RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1. Suppose that e is a Brownian excursion. Fix ¢y € [0,1). For each r > 0, we let 7 be
the fractional part of r given by r — |r|. Define the process e: [0, 1] — R4 by setting
e(t) = e(ty) + e(to +t) — 2me(to, to + 1)

where me(s,t) = inf e sv4 €(r). Show that € is a Brownian excursion. [Hint: show that the law
of a uniformly random element of LTy is invariant under translating its root and deduce that a
simple random walk excursion satisfies an analogous property. Conclude by taking a scaling limit.]

Problem 2. Suppose that (e, Z) is a Brownian snake. Suppose that we have the setup and define
€ as in the previous problem. Let also

Jy = Zm — Zto-
Show that (&, Z) is a Brownian snake.
Problem 3. Suppose that (¢,7,¢) € LT,, x {—1,1}. Let ¢ € Q? be given by ¢ = Q(¢, T, €). Suppose
that u,v € V(q) \ {v«} and let e, €’ be corners of 7 such that e~ = u and (e”)" = v. Show that
d(u,v) < L(u) +£(v) =2 min L(e") +2

Ele,e’]

where [e, ¢'] are the corners in the contour exploration from e to €’ and d is the graph distance on q.

Problem 4. Assume that we have the same setup as in Problem 3. Show that
d(u,v) > l(u) + £(v) — 2 H[l[in (w)
w

€[[u,v]]
where [[u, v]] is the set of all vertices lying on the geodesic path from u to v in 7.
Problem 5. Suppose that g: [0,1] — R is continuous with ¢g(0) = ¢g(1) = 0. For each s,t € [0, 1],
]

let mgy(s,t) = inf,cfsnr,sve 9(r). Show that for every sq,...,s, € [0,1] and A1,..., A\, € R we have
that

n
Z )\ix\jmg(si,sj) Z 0.

1,j=1

Problem 6. Suppose that (¢, 1) is uniformly distributed on LT} and let V}, be the label contour
function. Show that for each £ € N and s,t € [0, 1] we have that

E <Vk(2k‘t) - Vk(2k‘5)>4p] < elt — 5P,

kl/4

Conclude that the sequence of functions ¢ — Vj,(2kt)/kY/* is tight.
Problem 7. Convince yourself that Qcvs(Tcovs(q)) = g for all g € Q.

Problem 8. Establish the following properties of the half-plane capacity (hcap).
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(i) If r > 0, A € Q, then hcap(rA) = r?hcap(A) and g,4(z) = rga(z/r).
(ii) If z € R, A € Q, then hcap(A + =) = hcap(A) and gat,(2) = ga(z — z) + =.
(iii) If A, A € Q with A C A then

heap(A) = heap(A) + heap(ga(A \ A)).

Problem 9.

(i) Show that f(z) = z + 1/z is a conformal transformation from H\ D to H.

(ii) Using the conformal invariance of Brownian motion, show that the hitting density (with respect
to Lebesgue measure) for a complex Brownian motion starting from z € H on the real line 0H
is given by

()=~ —L

ZU) = —————

P 7 (r —u)? + y?
(Note that p(i,-) is the Cauchy distribution on R.)

(iii) Using the conformal invariance of Brownian motion, show that the density p(z, ), 6 € [0, 7],
for the first exit distribution (with respect to Lebesgue measure) of a complex Brownian motion
on H N 0D starting from z € H\ D satisfies:

_ 21Im(z)

p(z,e?) = T TE sin(6) (1 + O(|z|_1)) as  z — oo.

where z=xz+1y, wue€OH.

Problem 10. Using the previous problem, show that if A € Q with A C D N H then

2 ™

hcap(4) = / E o [Im(B;)]sin(0)dd
T Jo

where 7 is the first time that a complex Brownian motion B exits H\ A and E, denotes the

expectation with respect to the law under which B starts from z.

Problem 11.

(i) Using the conformal invariance of Brownian motion, show that the hitting density (with respect
to Lebesgue measure) for a complex Brownian motion starting from z € D on the unit circle
is given by

; 1 1—|z?
16
, = ———— for 0¢€]|0,2m).
pee) = 5oy for 0 (0,27
You may assume that the hitting density is given by the uniform distribution on 0D when
z=0.

(ii) Suppose that u is a harmonic function on a domain D C C. Show that for each n € N =
{1,2,...} there exists a constant ¢, > 0 such that for all j,k € No ={0,1,...} with j+k=n
and z = x + iy € D we have that

J 9k < n
8m8yu(z)‘ - dist(z,aD)"HuHOO'

Problem 12. Show that there exist constants ¢ > 0 and a € (0,1) so that the following true.
Suppose that A C C is a connected set which intersects both 0B(0,¢€) and 0B(0,1). Let B be a
complex Brownian motion starting from 0 and 7 = inf{t > 0: |B;| > 1}. Then

P[B([0,7]) N A # 0] < ce™.
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[Hint: show that if By = 3/4 then B has a positive chance of disconnecting B(0,1/2) from oo before
exiting B(0,1) \ B(0,1/2).]

Optional problems: Riemann mapping theorem
The purpose of this sequence of problems is to prove the Riemann mapping theorem.

Optional Problem 1. Prove the Harnack inequality: suppose that u is a positive harmonic
function defined on a domain D. Then for each K C D compact there exists a constant M > 0
(independent of u) such that

sup.eu(s) _

inf,exu(z) —

Optional Problem 2. Deduce from Problem 1 that if f,j are conformal transformations D — D
taking z to 0 and with positive derivative at z, then f = f.

Optional Problem 3. Suppose that D is a simply connected domain with D # C. Suppose that
z € D. Show that there exists a unique conformal transformation f: D — D with f(z) = 0 and
f(2) > 0 using the following steps.

e Let C be the collection of conformal transformations f from D into a subset of D with f(z) =0
and f'(z) > 0. Deduce from the Schwarz lemma that if f € C then f’(z) < (dist(z,0D)) ™!

e Show that C is non-empty.

e Suppose that (f,) is a sequence in C such that, for each K C D compact, we have that
fulk — flx uniformly where f is conformal on D. Show that f is either constant or
injective.

e Let M =sup{f'(z):z€C}. Let (f,) be a sequence of functions in C with f/(z) increasing
to M. Explain why there exists a subsequence (fy, ) of (f,) which converges uniformly to
amap f: D — D. (Hint: use Problem 7, the Harnack inequality, and the Arzela-Ascoli
theorem.) Explain why f/(z) = M and deduce from the previous part that f is injective.

e Show that f is surjective onto D. (Hint: argue by contradiction that if f is not surjective
then f'(z) < M.)



