詻SP 82015

Jason Miller (MIT)

Liouville quantum gravity and the Brownian map

Jason Miller and Scott Sheffield
Cambridge and MIT

July 15, 2015

Overview

Part I: Picking surfaces at random

1. Discrete: random planar maps
2. Continuum: Liouville quantum gravity (LQG)
3. Relationship

Part II: The $\operatorname{QLE}(8 / 3,0)$ metric on $\sqrt{8 / 3}$-LQG

1. First passage percolation on random planar maps
2. First passage percolation on $\sqrt{8 / 3}-\mathrm{LQG}: \operatorname{QLE}(8 / 3,0)$

Part I: Picking surfaces at random

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with n faces - random planar map (RPM).

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with n faces - random planar map (RPM).
- First studied by Tutte in 1960s while working on the four color theorem
- Combinatorics: enumeration formulas
- Physics: statistical physics models: percolation, Ising, UST ...
- Probability: "uniformly random surface," Brownian surface

Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees
(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Structure of large random planar maps

- RPM as a metric space. Is there a limit?
- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees
(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)
(Markert-Mokkadem)

Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.

Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.
\Rightarrow Can parameterize the surfaces homeomorphic to \mathbf{D} with smooth functions on \mathbf{D}.

- If $\rho=0$, get \mathbf{D}
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric.
\Rightarrow Can parameterize the surfaces homeomorphic to \mathbf{D} with smooth functions on \mathbf{D}.

- If $\rho=0$, get \mathbf{D}
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
$$

- Continuum GFF not a function - only a generalized function

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=1.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=1.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=2.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

(Number of subdivisions)

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other's structure and showing they are equivalent.

Canonical embedding of TBM into \mathbf{S}^{2}

- TBM is an abstract metric measure space homeomorphic to \mathbf{S}^{2}, but it does not obviously come with a canonical embedding into \mathbf{S}^{2}

Canonical embedding of TBM into \mathbf{S}^{2}

- TBM is an abstract metric measure space homeomorphic to \mathbf{S}^{2}, but it does not obviously come with a canonical embedding into \mathbf{S}^{2}
- It is believed that there should be a "natural embedding" of TBM into \mathbf{S}^{2} and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

Canonical embedding of TBM into \mathbf{S}^{2}

- TBM is an abstract metric measure space homeomorphic to \mathbf{S}^{2}, but it does not obviously come with a canonical embedding into \mathbf{S}^{2}
- It is believed that there should be a "natural embedding" of TBM into \mathbf{S}^{2} and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

- Discrete approach: take a uniformly random planar map and embed it conformally into \mathbf{S}^{2} (circle packing, uniformization, etc...), then in the $n \rightarrow \infty$ limit it converges to a form of $\sqrt{8 / 3}-L Q G$.

Canonical embedding of TBM into \mathbf{S}^{2}

- TBM is an abstract metric measure space homeomorphic to \mathbf{S}^{2}, but it does not obviously come with a canonical embedding into \mathbf{S}^{2}
- It is believed that there should be a "natural embedding" of TBM into \mathbf{S}^{2} and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

- Discrete approach: take a uniformly random planar map and embed it conformally into \mathbf{S}^{2} (circle packing, uniformization, etc...), then in the $n \rightarrow \infty$ limit it converges to a form of $\sqrt{8 / 3}-L Q G$. Not the approach we will describe today ...

Main result

Theorem (M., Sheffield)
Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$.

Main result

Theorem (M., Sheffield)
Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ)

Main result

Theorem (M., Sheffield)
Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$

Main result

Theorem (M., Sheffield)
Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

1. Construction is purely in the continuum

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3-L Q G ~ s p h e r e ~}\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}-\mathrm{LQG}$ using the growth process $\operatorname{QLE}(8 / 3,0)$

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3-L Q G ~ s p h e r e ~}\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}-\mathrm{LQG}$ using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3-L Q G ~ s p h e r e ~}\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}$-LQG using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows the embedding of TBM into $\sqrt{8 / 3}$-LQG is determined by TBM

Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of μ by φ has the law of a $\sqrt{8 / 3-L Q G ~ s p h e r e ~}\left(\mathbf{S}^{2}, h\right)$. Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)

That is, (M, d, μ) and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}$-LQG using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows the embedding of TBM into $\sqrt{8 / 3}$-LQG is determined by TBM
5. Metric construction is for the $\sqrt{8 / 3}$-LQG sphere. By absolute continuity, can construct a metric on any $\sqrt{8 / 3}$-LQG surface.

Part II:

Construction of the metric on $\sqrt{8 / 3}-\mathrm{LQG}$

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and

Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?

- Question: Large scale behavior of shape of ball wrt perturbed metric?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbf{Z}^{2} is not isotropic enough

Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbf{Z}^{2} is not isotropic enough
- Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if
 \mathbf{Z}^{2} is replaced by the Voronoi tesselation associated with a Poisson process

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.
Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall)

First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

- We do not know how to take a continuum limit of FPP on a random planar map and couple it directly with LQG
- Explain a discrete variant of FPP that involves two operations that we do know how to perform in the continuum:
- Sample random points according to boundary length
- Draw (scaling limits of) critical percolation interfaces (SLE ${ }_{6}$)

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.

FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball

Continuum limit ansatz

- Sample a random planar map

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8 / 3}-\mathrm{LQG}$ surface and the image of the interface converges to an independent SLE $_{6}$.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
$\operatorname{QLE}(8 / 3,0)$ is SLE_{6} with tip re-randomization.

Discrete approximation of $\operatorname{QLE}(8 / 3,0)$. Metric ball on a $\sqrt{8 / 3}$-LQG

Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- So far, have described a growth process $\operatorname{QLE}(8 / 3,0)$ which is a candidate for growth of a metric ball on $\sqrt{8 / 3}$-LQG.

Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- So far, have described a growth process $\operatorname{QLE}(8 / 3,0)$ which is a candidate for growth of a metric ball on $\sqrt{8 / 3}$-LQG.
- Not obvious that QLE $(8 / 3,0)$ corresponds to the metric balls in a metric space

Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- So far, have described a growth process $\operatorname{QLE}(8 / 3,0)$ which is a candidate for growth of a metric ball on $\sqrt{8 / 3}$-LQG.
- Not obvious that QLE $(8 / 3,0)$ corresponds to the metric balls in a metric space
- Requires an additional argument - make use of a trick developed by Sheffield, Watson, Wu in the context of CLE_{4}. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE $_{6}$.

Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- So far, have described a growth process $\operatorname{QLE}(8 / 3,0)$ which is a candidate for growth of a metric ball on $\sqrt{8 / 3}-L Q G$.
- Not obvious that $\operatorname{QLE}(8 / 3,0)$ corresponds to the metric balls in a metric space
- Requires an additional argument - make use of a trick developed by Sheffield, Watson, Wu in the context of CLE4. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE_{6}.
- Still a lot of work to show that resulting metric space structure has the law of TBM and that $\sqrt{8 / 3}$-LQG and TBM are measurable with respect to each other. But can start to see the Brownian map structure emerge: boundary lengths of metric balls in both spaces evolve in the same way.

Quantum Loewner evolution

$\operatorname{QLE}(8 / 3,0)$ is a member of a family of processes which are candidates for the scaling limits of DLA and the dielectric breakdown model on LQG surfaces.

More in Scott Sheffield's talk on Friday.

Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$?

Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$?
- What is their dimension?

Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$?

Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$?
- Is there an explicit description of the metric space structure (like for TBM)?

Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$?
- Is there an explicit description of the metric space structure (like for TBM)?
- What is the dimension of the metric space?

