RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 1

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1.

(i) Show that the cardinality of the set \mathbf{T}_k of plane trees with k edges is the kth Catalan number

$$C_k = \frac{1}{k+1} \begin{pmatrix} 2k\\ k \end{pmatrix}.$$

[*Hint: recall that the Catalan numbers satisfy the recursion* $C_{k+1} = \sum_{i=0}^{k} C_i C_{k-i}$.]

(ii) Show that the Dyck paths of length 2k are in bijection with \mathbf{T}_k via the contour function map.

Problem 2. Suppose that τ is a Galton-Watson tree with Geometric(1/2) offspring distribution, viewed as a plane tree. Show that the conditional law of τ given that $|\tau| = k$ is uniformly distributed on \mathbf{T}_k .

Problem 3. Let $p_t^*(x,y) = p_t(x,y) - p_t(x,-y)$ where $p_t(x,y)$ is the transition density for a standard Brownian motion. Show that p_t^* is the transition density for the process $B_{t\wedge\tau}$ where B is a standard Brownian motion with $B_0 > 0$ and $\tau = \inf\{t \ge 0 : B_t = 0\}$. That is, for each $0 < t_1 < \cdots < t_k$ and $x_1, \ldots, x_k > 0$ show that the law of $(B_{t_1\wedge\tau}, \ldots, B_{t_k\wedge\tau})$ has density $p_{t_1}^*(B_0, x_1)p_{t_2-t_1}^*(x_1, x_2)\cdots p_{t_k-t_{k-1}}^*(x_{k-1}, x_k)$. (The process $B_{t\wedge\tau}$ is Brownian motion killed upon hitting 0.) [Hint: use the reflection principle.]

Problem 4. Show that the Brownian excursion is well-defined using the following steps.

(i) The densities $\mathbf{BE}_{t_1,\dots,t_k}$ on \mathbf{R}^k_+ define probability measures which are consistent. That is, show that for each $0 < t_1 < \cdots < t_{k+1} < 1, 1 \le j \le k+1$ we have that

$$\mathbf{BE}_{t_1,\dots,t_{j-1},t_{j+1},\dots,t_{k+1}}(x_1,\dots,x_{j-1},x_{j+1},\dots,x_{k+1}) = \int_0^\infty \mathbf{BE}_{t_1,\dots,t_{k+1}}(x_1,\dots,x_{k+1})dx_j$$

and $\int_0^\infty \cdots \int_0^\infty \mathbf{BE}_{t_1,\dots,t_k}(x_1,\dots,x_k) dx_1 \cdots dx_k = 1.$

(ii) There exists a unique continuous process $\mathbf{e} \colon [0,1] \to \mathbf{R}$ whose finite dimensional distributions are given by **BE**. [*Hint: use the Kolmogorov-Centsov continuity criterion.*]

Explain further why **e** is Hölder- $(\frac{1}{2} - \epsilon)$ continuous for each $\epsilon > 0$.

Problem 5. Show that the tree (\mathcal{T}_g, d_g) encoded by a continuous function $g: [0, 1] \to [0, \infty)$ is an **R**-tree.

Problem 6. Suppose that **e** is a Brownian excursion, let (\mathcal{T}, d) be the associated CRT, and let $\pi: [0,1] \to \mathcal{T}$ be the associated projection map. Prove that the following statements hold a.s.

- (i) The set of $t \in [0, 1]$ so that $\pi(t)$ is a leaf in \mathcal{T} has full Lebesgue measure. [Hint: show that for each $t \in (0, 1)$ and $\epsilon > 0$ there a.s. exists $s \in (t \epsilon, t)$ so that $\mathbf{e}(s) < \mathbf{e}(t)$ and also $s \in (t, t + \epsilon)$ so that $\mathbf{e}(s) < \mathbf{e}(t)$.]
- (ii) Every $a \in \mathcal{T}$ has multiplicity at most 3. [Hint: Show that the set of local minima of \mathbf{e} is countable and distinct.]
- (iii) The set of $a \in \mathcal{T}$ with multiplicity 3 is countable.

Problem 7.

- (i) Prove that every compact metric space can be isometrically embedded into l_∞ (the space of bounded real sequences equipped with the metric d((a_n), (b_n)) = sup_n |a_n b_n|). [Hint: let (x_n) be a countable dense subset of (X, d) and consider the map X → l_∞ defined by x → (d(x, x_n))[∞]_{n=1}. Check that this map defines an isometry on (x_n) hence extends to an isometry on X.]
- (ii) Deduce the triangle inequality for the Gromov-Hausdorff distance.

