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Part I: Gluing a pair of CRTs
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Gluing a pair of CRTs
X ,Y independent Brownian excursions on [0, 1]. Pick C > 0 large so that the graphs of
X and C − Y are disjoint.

t

Xt

C−Yt

I Identify points on the graph of X if they are connected by a horizontal line which is
below the graph; yields a continuum random tree (CRT)

I Same for C − Yt yields an independent CRT

I Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.
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How to check this?

Theorem (Moore 1925)
Let ∼= be any topologically closed equivalence relation on the sphere S2. Assume
that each equivalence class is connected and not equal to all of S2. Then the
quotient space S2/ ∼= is homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected components.

I An equivalence relation is topologically closed iff for any two sequences (xn)
and (yn) with

I xn ∼= yn for all n
I xn → x and yn → y

I we have that x ∼= y .
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Constructing a sphere from a pair of trees
I X ,Y ind. Brownian excursions on [0, 1]

I Red/green lines give an ∼=-relation on S2

I Types of equivalence classes:

1. Outer boundary of rectangle

2. V line which does not share an endpoint

with a H line

3. H line below X or above C − Y with two

V lines with common endpoint

4. H line below X or above C − Y with two

V lines with common endpoint and a

third V line hitting in the middle

I ∼= is topologically closed and does not
separate S2 into two or more components,
thus S2/ ∼= is homeomorphic to S2

I Following the V lines from left to right
gives a space-filling path on S2/ ∼=

H = horizontal, V = vertical

t

Xt

C−Yt

The sphere/space-filling path pair is a peanoshere

Q: What is the canonical embedding of this peanoshere into the Euclidean sphere S2?
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Part II: Scaling limits of random
planar maps and Liouville quantum

gravity

Duplantier, Miller, Sheffield Liouville Quantum Gravity as a Mating of Trees September 30, 2014 7 / 30



Random planar maps

I A planar map is a finite graph together with an
embedding in the plane so that no edges cross

I Its faces are the connected components of the
complement of edges

I A map is a quadrangulation if each face has 4
adjacent edges

I Interested in random quadrangulations with n
faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas
I Physics: statistical physics models:

percolation, Ising, UST ...
I Probability: “uniformly random surface,”

Brownian surface
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Laws on quadrangulations

I Natural laws on quadrangulations with n faces.

I Uniform measure
I Weighted by the partition function of the FK model with q ∈ (0, 4):

I For a fixed quadrangulation M, the probability of picking it is proportional to
ZM =

∑
L q

#L/2 where the sum is over loop configurations L and #L is the
number of loops in L

I Natural to pick a map/loop-configuration pair (M, L) in the FK weighted case

I Can encode the loops in terms of a tree/dual tree pair

I Generate the tree by first picking a root
I Generate the branch from the root to any vertex by following the boundaries

of the loop configuration until the vertex is cut off from the root, at which
point you branch towards the vertex and continue

Sheffield’s Hamburger-Cheeseburger (H-C) bijection encodes an FK-weighted planar map

by describing the pair of contour functions which correspond to the tree/dual tree pair
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Random quadrangulation

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Red tree

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Red and blue trees

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Path snaking between the trees. Encodes the trees and how they are glued together.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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How was the graph embedded into R2?

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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What is the “limit” of this embedding? Circle packings are related to conformal maps.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Random planar map convergence results

Uniformly random

I Diameter is � n1/4, profile of distances from random point (Chaissang-Schaefer)

I Existence of subsequential limits after rescaling distances by n−1/4 (Le Gall)

I Existence of limit to the Brownian map (Le Gall, Miermont)

FK-weighted

I H-C bijection encodes an FK weighted random planar map in terms of a pair of
random discrete trees glued together along a space-filling path

I Sheffield proved that the contour functions of these two discrete trees properly
rescaled converge to a pair of Brownian excursions

I For UST weighted random planar maps (q = 0), the CRTs are independent. For
general q ∈ (0, 4), the CRTs are correlated

I Canonical embedding of peanospheres that come from gluing correlated CRTs is
thus related to the problem of describing the scaling limits of FK weighted random
planar maps embedded into C ∪ {∞}
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Liouville quantum gravity
I Liouville quantum gravity: eγh(z)dz

where h is a GFF and γ ∈ [0, 2)

I Introduced by Polyakov in the 1980s
as a generalization of the path
integral to the setting of surfaces

