STOCHASTIC CALCULUS, LENT 2016, EXAMPLE SHEET 1

Please send corrections to jpmiller@statslab.cam.ac.uk

Brownian motion

Problem 1. Let B be a standard Brownian motion. Show that \widetilde{B} is also a standard Brownian motion in the case that:

- (1) $\widetilde{B}_t = c^{-1} B_{c^2 t}$ for $c \neq 0$
- (2) $\widetilde{B}_t = B_{t+a} B_a$ for $a \ge 0$ (3) $\widetilde{B}_t = B_a B_{a-t}$ for $t \in [0, a]$ and a > 0.

Problem 2. Let B be a standard Brownian motion. Prove that $B_t/t \to 0$ a.s. as $t \to \infty$. Show that the process $B_t = tB_{1/t}$ for t > 0 is standard Brownian motion.

Problem 3 Let B be a standard Brownian motion. For $x \in \mathbb{R}$, let $T_x = \inf\{t > 0 : B_t = x\}$.

- (1) Show that $T_x = x^2/Z^2$ where Z is a N(0, 1) random variable
- (2) Show that the process $(T_x)_{x\geq 0}$ has independent and stationary increments. That is, for all $t_1 < \ldots < t_n$ the random variables $X_{t_{i+1}} - X_{t_i}$ are independent with law depending only on $t_{i+1} - t_i$.

Problem 4. Let B be a standard Brownian motion and fix $t \ge 0$. For $n \ge 1$, let $\Delta_n = \{0 : t_0(n) < 0\}$ $t_1(n) < \cdots < t_{m_n}(n) = t$ be a partition of [0, t] such that

$$\eta_n := \max_{1 \le i \le m_n} \left(t_i(n) - t_{i-1}(n) \right) \to 0 \quad \text{as} \quad n \to \infty.$$

Show that

$$\lim_{n \to \infty} \sum_{i=1}^{m_n} (B_{t_i} - B_{t_{i-1}})^2 = t$$

in L^2 . Show that if the subdivision is dyadic, then the convergence is also almost sure.

Problem 5. Let B be a standard Brownian motion and let $\mathcal{Z} = \{t \ge 0 : B_t = 0\}$ be the set of times at which B is equal to 0.

- (1) Show that \mathcal{Z} is closed.
- (2) Show that the Lebesgue measure of \mathcal{Z} is almost surely equal to 0 [Hint: use Fubini's theorem]

Finite variation and previsible processes

Problem 6. Let H be a previsible process. Show that H_t is \mathcal{F}_{t^-} -measurable for all $t \in (0, \infty)$, where $\mathcal{F}_{t^-} = \sigma(\mathcal{F}_s : s < t)$.

Problem 7.

- (1) Suppose that $(X^n)_{n\geq 1}$ is a sequence of cádlág functions such that $X^n \to X$ uniformly on [0,t]. That is, for every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $n \geq n_0$ implies that $\sup_{s \in [0,t]} |X_s^n - X_s| < \epsilon$. Show that X is cádlág on [0,t].
- (2) Suppose that X is cádlág and let V be its total variation. Assume that $V(t) < \infty$ for some fixed t > 0. Show that $V^n \to V$ uniformly on [0, t] and deduce that V is cádlág on [0, t].

Problem 8. Let (\mathcal{F}_t) be a filtration, let T be a stopping time, and let

 $\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t \quad \forall t \ge 0 \}.$

- (1) Show that \mathcal{F}_T is a σ -algebra.
- (2) Show that T is \mathcal{F}_T -measurable.
- (3) Suppose that X is a cádlág, adapted process. Show that X_T is \mathcal{F}_T -measurable.

Problem 9. Suppose that B is a standard Brownian motion.

- (1) Let $T = \inf\{t \ge 0 : B_t = 1\}$. Show that H defined by $H_t = \mathbf{1}\{T \ge t\}$ is previsible.
- (2) Let

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x \le 0\\ 1 & \text{if } x > 0. \end{cases}$$

Show that $(\operatorname{sgn}(B_t))_{t\geq 0}$ is a previsible process which is neither left nor right continuous.

Problem 10. Suppose that $f: [0, \infty) \to \mathbb{R}$ is absolutely continuous, in the sense that

$$f(t) = f(0) + \int_0^t f'(s)ds \quad \text{for all} \quad t \ge 0$$

for an integrable function f'. Let V(t) be the variation of f on [0, t]. Show that

$$V(t) = \int_0^t |f'(s)| ds.$$

Local martingales and quadratic variation

Problem 11. Suppose that $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Show that the family $\mathcal{X} = \{\mathbb{E}[X | \mathcal{G}] : \mathcal{G} \subseteq \mathcal{F} \text{ is a } \sigma\text{-algebra}\}$ is UI.

Problem 12. Suppose that M is a continuous local martingale with $M_0 = 0$. Show that M is an L^2 -bounded martingale if and only if $\mathbb{E}[[M]_{\infty}] < \infty$.

Problem 13. Let X be a continuous local martingale. Show that if $\mathbb{E}[\sup_{0 \le s \le t} |X_s|] < \infty$ for each $t \ge 0$ then X is a martingale.

Problem 14.

- (1) Suppose that M, N are independent continuous local martingales. Show that $[M, N]_t = 0$. In particular, if $B^{(1)}$ and $B^{(2)}$ are the coordinates of a standard Brownian motion in \mathbb{R}^2 , this shows that $[B^{(1)}, B^{(2)}]_t = 0$ for all $t \ge 0$.
- (2) Let B be a standard Brownian motion in \mathbb{R} and let B be a stopping time which is a.s. not constant. By considering B^T and $B B^T$, show that the converse to the previous part is false. Hint: show that T is measurable with respect to the σ -algebras generated by both B^T and $B B^T$.