Stochastic Calculus (L24)

Jason Miller
This course will be an introduction to Itd calculus.

e Brownian motion. Existence and sample path properties.

e Stochastic calculus for continuous processes. Martingales, local martingales, semi-martingales,
quadratic variation and cross-variation, [t0’s isometry, definition of the stochastic integral,
Kunita-Watanabe theorem, and It6’s formula.

o Applications to Brownian motion and martingales. Lévy characterization of Brownian mo-
tion, Dubins-Schwartz theorem, martingale representation, Girsanov theorem, conformal
invariance of planar Brownian motion, and Dirichlet problems.

e Stochastic differential equations. Strong and weak solutions, notions of existence and
uniqueness, Yamada-Watanabe theorem, strong Markov property, and relation to second
order partial differential equations.

e Stroock—Varadhan theory. Diffusions, martingale problems, equivalence with SDEs, ap-
proximations of diffusions by Markov chains.

Pre-requisites

We will assume knowledge of measure theoretic probability as taught in Part III Advanced
Probability. In particular we assume familiarity with discrete-time martingales and Brownian
motion.
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