I Does not make literal sense since h
takes values in the space of
distributions

I Can be made sense of as a random
area measure using a regularization
procedure

I Can compute areas of regions
and lengths of curves

I Conjectured to describe the limit of
conformally embedded FK-weighted
random planar maps

γ = 0.5

(Number of subdivisions)
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Scaling limit conjectures

ψ

(Simulation due to J.-F. Marckert)

I Uniform RPM conformally embedded into S2 converges to
√

8/3-LQG as n→∞

I For q ∈ [0, 4), FK weighted RPM together with loop configuration conformally
embedded into S2 converges to γ-LQG as n→∞ decorated by an independent
CLEκ′ where

q = 2 + 2 cos
8π

κ′
, γ =

√
16/κ′ ∈ [

√
2, 2), κ′ ∈ (4, 8].
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Part III: Results
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Main result
Theorem (Duplantier, M., Sheffield)
For each γ ∈ (0, 2) there is a type of γ-LQG surface such that the following are true:

I If we explore with an independent space-filling SLEκ′ process, κ′ = 16
γ2 , then the

LQG lengths of its left and right sides evolve as a 2D Brownian motion (L,R)

I (L,R) almost surely determine both the γ-LQG surface and the SLEκ′

Comments
I Space-filling SLEκ′ is the peano curve associated with the continuum tree/dual tree pair

which encodes CLEκ′

I Combined with the convergence for the H-C bijection, this says that FK weighted RPM
converge to CLE-decorated LQG with respect to the topology where two loop-decorated
surfaces are close if the contour functions of their tree/dual tree pair are close

I For planar lattices, the FK models which have been shown to converge to SLE are the UST
(q = 0), percolation (q = 1), FK-Ising model (q = 2) (Lawler-Schramm-Werner, Smirnov).

I The above result implies the convergence for all q ∈ [0, 4) on RPM to SLEκ′ with

q = 2 + 2 cos
8π

κ′
, γ =

√
16/κ′ ∈ [

√
2, 2), κ′ ∈ (4, 8].

I As in the discrete setting, the contour functions of the continuum tree/dual tree pair
determine everything
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Random quadrangulation as a gluing of trees
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Continuum space-filling path

Space-filling SLE6 on a LQG surface. Random path which encodes the limit of a RPM.
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A calculus of random surfaces

I Types of surfaces: quantum wedges, cones, disks, and spheres

I Operations: welding and cutting

I Interfaces between welded surfaces are variants of SLE which can be described as
GFF flow lines

I Conversely, natural to cut these surfaces with SLE-type paths
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External inputs

Imaginary geometry: calculus of flow lines of e ih/χ where h is a GFF.

Paths are types of SLE curves. Regions between paths are independent wedges.

Conformal welding: Certain special case of “quantum wedge welding” due to Sheffield.

Interface almost surely determined by welding, lengths on left and right sides of interface

almost surely agree.
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Types of random surfaces

Quantum wedges

I Start with a free boundary GFF h on a Euclidean
wedge Wθ with angle θ

I Change coordinates to H with zθ/π. Yields free
boundary GFF plus Q( θ

π
−1) log |z |

I Defined modulo global additive constant; fix additive
constant in canonical way

I Parameterize space of wedges by multiple α of
− log |z | or by weight W = γ(γ + 2

γ
− α)

Quantum cones

I Similar to a wedge except start with a GFF on a
Euclidean cone with angle θ

I Parameterize space of cones with multiple α of
− log |z | or by weight W = 2γ(Q − α)

h

Wθ

Quantum disks and spheres (finite volume surfaces)

I Constructed with free boundary GFF and Bessel excursion measures
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Welding and slicing independent wedges
Can “weld” and “slice” quantum wedges to obtain larger/smaller wedges.

I Weight parameter W = γ(γ + 2
γ
− α) is additive under the welding operation.

I Interface between welding of independent wedges W1,W2 of weight W1 and W2 is
an SLEκ(W1 − 2;W2 − 2).

I Interface is a deterministic function of W1,W2.
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Welding many wedges

Can also weld together many wedges W1, . . . ,Wn of weight W1, . . . ,Wn to obtain a
wedge W with weight W1 + · · ·+ Wn.

Interfaces are SLEκ(ρ1; ρ2) type processes coupled together as flow lines of a GFF and

are a deterministic function of W1, . . . ,Wn.
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Welding a wedge to itself
Can “weld” left and right sides of a wedge to obtain a cone. Conversely, can slice a cone
with an independent SLE to obtain a wedge.

