RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 1

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1.

(i) Show that the cardinality of the set \mathbf{T}_{k} of plane trees with k edges is the k th Catalan number

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k} .
$$

[Hint: recall that the Catalan numbers satisfy the recursion $C_{k+1}=\sum_{i=0}^{k} C_{i} C_{k-i}$.]
(ii) Show that the Dyck paths of length $2 k$ are in bijection with \mathbf{T}_{k} via the contour function map.

Problem 2. Suppose that τ is a Galton-Watson tree with Geometric $(1 / 2)$ offspring distribution, viewed as a plane tree. Show that the conditional law of τ given that $|\tau|=k$ is uniformly distributed on \mathbf{T}_{k}.

Problem 3. Let $p_{t}^{*}(x, y)=p_{t}(x, y)-p_{t}(x,-y)$ where $p_{t}(x, y)$ is the transition density for a standard Brownian motion. Show that p_{t}^{*} is the transition density for the process $B_{t \wedge \tau}$ where B is a standard Brownian motion with $B_{0}>0$ and $\tau=\inf \left\{t \geq 0: B_{t}=0\right\}$. That is, for each $0<t_{1}<\cdots<t_{k}$ and $x_{1}, \ldots, x_{k}>0$ show that the law of ($B_{t_{1} \wedge \tau}, \ldots, B_{t_{k} \wedge \tau}$) has density $p_{t_{1}}^{*}\left(B_{0}, x_{1}\right) p_{t_{2}-t_{1}}^{*}\left(x_{1}, x_{2}\right) \cdots p_{t_{k}-t_{k-1}}^{*}\left(x_{k-1}, x_{k}\right)$. (The process $B_{t \wedge \tau}$ is Brownian motion killed upon hitting 0.) [Hint: use the reflection principle.]
Problem 4. Show that the Brownian excursion is well-defined using the following steps.
(i) The densities $\mathbf{B E}_{t_{1}, \ldots, t_{k}}$ on \mathbf{R}_{+}^{k} define probability measures which are consistent. That is, show that for each $0<t_{1}<\cdots<t_{k+1}<1,1 \leq j \leq k+1$ we have that

$$
\mathbf{B E}_{t_{1}, \ldots, t_{j-1}, t_{j+1}, \ldots, t_{k+1}}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k+1}\right)=\int_{0}^{\infty} \mathbf{B E}_{t_{1}, \ldots, t_{k+1}}\left(x_{1}, \ldots, x_{k+1}\right) d x_{j}
$$

and $\int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathbf{B E}_{t_{1}, \ldots, t_{k}}\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}=1$.
(ii) There exists a unique continuous process e: $[0,1] \rightarrow \mathbf{R}$ whose finite dimensional distributions are given by BE. [Hint: use the Kolmogorov-Centsov continuity criterion.]
Explain further why \mathbf{e} is Hölder- $\left(\frac{1}{2}-\epsilon\right)$ continuous for each $\epsilon>0$.
Problem 5. Show that the tree $\left(\mathcal{T}_{g}, d_{g}\right)$ encoded by a continuous function $g:[0,1] \rightarrow[0, \infty)$ is an R-tree.

Problem 6. Suppose that \mathbf{e} is a Brownian excursion, let (\mathcal{T}, d) be the associated CRT, and let $\pi:[0,1] \rightarrow \mathcal{T}$ be the associated projection map. Prove that the following statements hold a.s.
(i) The set of $t \in[0,1]$ so that $\pi(t)$ is a leaf in \mathcal{T} has full Lebesgue measure. [Hint: show that for each $t \in(0,1)$ and $\epsilon>0$ there a.s. exists $s \in(t-\epsilon, t)$ so that $\mathbf{e}(s)<\mathbf{e}(t)$ and also $s \in(t, t+\epsilon)$ so that $\mathbf{e}(s)<\mathbf{e}(t)$.]
(ii) Every $a \in \mathcal{T}$ has multiplicity at most 3. [Hint: Show that the set of local minima of \mathbf{e} is countable and distinct.]
(iii) The set of $a \in \mathcal{T}$ with multiplicity 3 is countable.

Problem 7.

(i) Prove that every compact metric space can be isometrically embedded into ℓ_{∞} (the space of bounded real sequences equipped with the metric $\left.d\left(\left(a_{n}\right),\left(b_{n}\right)\right)=\sup _{n}\left|a_{n}-b_{n}\right|\right)$. [Hint: let $\left(x_{n}\right)$ be a countable dense subset of (X, d) and consider the map $X \rightarrow \ell_{\infty}$ defined by $x \mapsto\left(d\left(x, x_{n}\right)\right)_{n=1}^{\infty}$. Check that this map defines an isometry on $\left(x_{n}\right)$ hence extends to an isometry on X.]
(ii) Deduce the triangle inequality for the Gromov-Hausdorff distance.

