Random Surfaces and Quantum Loewner Evolution

Jason Miller and Scott Sheffield

Massachusetts Institute of Technology
January 23, 2014

Overview

Part I: Picking surfaces at random

1. Discrete: random planar maps
2. Continuum: Liouville quantum gravity
3. Conjectured relationship

Part II: Quantum Loewner evolution

1. New universal family of growth processes
2. Tool to relate random planar maps to Liouville quantum gravity
3. Connected to many different topics in probability: RPM, TBM, LQG, GFF, SLE, DLA, FPP, DBM, KPZ, KPZ

Part I: Picking surfaces at random

Random planar maps

- A planar map is a finite graph embedded in the plane

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a surface where each face is a Euclidean quadrangle with adjacent faces glued along their boundaries

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a surface where each face is a Euclidean quadrangle with adjacent faces glued along their boundaries
- In this talk, interested in uniformly random quadrangulations - random planar map (RPM).

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a surface where each face is a Euclidean quadrangle with adjacent faces glued along their boundaries
- In this talk, interested in uniformly random quadrangulations - random planar map (RPM).
- First studied by Tutte in 1960s while working on the four color theorem
- Combinatorics: enumeration formulas
- Physics: statistical physics models: percolation, Ising, UST ...
- Probability: "uniformly random surface," Brownian surface

Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees
(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees
(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)
(Markert-Mokkadem)

Random quadrangulation

Sampled using Sheffield's H-C bijection.

Red tree

Sampled using Sheffield's H-C bijection.

Red and blue trees

Sampled using Sheffield's H-C bijection.

Red and blue trees alone do not determine the map structure

Sampled using Sheffield's H-C bijection.

Random quadrangulation with red and blue trees

Sampled using Sheffield's H-C bijection.

Path snaking between the trees. Encodes the trees and how they are glued together.

Sampled using Sheffield's H-C bijection.

How was the graph embedded into \mathbf{R}^{2} ?

Sampled using Sheffield's H-C bijection.

Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Sampled using Sheffield's H-C bijection.

Circle pack the resulting triangulation.

Sampled using Sheffield's H-C bijection. Packed with Stephenson's CirclePack.

Circle pack the resulting triangulation.

Sampled using Sheffield's H-C bijection. Packed with Stephenson's CirclePack.

Circle pack the resulting triangulation.

Sampled using Sheffield's H-C bijection. Packed with Stephenson's CirclePack.

What is the "limit" of this embedding? Circle packings are related to conformal maps.

Sampled using Sheffield's H-C bijection. Packed with Stephenson's CirclePack.

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.
\Rightarrow Can parameterize the space of surfaces with smooth functions.

- If $\rho=0$, get the same surface
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.
\Rightarrow Can parameterize the space of surfaces with smooth functions.

- If $\rho=0$, get the same surface
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ where
- Covariance: Green's function for SRW
- Mean Height: harmonic extension of ψ

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ where
- Covariance: Green's function for SRW
- Mean Height: harmonic extension of ψ
- Density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ where
- Covariance: Green's function for SRW
- Mean Height: harmonic extension of ψ
- Density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ where
- Covariance: Green's function for SRW
- Mean Height: harmonic extension of ψ
- Density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
$$

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure (Duplantier-Sheffield)
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=1.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure (Duplantier-Sheffield)
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure (Duplantier-Sheffield)
- Can compute areas of regions and lengths of curves

$$
\gamma=1.5
$$

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=2.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure (Duplantier-Sheffield)
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Conjecture: $\sqrt{8 / 3}-\mathrm{LQG}=\mathrm{TBM}$

(Simulation due to J.-F. Marckert)

1. Measures: show that the conformally mapped discrete area measures converge to LQG area measure

Conjecture: $\sqrt{8 / 3}-\mathrm{LQG}=\mathrm{TBM}$

(Simulation due to J.-F. Marckert)

1. Measures: show that the conformally mapped discrete area measures converge to LQG area measure
2. Coding functions: put a space-filling path and coding function on LQG and show that it is the limit of the coding functions for the RPMs

Conjecture: $\sqrt{8 / 3}-\mathrm{LQG}=\mathrm{TBM}$

(Simulation due to J.-F. Marckert)

1. Measures: show that the conformally mapped discrete area measures converge to LQG area measure
2. Coding functions: put a space-filling path and coding function on LQG and show that it is the limit of the coding functions for the RPMs
3. Metric spaces: put a metric on LQG and show that it is isometric to TBM, the metric space limit of RPMs

Continuum space-filling path

Space-filling SLE SL $_{6}$ on a LQG surface. Random path which encodes the limit of a RPM.