I Weight parameter W = 2γ(Q − α)

I Welding left and right sides of weight W wedge yields a weight W cone; the
interface is an independent whole-plane SLEκ(W − 2)

I Interface is simple if the wedge is “thick” as on the left (homeomorphic to H); it is
self-intersecting if the wedge is thin as on the right (not homeomorphic to H)
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Exploring an LQG surface with an SLEκ′ with κ′ ∈ (4, 8)

η′

I Draw an independent SLEκ′ on top of a 3γ2

2
− 2 wedge, γ = 4/

√
κ′

I Quantum disks cut out by the path have a Poissonian structure

I Conditionally independent given their boundary lengths

I Change in the left/right γ-LQG boundary lengths given by independent κ′

4
-stable

Lévy processes
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Gluing independent Lévy trees
Can view SLEκ′ process, κ′ ∈ (4, 8) as a gluing of two κ′

4
-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes

I Question: Is the graph of components of an SLEκ′ process connected?

I Equivalently: If we glue together two independent κ′

4
-stable trees as above, is it

possible to get from one jump to any other by passing through a finite number of
∼=-classes?
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-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes

I Question: Is the graph of components of an SLEκ′ process connected?

I Equivalently: If we glue together two independent κ′

4
-stable trees as above, is it

possible to get from one jump to any other by passing through a finite number of
∼=-classes?

Duplantier, Miller, Sheffield Liouville Quantum Gravity as a Mating of Trees September 30, 2014 26 / 30



Gluing independent Lévy trees
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-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes

I Question: Is the graph of components of an SLEκ′ process connected?

I Equivalently: If we glue together two independent κ′

4
-stable trees as above, is it

possible to get from one jump to any other by passing through a finite number of
∼=-classes?

Duplantier, Miller, Sheffield Liouville Quantum Gravity as a Mating of Trees September 30, 2014 26 / 30



Gluing independent Lévy trees
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Discrete intuition

Welding/cutting results may seem to be a bizarre coincidence at first sight. However,
results of this type are very natural in view of conjectures connecting LQG and random
planar maps.

“Domain Markov half planar” map with marked boundary edge. Vertices to the left and
right of edge colored red and blue.

Percolation exploration from marked edge

I Left and right boundary lengths evolve independently and have independent
increments

I Components cut off from infinity have i.i.d. structure

Our results in the continuum are analogies of these discrete observations
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KPZ interpretation
Can give mathematical treatment of the heuristics used by Duplantier and others to
predict quantum and Euclidean dimensions of random fractals.

2− γ2

2

γ2 − 2

γ2 − 2

γ2 − 2

γ2 − 2

γ2 − 2

γ2 − 2

2− γ2

2

2− γ2

2

2− γ2

2

2− γ2

2

I Draw an SLEκ′ process, κ′ = 16
γ2 ∈ (4, 8), η′ on top of an independent 3γ2

2
− 2 wedge

I Region between left and right boundaries of η′ is a 2− γ2

2
wedge

I Region to the left (resp. right) of left (resp. right) boundary is a γ2 − 2 wedge

I What does a “typical” SLEκ′ double point look like?

Should have four 2− γ2

2
wedges (the

SLEκ′ strands) alternating with four γ2 − 2 wedges (space in between)

I Cone weight = 4(2− γ2

2
) + 4(γ2 − 2) = 2γ2 → ( 2

γ
− γ

2
) log | · | singularity

I Can deduce quantum scaling exponent; applying the KPZ formula gives Euclidean scaling
exponent. Matches rigorously determined value by M., Wu.
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Can give mathematical treatment of the heuristics used by Duplantier and others to
predict quantum and Euclidean dimensions of random fractals.
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Connection with Quantum Loewner Evolution

I Have described two senses in which one can try to show that FK weighted RPM
converge to LQG:

I Conformal embedding
I Mating of trees

I Also natural to show that FK weighted RPM converge to LQG as metric spaces

I So far, the metric space limit has only been constructed for uniform RPM (q = 1):
the Brownian map

I We have constructed a new universal family of growth processes called QLE
(candidate for the scaling limit of DLA, Eden model, and related models on RPM)

I We have also recently announced a program to show that QLE(8/3, 0) can be used
to endow

√
8/3-LQG with a metric which is isometric to the Brownian map

I Many steps of this program have already been carried out in the “mating of trees”
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Thanks!
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