RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk
Problem 1. Suppose that \mathbf{e} is a Brownian excursion. Fix $t_{0} \in[0,1)$. For each $r \geq 0$, we let \bar{r} be the fractional part of r given by $r-\lfloor r\rfloor$. Define the process $\widetilde{\mathbf{e}}:[0,1] \rightarrow \mathbf{R}_{+}$by setting

$$
\widetilde{\mathbf{e}}(t)=\mathbf{e}\left(t_{0}\right)+\mathbf{e}\left(\overline{t_{0}+t}\right)-2 m_{\mathbf{e}}\left(t_{0}, \overline{t_{0}+t}\right)
$$

where $m_{\mathbf{e}}(s, t)=\inf _{r \in[s \wedge t, s \vee t]} \mathbf{e}(r)$. Show that $\widetilde{\mathbf{e}}$ is a Brownian excursion. [Hint: show that the law of a uniformly random element of $\mathbf{L T}_{k}$ is invariant under translating its root and deduce that a simple random walk excursion satisfies an analogous property. Conclude by taking a scaling limit.]

Problem 2. Suppose that (\mathbf{e}, Z) is a Brownian snake. Suppose that we have the setup and define $\widetilde{\mathbf{e}}$ as in the previous problem. Let also

$$
\widetilde{Z}_{t}=Z_{\overline{t+t_{0}}}-Z_{t_{0}}
$$

Show that $(\widetilde{\mathbf{e}}, \widetilde{Z})$ is a Brownian snake.
Problem 3. Suppose that $(\ell, \tau, \epsilon) \in \mathbf{L T}_{n} \times\{-1,1\}$. Let $q \in \mathcal{Q}_{n}^{\bullet}$ be given by $q=Q(\ell, \tau, \epsilon)$. Suppose that $u, v \in \mathbf{V}(q) \backslash\left\{v_{*}\right\}$ and let e, e^{\prime} be corners of τ such that $e^{-}=u$ and $\left(e^{-}\right)^{\prime}=v$. Show that

$$
d(u, v) \leq \ell(u)+\ell(v)-2 \min _{e^{\prime \prime} \in\left[e, e^{\prime}\right]} \ell\left(e^{\prime \prime}\right)+2
$$

where $\left[e, e^{\prime}\right]$ are the corners in the contour exploration from e to e^{\prime} and d is the graph distance on q.
Problem 4. Assume that we have the same setup as in Problem 3. Show that

$$
d(u, v) \geq \ell(u)+\ell(v)-2 \min _{w \in[[u, v]]} \ell(w)
$$

where $[[u, v]]$ is the set of all vertices lying on the geodesic path from u to v in τ.
Problem 5. Suppose that $g:[0,1] \rightarrow \mathbf{R}_{+}$is continuous with $g(0)=g(1)=0$. For each $s, t \in[0,1]$, let $m_{g}(s, t)=\inf _{r \in[s \wedge t, s \vee t]} g(r)$. Show that for every $s_{1}, \ldots, s_{n} \in[0,1]$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}$ we have that

$$
\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} m_{g}\left(s_{i}, s_{j}\right) \geq 0
$$

Problem 6. Suppose that $\left(\ell_{k}, \tau_{k}\right)$ is uniformly distributed on $\mathbf{L T}_{k}$ and let V_{k} be the label contour function. Show that for each $k \in \mathbf{N}$ and $s, t \in[0,1]$ we have that

$$
\mathbf{E}\left[\left(\frac{V_{k}(2 k t)-V_{k}(2 k s)}{k^{1 / 4}}\right)^{4 p}\right] \leq c_{p}|t-s|^{p} .
$$

Conclude that the sequence of functions $t \mapsto V_{k}(2 k t) / k^{1 / 4}$ is tight.
Problem 7. Convince yourself that $Q_{\mathrm{CVS}}\left(T_{\mathrm{CVS}}(q)\right)=q$ for all $q \in \mathcal{Q}_{n}^{\bullet}$.
Problem 8. Establish the following properties of the half-plane capacity (hcap).
(i) If $r>0, A \in \mathcal{Q}$, then $\operatorname{hcap}(r A)=r^{2} \operatorname{hcap}(A)$ and $g_{r A}(z)=\operatorname{rg}_{A}(z / r)$.
(ii) If $x \in \mathbf{R}, A \in \mathcal{Q}$, then $\operatorname{hcap}(A+x)=\operatorname{hcap}(A)$ and $g_{A+x}(z)=g_{A}(z-x)+x$.
(iii) If $A, \widetilde{A} \in \mathcal{Q}$ with $A \subseteq \widetilde{A}$ then

$$
\operatorname{hcap}(\widetilde{A})=\operatorname{hcap}(A)+\operatorname{hcap}\left(g_{A}(\widetilde{A} \backslash A)\right)
$$

Problem 9.