Problem 8. Suppose that $(X, d),\left(X^{\prime}, d^{\prime}\right)$ are compact metric spaces. Show that

$$
d_{\mathrm{GH}}\left(X, X^{\prime}\right)=\frac{1}{2} \inf _{\mathcal{R}} \operatorname{dis}(\mathcal{R})
$$

where the infimum is over all correspondences \mathcal{R} in $X \times X^{\prime}$ and

$$
\operatorname{dis}(\mathcal{R})=\sup \left\{\left|d(x, y)-d^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|:\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in \mathcal{R}\right\}
$$

is the distortion of \mathcal{R} using the following steps.
(i) Show that $d_{\mathrm{GH}}\left(X, X^{\prime}\right)=\inf \left\{D_{\mathrm{H}}\left(X, X^{\prime}\right): D\right.$ is a metric on $X \amalg X^{\prime}$ with $\left.D\right|_{X}=d,\left.D\right|_{X^{\prime}}=$ $\left.d^{\prime}\right\}$ where $X \amalg X^{\prime}$ denotes the disjoint union of X and X^{\prime}.
(ii) Deduce that if $d_{\mathrm{GH}}\left(X, X^{\prime}\right)<\epsilon$ then $\mathcal{R}=\left\{\left(x, x^{\prime}\right): D\left(x, x^{\prime}\right)<\epsilon\right\}$ where D is a metric on $X \amalg X^{\prime}$ as above defines a correspondence with $\operatorname{dis}(\mathcal{R})<2 \epsilon$. Conclude that $\frac{1}{2} \operatorname{dis}(\mathcal{R}) \leq d_{\mathrm{GH}}\left(X, X^{\prime}\right)$.
(iii) Also show that if $\operatorname{dis}(\mathcal{R})<2 \epsilon$ then $\left.D\right|_{X}=d,\left.D\right|_{X^{\prime}}=d^{\prime}$, and

$$
D\left(x, x^{\prime}\right)=\inf \left\{d(x, y)+d^{\prime}\left(x^{\prime}, y^{\prime}\right)+\epsilon:\left(y, y^{\prime}\right) \in \mathcal{R}\right\} \quad \text { for } \quad x \in X, \quad x^{\prime} \in X^{\prime}
$$

defines a metric on $X \amalg X^{\prime}$ with $d_{\mathrm{H}}\left(X, X^{\prime}\right)<\epsilon$. Conclude that $d_{\mathrm{GH}}\left(X, X^{\prime}\right) \leq \frac{1}{2} \operatorname{dis}(\mathcal{R})$.
Problem 9. Prove the following version of the local central limit theorem using Stirling's formula. Suppose that $S(n)=\sum_{j=1}^{n} \xi_{j}$ where the $\left(\xi_{n}\right)$ are i.i.d. with $\mathbf{P}\left[\xi_{1}=1\right]=\mathbf{P}\left[\xi_{1}=-1\right]=1 / 2$. Using Stirling's formula, prove that for every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathbf{R}} \sup _{s \geq \epsilon} \mid \sqrt{n} \mathbf{P}[S(\lfloor n s\rfloor)=\lfloor x \sqrt{n}\rfloor \text { or }\lfloor x \sqrt{n}\rfloor+1]-2 p_{s}(0, x) \mid=0
$$

where $p_{s}(x, y)$ is the transition kernel for Brownian motion.
Problem 10. Suppose that C_{k} is the contour function for τ chosen uniformly at random from \mathbf{T}_{k}. Show that the family of functions $[0,1] \rightarrow \mathbf{R}_{+}$defined by $t \mapsto C_{k}(2 k t) / \sqrt{2 k}$ is tight using the following steps. Suppose that $i, j \in\{0, \ldots, 2 k\}$ with $j>i$.
(i) Explain why $\left|C_{k}(j)-C_{k}(i)\right| \leq C_{k}(j)+C_{k}(i)-2 \min _{i \leq \ell \leq j} C_{k}(\ell)$
(ii) Explain why $C_{k}(j)+C_{k}(i)-2 \min _{i \leq \ell \leq j} C_{k}(\ell) \stackrel{d}{=} C_{k}(j-i)$ [Hint: re-root τ so that the ith vertex in the contour exploration becomes the root.]
(iii) Show that for each $p>1$ there exists a constant $c_{p}>0$ so that $\mathbf{E}\left[\left(C_{k}(i)\right)^{2 p}\right] \leq c_{p} i^{p}$. [Hint: use the formula for $\mathbf{P}\left[C_{k}(i)=x\right]$ derived in the proof of the convergence of the first order marginal.]
(iv) Conclude that there exists a constant $c_{p}>0$ so that for each $0 \leq s<t \leq 1$ we have that $\mathbf{E}\left[\left|\left(C_{k}(2 k t)-C_{k}(2 k s)\right) / \sqrt{2 k}\right|^{2 p}\right] \leq c_{p}(t-s)^{p}$.
Problem 11. Prove Euler's formula. That is, show that if m is a map then

$$
\# \mathbf{V}(m)-\# \mathbf{E}(m)+\# \mathbf{F}(m)=2
$$

[Hint: consider how $\mathbf{V}(m), \mathbf{E}(m)$, and $\mathbf{F}(m)$ change when removing an edge.]
Deduce that m is a quadrangulation with n faces then $\# V(m)=n+2$.
Problem 12. Prove that q if is a quadrangulation then it is bipartite.

