
RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 1

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1.

(i) Show that the cardinality of the set Tk of plane trees with k edges is the kth Catalan number

Ck =
1

k + 1

(
2k
k

)
.

[Hint: recall that the Catalan numbers satisfy the recursion Ck+1 =
∑k

i=0CiCk−i.]
(ii) Show that the Dyck paths of length 2k are in bijection with Tk via the contour function map.

Problem 2. Suppose that τ is a Galton-Watson tree with Geometric(1/2) offspring distribution,
viewed as a plane tree. Show that the conditional law of τ given that |τ | = k is uniformly distributed
on Tk.

Problem 3. Let p∗t (x, y) = pt(x, y) − pt(x,−y) where pt(x, y) is the transition density for a
standard Brownian motion. Show that p∗t is the transition density for the process Bt∧τ where
B is a standard Brownian motion with B0 > 0 and τ = inf{t ≥ 0 : Bt = 0}. That is, for
each 0 < t1 < · · · < tk and x1, . . . , xk > 0 show that the law of (Bt1∧τ , . . . , Btk∧τ ) has density
p∗t1(B0, x1)p

∗
t2−t1(x1, x2) · · · p∗tk−tk−1

(xk−1, xk). (The process Bt∧τ is Brownian motion killed upon

hitting 0.) [Hint: use the reflection principle.]

Problem 4. Show that the Brownian excursion is well-defined using the following steps.

(i) The densities BEt1,...,tk on Rk
+ define probability measures which are consistent. That is, show

that for each 0 < t1 < · · · < tk+1 < 1, 1 ≤ j ≤ k + 1 we have that

BEt1,...,tj−1,tj+1,...,tk+1
(x1, . . . , xj−1, xj+1, . . . , xk+1) =

∫ ∞
0

BEt1,...,tk+1
(x1, . . . , xk+1)dxj

and
∫∞
0 · · ·

∫∞
0 BEt1,...,tk(x1, . . . , xk)dx1 · · · dxk = 1.

(ii) There exists a unique continuous process e : [0, 1]→ R whose finite dimensional distributions
are given by BE. [Hint: use the Kolmogorov-Centsov continuity criterion.]

Explain further why e is Hölder-(12 − ε) continuous for each ε > 0.

Problem 5. Show that the tree (Tg, dg) encoded by a continuous function g : [0, 1]→ [0,∞) is an
R-tree.

Problem 6. Suppose that e is a Brownian excursion, let (T , d) be the associated CRT, and let
π : [0, 1]→ T be the associated projection map. Prove that the following statements hold a.s.

(i) The set of t ∈ [0, 1] so that π(t) is a leaf in T has full Lebesgue measure. [Hint: show that for
each t ∈ (0, 1) and ε > 0 there a.s. exists s ∈ (t− ε, t) so that e(s) < e(t) and also s ∈ (t, t+ ε)
so that e(s) < e(t).]

(ii) Every a ∈ T has multiplicity at most 3. [Hint: Show that the set of local minima of e is
countable and distinct.]

(iii) The set of a ∈ T with multiplicity 3 is countable.

Problem 7.
1
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(i) Prove that every compact metric space can be isometrically embedded into `∞ (the space
of bounded real sequences equipped with the metric d((an), (bn)) = supn |an − bn|). [Hint:
let (xn) be a countable dense subset of (X, d) and consider the map X → `∞ defined by
x 7→ (d(x, xn))∞n=1. Check that this map defines an isometry on (xn) hence extends to an
isometry on X.]

(ii) Deduce the triangle inequality for the Gromov-Hausdorff distance.

Problem 8. Suppose that (X, d), (X ′, d′) are compact metric spaces. Show that

dGH(X,X ′) =
1

2
inf
R

dis(R)

where the infimum is over all correspondences R in X ×X ′ and

dis(R) = sup{|d(x, y)− d′(x′, y′)| : (x, x′), (y, y′) ∈ R}
is the distortion of R using the following steps.

(i) Show that dGH(X,X ′) = inf{DH(X,X ′) : D is a metric on X
∐
X ′ with D|X = d, D|X′ =

d′} where X
∐
X ′ denotes the disjoint union of X and X ′.

(ii) Deduce that if dGH(X,X ′) < ε thenR = {(x, x′) : D(x, x′) < ε} where D is a metric on X
∐
X ′

as above defines a correspondence with dis(R) < 2ε. Conclude that 1
2dis(R) ≤ dGH(X,X ′).

(iii) Also show that if dis(R) < 2ε then D|X = d, D|X′ = d′, and

D(x, x′) = inf{d(x, y) + d′(x′, y′) + ε : (y, y′) ∈ R} for x ∈ X, x′ ∈ X ′

defines a metric on X
∐
X ′ with dH(X,X ′) < ε. Conclude that dGH(X,X ′) ≤ 1

2dis(R).

Problem 9. Prove the following version of the local central limit theorem using Stirling’s formula.
Suppose that S(n) =

∑n
j=1 ξj where the (ξn) are i.i.d. with P[ξ1 = 1] = P[ξ1 = −1] = 1/2. Using

Stirling’s formula, prove that for every ε > 0

lim
n→∞

sup
x∈R

sup
s≥ε

∣∣√nP[S(bnsc) = bx
√
nc or bx

√
nc+ 1

]
− 2ps(0, x)

∣∣ = 0

where ps(x, y) is the transition kernel for Brownian motion.

Problem 10. Suppose that Ck is the contour function for τ chosen uniformly at random from
Tk. Show that the family of functions [0, 1]→ R+ defined by t 7→ Ck(2kt)/

√
2k is tight using the

following steps. Suppose that i, j ∈ {0, . . . , 2k} with j > i.

(i) Explain why |Ck(j)− Ck(i)| ≤ Ck(j) + Ck(i)− 2 mini≤`≤j Ck(`)

(ii) Explain why Ck(j) + Ck(i) − 2 mini≤`≤j Ck(`)
d
= Ck(j − i) [Hint: re-root τ so that the ith

vertex in the contour exploration becomes the root.]
(iii) Show that for each p > 1 there exists a constant cp > 0 so that E[(Ck(i))

2p] ≤ cpi
p. [Hint:

use the formula for P[Ck(i) = x] derived in the proof of the convergence of the first order
marginal.]

(iv) Conclude that there exists a constant cp > 0 so that for each 0 ≤ s < t ≤ 1 we have that

E[|(Ck(2kt)− Ck(2ks))/
√

2k|2p] ≤ cp(t− s)p.

Problem 11. Prove Euler’s formula. That is, show that if m is a map then

#V(m)−#E(m) + #F(m) = 2.

[Hint: consider how V(m), E(m), and F(m) change when removing an edge.]
Deduce that m is a quadrangulation with n faces then #V (m) = n+ 2.

Problem 12. Prove that q if is a quadrangulation then it is bipartite.