(i) Show that $f(z)=z+1 / z$ is a conformal transformation from $\mathbf{H} \backslash \overline{\mathbf{D}}$ to \mathbf{H}.
(ii) Using the conformal invariance of Brownian motion, show that the hitting density (with respect to Lebesgue measure) for a complex Brownian motion starting from $z \in \mathbf{H}$ on the real line $\partial \mathbf{H}$ is given by

$$
p(z, u)=\frac{1}{\pi} \frac{y}{(x-u)^{2}+y^{2}} \quad \text { where } \quad z=x+i y, \quad u \in \partial \mathbf{H} .
$$

(Note that $p(i, \cdot)$ is the Cauchy distribution on \mathbf{R}.)
(iii) Using the conformal invariance of Brownian motion, show that the density $p\left(z, e^{i \theta}\right), \theta \in[0, \pi]$, for the first exit distribution (with respect to Lebesgue measure) of a complex Brownian motion on $\mathbf{H} \cap \partial \mathbf{D}$ starting from $z \in \mathbf{H} \backslash \overline{\mathbf{D}}$ satisfies:

$$
p\left(z, e^{i \theta}\right)=\frac{2}{\pi} \frac{\operatorname{Im}(z)}{|z|^{2}} \sin (\theta)\left(1+O\left(|z|^{-1}\right)\right) \quad \text { as } \quad z \rightarrow \infty .
$$

Problem 10. Using the previous problem, show that if $A \in \mathcal{Q}$ with $A \subseteq \overline{\mathbf{D}} \cap \mathbf{H}$ then

$$
\operatorname{hcap}(A)=\frac{2}{\pi} \int_{0}^{\pi} \mathbf{E}_{e^{i \theta}}\left[\operatorname{Im}\left(B_{\tau}\right)\right] \sin (\theta) d \theta
$$

where τ is the first time that a complex Brownian motion B exits $\mathbf{H} \backslash A$ and \mathbf{E}_{z} denotes the expectation with respect to the law under which B starts from z.

Problem 11.

(i) Using the conformal invariance of Brownian motion, show that the hitting density (with respect to Lebesgue measure) for a complex Brownian motion starting from $z \in \mathbf{D}$ on the unit circle is given by

$$
p\left(z, e^{i \theta}\right)=\frac{1}{2 \pi} \frac{1-|z|^{2}}{\left|e^{i \theta}-z\right|^{2}} \quad \text { for } \quad \theta \in[0,2 \pi)
$$

You may assume that the hitting density is given by the uniform distribution on $\partial \mathbf{D}$ when $z=0$.
(ii) Suppose that u is a harmonic function on a domain $D \subseteq \mathbf{C}$. Show that for each $n \in \mathbf{N}=$ $\{1,2, \ldots\}$ there exists a constant $c_{n}>0$ such that for all $j, k \in \mathbf{N}_{0}=\{0,1, \ldots\}$ with $j+k=n$ and $z=x+i y \in D$ we have that

$$
\left|\partial_{x}^{j} \partial_{y}^{k} u(z)\right| \leq \frac{c_{n}}{\operatorname{dist}(z, \partial D)^{n}}\|u\|_{\infty}
$$

Problem 12. Show that there exist constants $c>0$ and $\alpha \in(0,1)$ so that the following true. Suppose that $A \subseteq \mathbf{C}$ is a connected set which intersects both $\partial B(0, \epsilon)$ and $\partial B(0,1)$. Let B be a complex Brownian motion starting from 0 and $\tau=\inf \left\{t \geq 0:\left|B_{t}\right| \geq 1\right\}$. Then

$$
\mathbf{P}[B([0, \tau]) \cap A \neq \emptyset] \leq c \epsilon^{\alpha} .
$$

[Hint: show that if $B_{0}=3 / 4$ then B has a positive chance of disconnecting $B(0,1 / 2)$ from ∞ before exiting $B(0,1) \backslash B(0,1 / 2)$.]

Optional problems: Riemann mapping theorem

The purpose of this sequence of problems is to prove the Riemann mapping theorem.
Optional Problem 1. Prove the Harnack inequality: suppose that u is a positive harmonic function defined on a domain D. Then for each $K \subseteq D$ compact there exists a constant $M>0$ (independent of u) such that

$$
\frac{\sup _{z \in K} u(z)}{\inf _{z \in K} u(z)} \leq M
$$

Optional Problem 2. Deduce from Problem 1 that if f, \widetilde{f} are conformal transformations $D \rightarrow \mathbf{D}$ taking z to 0 and with positive derivative at z, then $f=\widetilde{f}$.
Optional Problem 3. Suppose that D is a simply connected domain with $D \neq \mathbf{C}$. Suppose that $z \in D$. Show that there exists a unique conformal transformation $f: D \rightarrow \mathbf{D}$ with $f(z)=0$ and $f^{\prime}(z)>0$ using the following steps.

- Let \mathcal{C} be the collection of conformal transformations f from D into a subset of \mathbf{D} with $f(z)=0$ and $f^{\prime}(z)>0$. Deduce from the Schwarz lemma that if $f \in \mathcal{C}$ then $f^{\prime}(z) \leq(\operatorname{dist}(z, \partial D))^{-1}$.
- Show that \mathcal{C} is non-empty.
- Suppose that $\left(f_{n}\right)$ is a sequence in \mathcal{C} such that, for each $K \subseteq D$ compact, we have that $\left.\left.f_{n}\right|_{K} \rightarrow f\right|_{K}$ uniformly where f is conformal on D. Show that f is either constant or injective.
- Let $M=\sup \left\{f^{\prime}(z): z \in \mathcal{C}\right\}$. Let $\left(f_{n}\right)$ be a sequence of functions in \mathcal{C} with $f_{n}^{\prime}(z)$ increasing to M. Explain why there exists a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ which converges uniformly to a map $f: D \rightarrow \mathbf{D}$. (Hint: use Problem 7, the Harnack inequality, and the Arzela-Ascoli theorem.) Explain why $f^{\prime}(z)=M$ and deduce from the previous part that f is injective.
- Show that f is surjective onto \mathbf{D}. (Hint: argue by contradiction that if f is not surjective then $f^{\prime}(z)<M$.)

