

Jason Miller (MIT)

38th Conference on Stochastic Processes and their Applications Spa2015@oxford-man.ox.ac.uk

Liouville quantum gravity and the Brownian map

Jason Miller and Scott Sheffield

Cambridge and MIT

July 15, 2015

Overview

Part I: Picking surfaces at random

- 1. Discrete: random planar maps
- 2. Continuum: Liouville quantum gravity (LQG)
- 3. Relationship

Part II: The QLE(8/3,0) metric on $\sqrt{8/3}$ -LQG

- 1. First passage percolation on random planar maps
- 2. First passage percolation on $\sqrt{8/3}\text{-}\mathsf{LQG}\text{:}\;\mathrm{QLE}(8/3,0)$

Part I: Picking surfaces at random

A planar map is a finite graph together with an embedding in the plane so that no edges cross

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with *n* faces — random planar map (RPM).

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with *n* faces — random planar map (RPM).
- First studied by Tutte in 1960s while working on the four color theorem
 - Combinatorics: enumeration formulas
 - Physics: statistical physics models: percolation, Ising, UST ...
 - Probability: "uniformly random surface," Brownian surface

Jason Miller (Cambridge)

RPM as a metric space. Is there a limit?

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
 - **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
 - Rescaling by n^{-1/4} gives a tight sequence of metric spaces (Le Gall)

(Simulation due to J.F. Marckert)

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- ▶ **Diameter** is *n*^{1/4} (Chaissang-Schaefer)
- Rescaling by n^{-1/4} gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - ► 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- ▶ **Diameter** is *n*^{1/4} (Chaissang-Schaefer)
- Rescaling by n^{-1/4} gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - ► 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by n^{-1/4} gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - ► 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

(Simulation due to J.F. Marckert)

- RPM as a metric space. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by n^{-1/4} gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - ► 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk **D** can be conformally mapped to the disk.

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk **D** can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}dz$ for some smooth function ρ where dz is the Euclidean metric.

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk **D** can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}dz$ for some smooth function ρ where dz is the Euclidean metric.

- \Rightarrow Can parameterize the surfaces homeomorphic to **D** with smooth functions on **D**.
 - If *ρ* = 0, get **D**
 - If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk **D** can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}dz$ for some smooth function ρ where dz is the Euclidean metric.

- \Rightarrow Can parameterize the surfaces homeomorphic to **D** with smooth functions on **D**.
 - ▶ If *ρ* = 0, get **D**
 - ▶ If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions h: D → R for D ⊆ Z² and h|_{∂D} = ψ with density respect to Lebesgue measure on R^{|D|}:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions h: D → R for D ⊆ Z² and h|_{∂D} = ψ with density respect to Lebesgue measure on R^{|D|}:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

Natural perturbation of a harmonic function

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions h: D → R for D ⊆ Z² and h|_{∂D} = ψ with density respect to Lebesgue measure on R^{|D|}:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$(f,g)_{\nabla} = rac{1}{2\pi} \int \nabla f(x) \cdot \nabla g(x) dx.$$

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions h: D → R for D ⊆ Z² and h|_{∂D} = ψ with density respect to Lebesgue measure on R^{|D|}:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$(f,g)_{\nabla} = rac{1}{2\pi} \int \nabla f(x) \cdot \nabla g(x) dx.$$

Continuum GFF not a function — only a generalized function

$$\gamma = 0.5$$

Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)
- Introduced by Polyakov in the 1980s

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0,2)
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - Does not come with an obvious notion of "distance"

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - Does not come with an obvious notion of "distance"

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - Does not come with an obvious notion of "distance"

$$\gamma = 1.5$$

- Liouville quantum gravity: e^{γh(z)}dz where h is a GFF and γ ∈ [0, 2)
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - Does not come with an obvious notion of "distance"

$$\gamma = 2.0$$

 Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)} (dx^2 + dy^2)$
- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- ► For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}(dx^2 + dy^2)$
- > So far, only made sense of as an area measure using a regularization procedure

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- ► For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}(dx^2 + dy^2)$
- ▶ So far, only made sense of as an area measure using a regularization procedure
- ▶ LQG has a conformal structure (compute angles, etc...) and an area measure

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- ► For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}(dx^2 + dy^2)$
- ▶ So far, only made sense of as an area measure using a regularization procedure
- ▶ LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- ► For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}(dx^2 + dy^2)$
- ▶ So far, only made sense of as an area measure using a regularization procedure
- ▶ LQG has a conformal structure (compute angles, etc...) and an area measure
- ► In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the *other's* structure and showing they are equivalent.

▶ TBM is an abstract metric measure space homeomorphic to **S**², but it does not obviously come with a canonical embedding into **S**²

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

Discrete approach: take a uniformly random planar map and embed it conformally into S² (circle packing, uniformization, etc...), then in the n→∞ limit it converges to a form of √8/3-LQG.

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

▶ Discrete approach: take a uniformly random planar map and embed it conformally into \mathbf{S}^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$ -LQG. Not the approach we will describe today ...

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi : (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h).