Problem 8. Suppose that (X, d), (X', d') are compact metric spaces. Show that

$$d_{\mathrm{GH}}(X, X') = \frac{1}{2} \inf_{\mathcal{R}} \mathrm{dis}(\mathcal{R})$$

where the infimum is over all correspondences \mathcal{R} in $X \times X'$ and

$$\operatorname{dis}(\mathcal{R}) = \sup\{|d(x, y) - d'(x', y')| : (x, x'), (y, y') \in \mathcal{R}\}\$$

is the distortion of \mathcal{R} using the following steps.

- (i) Show that $d_{\text{GH}}(X, X') = \inf\{D_{\text{H}}(X, X') : D \text{ is a metric on } X \coprod X' \text{ with } D|_X = d, D|_{X'} = d'\}$ where $X \coprod X'$ denotes the disjoint union of X and X'.
- (ii) Deduce that if $d_{\text{GH}}(X, X') < \epsilon$ then $\mathcal{R} = \{(x, x') : D(x, x') < \epsilon\}$ where D is a metric on $X \coprod X'$ as above defines a correspondence with $\text{dis}(\mathcal{R}) < 2\epsilon$. Conclude that $\frac{1}{2}\text{dis}(\mathcal{R}) \leq d_{\text{GH}}(X, X')$.
- (iii) Also show that if $\operatorname{dis}(\mathcal{R}) < 2\epsilon$ then $D|_X = d$, $D|_{X'} = d'$, and

$$D(x, x') = \inf\{d(x, y) + d'(x', y') + \epsilon : (y, y') \in \mathcal{R}\} \text{ for } x \in X, \quad x' \in X'$$

defines a metric on $X \coprod X'$ with $d_{\mathrm{H}}(X, X') < \epsilon$. Conclude that $d_{\mathrm{GH}}(X, X') \leq \frac{1}{2} \mathrm{dis}(\mathcal{R})$.

Problem 9. Prove the following version of the local central limit theorem using Stirling's formula. Suppose that $S(n) = \sum_{j=1}^{n} \xi_j$ where the (ξ_n) are i.i.d. with $\mathbf{P}[\xi_1 = 1] = \mathbf{P}[\xi_1 = -1] = 1/2$. Using Stirling's formula, prove that for every $\epsilon > 0$

$$\lim_{n \to \infty} \sup_{x \in \mathbf{R}} \sup_{s \ge \epsilon} \sup_{x \in \mathbf{R}} \left| \sqrt{n} \mathbf{P} \left[S(\lfloor ns \rfloor) = \lfloor x\sqrt{n} \rfloor \text{ or } \lfloor x\sqrt{n} \rfloor + 1 \right] - 2p_s(0, x) \right| = 0$$

where $p_s(x, y)$ is the transition kernel for Brownian motion.

Problem 10. Suppose that C_k is the contour function for τ chosen uniformly at random from \mathbf{T}_k . Show that the family of functions $[0,1] \to \mathbf{R}_+$ defined by $t \mapsto C_k(2kt)/\sqrt{2k}$ is tight using the following steps. Suppose that $i, j \in \{0, \ldots, 2k\}$ with j > i.

- (i) Explain why $|C_k(j) C_k(i)| \le C_k(j) + C_k(i) 2\min_{i \le \ell \le j} C_k(\ell)$
- (ii) Explain why $C_k(j) + C_k(i) 2\min_{i \le \ell \le j} C_k(\ell) \stackrel{d}{=} C_k(j-i)$ [Hint: re-root τ so that the *i*th vertex in the contour exploration becomes the root.]
- (iii) Show that for each p > 1 there exists a constant $c_p > 0$ so that $\mathbf{E}[(C_k(i))^{2p}] \leq c_p i^p$. [Hint: use the formula for $\mathbf{P}[C_k(i) = x]$ derived in the proof of the convergence of the first order marginal.]
- (iv) Conclude that there exists a constant $c_p > 0$ so that for each $0 \le s < t \le 1$ we have that $\mathbf{E}[|(C_k(2kt) C_k(2ks))/\sqrt{2k}|^{2p}] \le c_p(t-s)^p$.

Problem 11. Prove *Euler's formula*. That is, show that if *m* is a map then

$$\#\mathbf{V}(m) - \#\mathbf{E}(m) + \#\mathbf{F}(m) = 2.$$

[Hint: consider how $\mathbf{V}(m)$, $\mathbf{E}(m)$, and $\mathbf{F}(m)$ change when removing an edge.] Deduce that m is a quadrangulation with n faces then #V(m) = n + 2.

Problem 12. Prove that q if is a quadrangulation then it is bipartite.