STOCHASTIC CALCULUS, LENT 2016, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1. Suppose that $A, B: [0, \infty) \to \mathbb{R}$ are bounded and measurable and let $f: [0, \infty) \to \mathbb{R}$ be continuous and of finite variation. Show that

$$A \cdot (B \cdot df) = (AB) \cdot df$$

where \cdot denotes the Lebesgue-Stieljes integral and df is the Lebesgue-Stieljes measure associated with f.

Problem 2. Fix $p \ge 2$ and let M be a continuous local martingale with $M_0 = 0$. Use Itô's formula, Doob's inequality, and Hölder's inequality to show that there exists a constant $C_p > 0$ such that

$$\mathbb{E}\left[\sup_{0\leq s\leq t}|M_s|^p\right]\leq C_p\mathbb{E}[[M]_t^{p/2}].$$

Problem 3. Suppose that $f:[0,\infty)\to\mathbb{R}$ is a continuous function. Show that if f has finite variation then it has zero quadratic variation. Conversely, show that if f has finite and positive quadratic variation then it must be of infinite variation.

Problem 4. Let B be a standard Brownian motion. Use Itô's formula to show that the following are martingales with respect to the filtration generated by B.

- (1) $X_t = \exp(\lambda^2 t/2) \sin(\lambda B_t)$ (2) $X_t = (B_t + t) \exp(-B_t t/2)$
- (3) $X_t = \exp(B_t t/2)$

Problem 5. Let $h: [0,\infty) \to \mathbb{R}$ be a measurable function which is square-integrable when restricted to [0, t] for each t > 0 and let B be a standard Brownian motion. Show that the process $H_t = \int_0^t h(s) dB_s$ is Gaussian and compute its covariance. (A real-valued process (X_t) is Gaussian if for any finite family $0 \le t_1 < t_2 < \cdots < t_n < \infty$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ is Gaussian).

Problem 6. Suppose that $f: [0, \infty) \to \mathbb{R}$ is continuous and of finite variation and that $X: [0, \infty) \to \mathbb{R}$ \mathbb{R} is bounded and left-continuous. Show that

$$\sum_{k=0}^{\lceil 2^nt\rceil-1} X(k2^{-n})(f((k+1)2^{-n}) - f(k2^{-n}))$$

converges uniformly to $\int_0^t X(s) df(s)$ on each bounded interval of $[0,\infty)$.

Problem 7. Show that convergence in $(\mathcal{M}_c^2, \|\cdot\|)$ implies ucp convergence.

Problem 8. Show that the covariation $[\cdot, \cdot]$ is symmetric and bilinear. That is, if $M_1, M_2, M_3 \in$ $\mathcal{M}_{c,loc}$ and $a \in \mathbb{R}$, then

$$[aM_1 + M_2, M_3] = a[M_1, M_3] + [M_2, M_3].$$

Problem 9. Let B be a standard Brownian motion and let

$$\widehat{B}_t = B_t - \int_0^t \frac{B_s}{s} ds$$

- (1) Show that \widehat{B} is not a martingale in the filtration generated by B.
- (2) Show that \widehat{B} is a martingale in its own filtration by showing that it is a Brownian motion. [Hint: show that \widehat{B} is a continuous Gaussian process and identify its mean and covariance.]

Problem 10. Fix $d \ge 3$ and let B be a Brownian motion in \mathbb{R}^d starting at $B_0 = \overline{x} = (x, 0, \dots, 0) \in \mathbb{R}^d$ for some x > 0. Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^d . For each a > 0, let $\tau_a = \inf\{t > 0 : \|B_t\| = a\}$.

- (1) Let $D = \mathbb{R}^d \setminus \{0\}$ and let $h: D \to \mathbb{R}$ be defined by $h(x) = ||x||^{2-d}$. Show that h is harmonic on D and that $M_t = ||B_t^{\tau_a}||^{2-d}$ is a local martingale for all $a \ge 0$. Is M a true martingale?
- (2) Use the previous part to show that for any a < b such that 0 < a < x < b,

$$\mathbb{P}_{\overline{x}}[\tau_a < \tau_b] = \frac{\phi(b) - \phi(x)}{\phi(b) - \phi(a)}$$

where $\phi(u) = u^{2-d}$. Conclude that if x > a > 0, then

$$\mathbb{P}_x[\tau_a < \infty] = (a/x)^{d-2}$$

Problem 11.

- (1) Let $f: \mathbb{C} \to \mathbb{C}$ be analytic and let $Z_t = X_t + iY_t$ where (X, Y) is a Brownian motion in \mathbb{R}^2 . Use Itô's formula to show that M = f(Z) is a local martingale in \mathbb{R}^2 . Show further that M is a time-change of Brownian motion in \mathbb{R}^2 .
- (2) Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and fix $z \in \mathbb{D}$. What is the hitting distribution for Z on ∂D in the case that $Z_0 = 0$? By applying a Möbius transformation $\mathbb{D} \to \mathbb{D}$ and using the previous part, determine the hitting distribution for Z on $\partial \mathbb{D}$.

Problem 12. Let N be a Poisson process of rate 1 and let $M_t = N_t - t$. Show that both M_t and $N_t^2 - t$ are martingales. Explain why this does not contradict the Lévy characterization of Brownian motion.