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi : (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ)

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi : (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (\mathbf{S}^2, h)

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure)

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

• (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

• (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

Comments

1. Construction is purely in the continuum

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

- 1. Construction is purely in the continuum
- 2. Proof by endowing a metric space structure directly on $\sqrt{8/3}\text{-}\mathsf{LQG}$ using the growth process $\mathrm{QLE}(8/3,0)$

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

• (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

- 1. Construction is purely in the continuum
- 2. Proof by endowing a metric space structure directly on $\sqrt{8/3}\text{-}\mathsf{LQG}$ using the growth process $\mathrm{QLE}(8/3,0)$
- 3. Resulting metric space structure is shown to satisfy axioms which characterize TBM

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

• (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

- 1. Construction is purely in the continuum
- 2. Proof by endowing a metric space structure directly on $\sqrt{8/3}\text{-}\mathsf{LQG}$ using the growth process $\mathrm{QLE}(8/3,0)$
- 3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
- 4. Separate argument shows the embedding of TBM into $\sqrt{8/3}$ -LQG is determined by TBM

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi: (M, d) \rightarrow S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$ -LQG sphere (S^2 , h). Moreover,

• φ is determined by (M, d, μ) (TBM determines its conformal structure)

• (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure) That is, (M, d, μ) and (S^2, h) are equivalent.

- 1. Construction is purely in the continuum
- 2. Proof by endowing a metric space structure directly on $\sqrt{8/3}\text{-}\mathsf{LQG}$ using the growth process $\mathrm{QLE}(8/3,0)$
- 3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
- 4. Separate argument shows the embedding of TBM into $\sqrt{8/3}$ -LQG is determined by TBM
- 5. Metric construction is for the $\sqrt{8/3}$ -LQG sphere. By absolute continuity, can construct a metric on any $\sqrt{8/3}$ -LQG surface.

Part II: Construction of the metric on $\sqrt{8/3}$ -LQG

 Associate with a graph (V, E) i.i.d. exp(1) edge weights

 Associate with a graph (V, E) i.i.d. exp(1) edge weights

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- ► **Z**² is not isotropic enough

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- ► On **Z**²?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- ► **Z**² is not isotropic enough
- Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if Z² is replaced by the Voronoi tesselation associated with a Poisson process

▶ RPM, random vertex *x*. Perform FPP from *x* (Angel's peeling process).

Important observations:

Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

▶ RPM, random vertex *x*. Perform FPP from *x* (Angel's peeling process).

Important observations:

Conditional law of map given growth at time *n* only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map.*

▶ RPM, random vertex *x*. Perform FPP from *x* (Angel's peeling process).

Important observations:

Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric (now **proved** by Curien and Le Gall)

First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

- We do not know how to take a continuum limit of FPP on a random planar map and couple it directly with LQG
- Explain a discrete variant of FPP that involves two operations that we do know how to perform in the continuum:
 - Sample random points according to boundary length
 - ▶ Draw (scaling limits of) critical percolation interfaces (SLE₆)

Variant:

 Pick two edges on outer boundary of cluster

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

• This exploration also respects the Markovian structure of the map.

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball

Sample a random planar map

Sample a random planar map and two edges uniformly at random

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability 1/2

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8/3}$ -LQG surface and the image of the interface converges to an independent SLE_6 .

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

QLE(8/3, 0) is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

QLE(8/3,0) is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3,0) is SLE_6 with tip re-randomization.

Discrete approximation of ${\rm QLE}(8/3,0).$ Metric ball on a $\sqrt{8/3}\text{-}\mathsf{LQG}$

▶ So far, have described a growth process QLE(8/3, 0) which is a candidate for growth of a metric ball on $\sqrt{8/3}$ -LQG.

- ► So far, have described a growth process QLE(8/3, 0) which is a candidate for growth of a metric ball on $\sqrt{8/3}$ -LQG.
- Not obvious that QLE(8/3, 0) corresponds to the metric balls in a metric space

- So far, have described a growth process QLE(8/3,0) which is a candidate for growth of a metric ball on √8/3-LQG.
- Not obvious that QLE(8/3, 0) corresponds to the metric balls in a metric space
- Requires an additional argument make use of a trick developed by Sheffield, Watson, Wu in the context of CLE₄. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE₆.

- So far, have described a growth process QLE(8/3,0) which is a candidate for growth of a metric ball on √8/3-LQG.
- Not obvious that QLE(8/3, 0) corresponds to the metric balls in a metric space
- Requires an additional argument make use of a trick developed by Sheffield, Watson, Wu in the context of CLE₄. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE₆.
- Still a lot of work to show that resulting metric space structure has the law of TBM and that $\sqrt{8/3}$ -LQG and TBM are measurable with respect to each other. But can start to see the Brownian map structure emerge: boundary lengths of metric balls in both spaces evolve in the same way.

Quantum Loewner evolution

QLE(8/3, 0) is a member of a family of processes which are candidates for the scaling limits of DLA and the dielectric breakdown model on LQG surfaces.

More in **Scott Sheffield's** talk on **Friday**.

• What is the law of the geodesics for $\sqrt{8/3}$ -LQG?

- What is the law of the geodesics for $\sqrt{8/3}$ -LQG?
 - What is their dimension?

- What is the law of the geodesics for $\sqrt{8/3}$ -LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?

- What is the law of the geodesics for $\sqrt{8/3}$ -LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?
 - ▶ Is there an explicit description of the metric space structure (like for TBM)?

- What is the law of the geodesics for $\sqrt{8/3}$ -LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?
 - ▶ Is there an explicit description of the metric space structure (like for TBM)?
 - What is the dimension of the metric space?