Recap

Two natural ways to pick surfaces at random

- Discrete: random planar maps
- Continuum: Liouville quantum gravity $e^{\gamma h(z)} d z, h$ a GFF
- Conjectured to be the same for $\gamma=\sqrt{8 / 3}$
- LQG only made sense of so far as a measure space

Next part: describe new growth process which can be used to endow $\sqrt{8 / 3}$-LQG with a metric space structure

Part II:

Quantum Loewner Evolution

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \mathbf{Z}^{2} ?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \mathbf{Z}^{2} ?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- $\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- $\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- $\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbf{Z}^{2} is not isotropic enough

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- $\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- Z^{2} is not isotropic enough
- Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if
 \mathbf{Z}^{2} is replaced by the Voronoi tesselation associated with a Poisson process

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

Markovian formulation

Rather than sampling all of the edge weights at once, can explore the FPP metric ball starting from a point in a Markovian way.

Due to the memoryless property of the exponential distribution, can sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length

First passage percolation on random planar maps I

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length
Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric

First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

- We do not know how to take a continuum limit of FPP on a random planar map and couple it directly with LQG
- Explain a discrete variant of FPP that involves two operations that we do know how to perform in the continuum:
- Sample random points according to boundary length
- Draw (scaling limits of) critical percolation interfaces (SLE ${ }_{6}$)

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length.

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball

Continuum limit ansatz

- Sample a random planar map

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8 / 3}-L Q G$ surface and the image of the interface converges to an independent SLE_{6}.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE 6
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE 6
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
$\operatorname{QLE}(8 / 3,0)$ is SLE $_{6}$ with tip re-randomization.

Discrete approximation of $\operatorname{QLE}(8 / 3,0)$. Metric ball on a $\sqrt{8 / 3-L Q G}$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

The rate of growth is proportional to

$$
\left(\frac{d \nu}{d \mu}\right)^{\eta} d \mu
$$

where ν (resp. μ) represents harmonic (resp. length) measure.

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

The rate of growth is proportional to

$$
\left(\frac{d \nu}{d \mu}\right)^{\eta} d \mu
$$

where ν (resp. μ) represents harmonic (resp. length) measure.

- First passage percolation: $\eta=0$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

The rate of growth is proportional to

$$
\left(\frac{d \nu}{d \mu}\right)^{\eta} d \mu
$$

where ν (resp. μ) represents harmonic (resp. length) measure.

- First passage percolation: $\eta=0$
- Diffusion limited aggregation: $\eta=1$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

The rate of growth is proportional to

$$
\left(\frac{d \nu}{d \mu}\right)^{\eta} d \mu
$$

where ν (resp. μ) represents harmonic (resp. length) measure.

- First passage percolation: $\eta=0$
- Diffusion limited aggregation: $\eta=1$
- η-dieletric breakdown model: general values of η

Euclidean DLA

Discrete approximation of $\operatorname{QLE}(2,1)$. DLA on a $\sqrt{2}$-LQG

Diffusion limited aggregation

Introduced by Witten and Sander in 1981 as a model for crystal growth

Diffusion limited aggregation

Introduced by Witten and Sander in 1981 as a model for crystal growth

An active area of research in physics for the last 33 years:

Diffusion limited aggregation
 Introduced by Witten and Sander in 1981 as a model for crystal growth

An active area of research in physics for the last 33 years:

Schramm 2006 ICM proceedings:

Given that the fractals produced by DLA are not conformally invariant, it is not too surprising that it is hard to faithfully model DLA using conformal maps. Harry Kesten [44] proved that the diameter of the planar DLA cluster after n steps grows asymptotically no faster than $n^{2 / 3}$, and this appears to be essentially the only theorem concerning two-dimensional DLA, though several very simplified variants of DLA have been successfully analysed.

$\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ processes we can construct

Each of the $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ processes with $\left(\gamma^{2}, \eta\right)$ on the orange curves is built from an SLE $_{\kappa}$ process using tip re-randomization.

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time
- Phases for sample path behavior: which QLEs are trees, have holes, and fill space

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time
- Phases for sample path behavior: which QLEs are trees, have holes, and fill space

What we think we can do:

- Show that $\operatorname{QLE}(8 / 3,0)$ endows $\sqrt{8 / 3}$-LQG with a distance function
- This metric space is isometric to the Brownian map: LQG $=$ TBM

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time
- Phases for sample path behavior: which QLEs are trees, have holes, and fill space

What we think we can do:

- Show that $\mathrm{QLE}(8 / 3,0)$ endows $\sqrt{8 / 3}-\mathrm{LQG}$ with a distance function
- This metric space is isometric to the Brownian map: LQG $=$ TBM

What we would like to do: construct and study $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ for $\left(\gamma^{2}, \eta\right)$ pairs off the orange curves

QLE is connected to other topics in probability

