STOCHASTIC CALCULUS, LENT 2016, EXAMPLE SHEET 4

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1. Let b be bounded and measurable. Use Girsanov's theorem to construct a weak solution to the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+d W_{t}
$$

over the finite (non-random) time interval $[0, T]$.
Problem 2. Show that the SDE

$$
d X_{t}=3 X_{t}^{1 / 3} d t+3 X_{t}^{2 / 3} d B_{t}, \quad X_{0}=0
$$

has strong existence but not pathwise uniqueness.
Problem 3. Find the unique strong solution to the SDE

$$
d X_{t}=\frac{1}{2} X_{t} d t+\sqrt{1+X_{t}^{2}} d B_{t}, \quad X_{0}=x
$$

(Hint: consider the change of variables $Y_{t}=\sinh ^{-1}\left(X_{t}\right)$.)
Problem 4. Construct a filtered probability space on which a Brownian motion B and an adapted process X are defined and such that

$$
d X_{t}=\frac{X_{t}}{t} d t+d B_{t}, \quad X_{0}=0
$$

Is X adapted to the filtration generated by B ? Is B a Brownian motion in the filtration generated by X ?

Problem 5. Let X be a solution of the SDE

$$
d X_{t}=X_{t} g\left(X_{t}\right) d B_{t}
$$

where g is bounded and $X_{0}=x>0$ is non-random.
(1) Show that $\mathbb{P}\left[X_{t}>0\right.$ for all $\left.t \geq 0\right]=1$. Hint: apply Ito's formula to

$$
X_{t} \exp \left(-\int_{0}^{t} g\left(X_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} g^{2}\left(X_{s}\right) d s\right) .
$$

(2) Show that $\mathbb{E}\left[X_{t}\right]=X_{0}$ for all $t \geq 0$.
(3) Fix a non-random time horizon $T>0$. Show that there exists a measure $\widehat{\mathbb{P}}$ on $\left(\Omega, \mathcal{F}_{T}\right)$ which is mutually absolutely continuous with respect to \mathbb{P} and a $\widehat{\mathbb{P}}$-Brownian motion \widehat{B} such that

$$
d Y_{t}=Y_{t} g\left(1 / Y_{t}\right) d \widehat{B}_{t}
$$

where $Y_{t}=1 / X_{t}$.

Problem 6. Establish the following generalized version of the Feynman-Kac formula. Suppose that v satisfies

$$
-\frac{\partial v}{\partial t}+k v=\frac{1}{2} \Delta v+g, \quad \text { on } \quad[0, T) \times \mathbb{R}^{d}
$$

where $v(T, x)=f(x)$ for $x \in \mathbb{R}^{d}$. Let B be a standard Brownian motion and show that v admits the stochastic representation

$$
\begin{aligned}
v(t, x)= & \mathbb{E}_{x}\left[f\left(B_{T-t}\right) \exp \left(-\int_{0}^{T-t} k\left(B_{s}\right) d s\right)\right. \\
& \left.+\int_{0}^{T-t} g\left(t+u, B_{u}\right) \exp \left(-\int_{0}^{u} k\left(B_{s}\right) d s\right) d u\right]
\end{aligned}
$$

for all $t \in[0, T]$ and $x \in \mathbb{R}^{d}$.
Problem 7. Consider the Cauchy problem for the "quasi-linear" parabolic equation

$$
\frac{\partial V}{\partial t}=\frac{1}{2} \Delta V-\frac{1}{2}\|\nabla V\|^{2}+k \quad \text { on } \quad(0, \infty) \times \mathbb{R}^{d}
$$

with $V(0, x)=0$ for $x \in \mathbb{R}^{d}$ where $k: \mathbb{R}^{d} \rightarrow[0, \infty)$ is a continuous function. Show that the only solution $V:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ which is continuous on its domain, of class $C^{1,2}$ on $(0, \infty) \times \mathbb{R}^{d}$, and satisfies the quadratic growth condition for every $T>0$:

$$
-V(t, x) \leq C+a\|x\|^{2}, \quad(t, x) \in[0, T] \times \mathbb{R}^{d}
$$

where $T>0$ is arbitrary and $0<a<1 /(2 T d)$ is given by

$$
V(t, x)=-\log \mathbb{E}_{x}\left[\exp \left(-\int_{0}^{t} k\left(W_{s}\right) d s\right)\right]
$$

for $t \geq 0$ and $x \in \mathbb{R}^{d}$.
Problem 8. Suppose that $b: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\sigma: \mathbb{R}^{d} \rightarrow M^{d \times d}(\mathbb{R})$ are bounded and continuous. For each n, j, we let $t_{j}^{n}=n 2^{-j}$ and we let $\psi_{n}(t)=t_{j}^{n}$ if $t \in\left[t_{j}^{n}, t_{j+1}^{n}\right)$. Assume that X^{n} solves

$$
X_{t}^{n}=X_{0}^{n}+\int_{0}^{t} b\left(X_{\psi_{n}(u)}^{n}\right) d u+\int_{0}^{t} \sigma\left(X_{\psi_{n}(u)}^{n}\right) d B_{u}
$$

Show that for each $m, T>0$ there exist a constant $C>0$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{t}^{n}-X_{s}^{n}\right\|^{2 m}\right] \leq C(t-s)^{m} \quad \text { for all } \quad 0 \leq s<t \leq T \tag{0.1}
\end{equation*}
$$

Explain what it means for the sequence $\left(X^{n}\right)$ to be tight in the space $C\left([0, T], \mathbb{R}^{d}\right)$ and explain why (0.1) implies that $\left(X^{n}\right)$ is tight. (Hint: look at the proof of Kolmogorov's continuity criterion.)

Problem 9. Consider the SDE

$$
d X_{t}=X_{t}^{2} d B_{t}
$$

(1) By considering the process $\widetilde{X}_{t}=1 /\left\|B_{t}-\xi\right\|$ where B is a three-dimensional Brownian motion and ξ is a standard Gaussian in \mathbb{R}^{3} independent of B, show that the SDE has a weak solution.
(2) Verify that both

$$
u^{1}(t, x)=x(2 \Phi(1 /(x \sqrt{t}))-1) \quad \text { and } \quad u^{2}(x, t)=x
$$

solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{x^{4}}{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=x
$$

(3) Which of these solutions corresponds to $u(t, x)=\mathbb{E}_{x}\left[X_{t}\right]$?

