $\varphi(\infty)=y$. Explain why the definition of SLE $_{\kappa}$ given by $\varphi(\gamma)$ where γ is an SLE $_{\kappa}$ in \mathbf{H} from 0 to ∞ is well-defined.

Problem 4.

- Suppose that B is a standard Brownian motion and $a<0$. Show that $\sup _{t \geq 0}\left(B_{t}+a t\right)<\infty$ almost surely.
- Suppose that $\left(g_{t}\right)$ is the family of conformal maps which solve the Loewner equation with driving function $U_{t}=\sqrt{\kappa} B_{t}$ and, for each $x \in \mathbf{R}$, let $V_{t}^{x}=g_{t}(x)-U_{t}$ and $\tau_{x}=\inf \{t \geq 0$: $\left.V_{t}^{x}=0\right\}$. For each $0<x<y$, let $g(x, y)=\mathbf{P}\left[\tau_{x}=\tau_{y}\right]$. Show that if $g(1,1+\epsilon / 2)>0$ for all $\epsilon \in\left(0, \epsilon_{0}\right)$ for some $\epsilon_{0}>0$ then $g(x, y)>0$ for all $0<x<y$.

Problem 5. Fix $T>0$ and let $D \subseteq \mathbf{H}$ be a simply connected domain. Suppose that $\left(A_{t}\right)_{t \in[0, T]}$ is a non-decreasing family of compact \mathbf{H}-hulls which are locally growing with $A_{0}=\emptyset, \operatorname{hcap}\left(A_{t}\right)=2 t$ for all $t \in[0, T]$, and $A_{T} \subseteq D$. Let $\psi: D \rightarrow \mathbf{H}$ be a conformal transformation which is bounded on bounded sets. Show that the family of compact H-hulls $\widetilde{A}_{t}=\psi\left(A_{t}\right)$ for $t \in[0, T]$ is locally growing with $\widetilde{A}_{0}=\emptyset$ and with

$$
\operatorname{hcap}\left(\widetilde{A}_{t}\right)=\int_{0}^{t} 2\left(\psi_{s}^{\prime}\left(U_{s}\right)\right)^{2} d s \quad \text { where } \quad \psi_{t}=\widetilde{g}_{t} \circ \psi \circ g_{t}^{-1} \quad \text { for each } \quad t \in[0, T]
$$

and \widetilde{g}_{t} is the unique conformal transformation $\mathbf{H} \backslash \widetilde{A}_{t} \rightarrow \mathbf{H}$ with $\widetilde{g}_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$.
Problem 6. In the setting of the previous problem, show that

$$
\partial_{t} \psi_{t}\left(U_{t}\right)=\lim _{z \rightarrow U_{t}} \partial_{t} \psi_{t}(z)=-3 \psi_{t}^{\prime \prime}\left(U_{t}\right) .
$$

Problem 7. Suppose that $\left(A_{t}\right)$ is a non-decreasing family of \mathbf{H}-hulls which are locally growing and with $A_{0}=\emptyset$. For each $t \geq 0$, let $a(t)=\operatorname{hcap}\left(A_{t}\right)$ and assume that $a(t)$ is C^{1}. For each $t \geq 0$, let g_{t} be the unique conformal transformation which takes $\mathbf{H} \backslash A_{t}$ to \mathbf{H} with $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$. Show that the conformal maps $\left(g_{t}\right)$ satisfy the ODE:

$$
\partial_{t} g_{t}(z)=\frac{\partial_{t} a(t)}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

for some continuous, real-valued function U_{t}. (Hint: perform a time-change so that the hulls are parameterized by capacity, apply Loewner's theorem as proved in class, and then invert the time change.)
Problem 8. Suppose that B is a standard Brownian motion starting from $B_{0}=x>0$. For each $a \in \mathbf{R}$, let $\tau_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$.

- For $a<x<b$, explain why $\mathbf{P}\left[\tau_{a}<\tau_{b}\right]=(b-x) /(b-a)$.
- Using the Girsanov theorem, explain why the law of B weighted by $B_{\tau_{0} \wedge \tau_{b}}$ is equal to that of a BES^{3} process stopped upon hitting b. That is, if \mathbf{P} denotes the law of B and we define the law $\widetilde{\mathbf{P}}$ using the Radon-Nikodym derivative

$$
\frac{d \widetilde{\mathbf{P}}}{d \mathbf{P}}=\frac{B_{\tau_{0} \wedge \tau_{b}}}{\mathbf{E}\left[B_{\tau_{0} \wedge \tau_{b}}\right]}
$$

then the law of B under $\widetilde{\mathbf{P}}$ is that of a BES^{3} process stopped upon hitting b.

- Explain why a standard Brownian motion conditioned to be non-negative is a BES^{3} process.
- More generally, explain why a BES^{d} process with $d<2$ conditioned to be non-negative is a BES^{4-d} process.

Problem 9. Suppose that $\left(g_{t}\right)$ is the family of conformal maps associated with an SLE $_{\kappa}$ with driving function U_{t}, i.e., $U_{t}=\sqrt{\kappa} B_{t}$ where B is a standard Brownian motion. Fix $z \in \mathbf{H}$ and let $z_{t}=x_{t}+i y_{t}=g_{t}(z)$. Assume that $\rho \in \mathbf{R}$ is fixed. Use Itô's formula to show that

$$
M_{t}=\left|g_{t}^{\prime}(z)\right|^{(8-2 \kappa+\rho) \rho /(8 \kappa)} y_{t}^{\rho^{2} / 8 \kappa}\left|U_{t}-z_{t}\right|^{\rho / \kappa}
$$

is a continuous local martingale. (Hint: let

$$
Z_{t}=\frac{(8-2 \kappa+\rho) \rho}{8 \kappa} \log g_{t}^{\prime}(z)+\frac{\rho^{2}}{8 \kappa} \log y_{t}+\frac{\rho}{\kappa} \log \left(U_{t}-z_{t}\right),
$$

compute $d Z_{t}$ using Itô's formula, take its real part, and exponentiate.)

Problem 10. Assume that we have the setup of Problem 9. Let $\Upsilon_{t}=y_{t} /\left|g_{t}^{\prime}(z)\right|$. You may assume that

$$
\frac{1}{4} \leq \frac{\Upsilon_{t}}{\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbf{H})} \leq 4
$$

- Let $S_{t}=\sin \left(\arg \left(z_{t}-U_{t}\right)\right)$. Explain why

$$
M_{t}=\left|g_{t}^{\prime}(z)\right|^{(8-\kappa+\rho) \rho /(4 \kappa)} \Upsilon_{t}^{\rho(\rho+8) /(8 \kappa)} S_{t}^{-\rho / \kappa}
$$

- By considering the above martingale with the special choice $\rho=\kappa-8$, show that if $\kappa>8$ then the $\operatorname{SLE}_{\kappa}$ curve γ almost surely hits z. Conclude that γ fills all of \mathbf{H}. (Hint: recall that we showed in class that γ fills $\partial \mathbf{H}$. Deduce from this and the conformal Markov property that γ cannot separate z from ∞ without hitting it. Consider the behavior of S_{t} when γ is hitting a point on $\partial \mathbf{H}$ with either very large positive or negative values.)

