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Percolation review

I Graph G = (V ,E), p ∈ (0, 1).

I Keep each e ∈ E based on the toss of an
independent p-coin

I Interested in connectivity properties of the
resulting graph:

I Critical value pc :
I p > pc → there exists an infinite

cluster
I p < pc → all clusters are finite

I Crossing probabilities
I Scaling limits

Variants: site percolation, face percolation, etc...
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Critical bond percolation on a box in Z2 with side-length 1000, conformally mapped

to D. Shown are the clusters which touch the boundary.
Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 5 / 28



Results on planar lattices

I Kesten: pc = 1
2

for bond percolation on
the �-lattice

I Kesten: pc = 1
2

for site percolation on the
4-lattice

I Smirnov: The exploration path between
open and closed sites in critical site
percolation on the 4-lattice converges to
SLE6 as the mesh size tends to 0.

Big open problem: is there any universality?
Does the convergence of the percolation explo-
ration path converge on any other planar lattice?

This talk is about proving the convergence of per-
colation on random planar maps.
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Random planar maps
I A planar map is a finite graph together with an

embedding in the plane so that no edges cross

I Its faces are the connected components of the
complement of its edges

I A map is a quadrangulation if each face has 4
adjacent edges

I A quadrangulation corresponds to a metric space
when equipped with the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas
I Physics: statistical physics models:

percolation, Ising, UST ...
I Probability: “uniformly random surface,”

Brownian surface
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What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 8 / 28



What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 8 / 28



What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.

Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 8 / 28



Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Topologies for quadrangulations

It is natural to consider �’s with different topologies

I � of the sphere with n faces

I Infinite volume local limit: uniform infinite planar
quadrangulation (UIPQ)

I � of the disk with ∂-length 2`

I Infinite ∂-length local limit: uniform infinite
half-planar quadrangulation (UIHPQ)
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Gromov-Hausdorff topology
The Hausdorff distance betweeen closed sets A1,A2 in a metric space is

dH(A1,A2) = inf{ε > 0 : A2 ⊆ A1(ε) and A1 ⊆ A2(ε)}.

The Gromov-Hausdorff distance between compact metric spaces X1,X2 is

dGH(X1,X2) = inf{dH(ι1(X1), ι2(X2))}

where the infimum is taken over all metric spaces W and isometric embeddings
ιj : Xj →W for j = 1, 2.

Can augment the Gromov-Hausdorff metric by considering further additional structure.

I Gromov-Hausdorff-Prokhorov: metric space + measure

dGHP(X1,X2) = inf{dH(ι1(X1), ι2(X2)) + dP(ι∗1µ1, ι
∗
2µ2)}

I Gromov-Hausdorff-Prokhorov-uniform: metric space + measure + path

dGHPU(X1,X2) = inf{dH(ι1(X1), ι2(X2)) + dP(ι∗1µ1, ι
∗
2µ2) + d∞(ι1(γ1), ι2(γ2))}
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Large scale structure of random quadrangulations

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall and

Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)
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Convergence results toward Brownian surfaces

General principle: Uniformly random planar �’s with n faces with distances rescaled by
n−1/4 converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology
(metric space + measure).

I � of the sphere → Brownian map (Le Gall, Miermont)

I � of the plane (UIPQ) → Brownian plane (Curien-Le Gall)

I � of the disk (general boundary) → Brownian disk (Bettinelli-Miermont)

I � of the half-plane (UIHPQ) → Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

I � of the disk (simple boundary, random area) → Brownian disk (Gwynne-M.)
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Percolation on random planar maps

I Angel: pc = 1
2

for site percolation on a random 4

I Angel-Curien: pc = 3
4

for face percolation on a
random �

I Open faces are adjacent if they share an edge.
Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have
been computed (c.f. Angel-Curien, Menard-Nolin, Rich-
lier...)

We will consider critical p = pc = 3
4

face percolation on a
random �.
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Percolation exploration path

I Work on � of the disk

I p = pc = 3/4

I Open/closed ∂-conditions

I There is a unique interface
separating open/closed
clusters attached to the
boundary

I Perspective: It is a
random path on a random
metric space
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Main result

Theorem (Gwynne-M.)
The exploration path for critical face percolation
on a random � of the disk with boundary length
2` converges as `→∞ to a random path on a
random metric space with respect to the
Gromov-Hausdorff-Prokhorov-uniform topology.

The limit is SLE6 on a Brownian disk.

Comments:

I Universal strategy: works for any random
planar map model provided one has certain
technical inputs.

I Works for other topologies (sphere, plane,
half-plane).
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Part II: SLE6 on a Brownian
surface
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Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice
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SLEκ

η(t)
gt

η(s)

gt(η(s))

Wt=gt(η(t))

Loewner’s equation: if η is a non self-crossing path in H with η(0) ∈ R and gt is the
Riemann map from the unbounded component of H \ η([0, t]) to H normalized by
gt(z) = z + o(1) as z →∞, then

∂tgt(z) =
2

gt(z)−Wt
where g0(z) = z and Wt = gt(η(t)). (F)

SLEκ in H: The random curve associated with (F) with Wt =
√
κBt , B a standard

Brownian motion. Other domains: apply conformal mapping.
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Simulations due to Tom Kennedy.
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What about SLE6 on a Brownian surface?

I SLE is a random curve defined on a simply connected domain in C

I A Brownian surface (i.e., scaling limit of a random quadrangulation) is an abstract
metric measure space

I A priori, it does not come with an embedding into C

I This is necessary to define SLE6 on a Brownian surface
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Embedding Brownian surfaces into C
I It is conjectured that if one takes a uniformly random planar map and then embeds

it “conformally” into C (using, e.g., circle packing) then the maps will converge to
an embedding of the limiting Brownian surface into C.

ψ

I Embeddings of Brownian surfaces into C were constructed directly in the
continuum (M., Sheffield) using a process called QLE(8/3, 0). Should be the same
as the limit of the discrete embeddings.

I Define SLE6 on a Brownian surface using the QLE(8/3, 0) embedding.

I Is this the right definition?

It is if it is the scaling limit of percolation ...
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Part III: Proof ideas
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Proof overview

Proof has two steps:

I Construct subsequential limits of the percolation exploration

I Characterization theorem which singles out SLE6 on a Brownian surface
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Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region.

Impose open/closed ∂-conditions. Choose �’s to
reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of
cluster. Holes cut out from ∞ are independent � of the disk given their ∂-length. Have a hole
of ∂-length k with probability � k−5/2. The left/right ∂-length processes converge to
independent stable-3/2 Lévy processes.
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Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 25 / 28



Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose �’s to
reveal so as to explore the percolation interface.

Keep track of left/right boundary lengths of
cluster. Holes cut out from ∞ are independent � of the disk given their ∂-length. Have a hole
of ∂-length k with probability � k−5/2. The left/right ∂-length processes converge to
independent stable-3/2 Lévy processes.
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Jason Miller (Cambridge) Convergence of percolation on random �s May 22, 2017 25 / 28



Peeling exploration

A “peeling” of a map is a Markovian “exploration” in which faces are revealed one at a time.

Always know the law of the unexplored region. Impose open/closed ∂-conditions. Choose �’s to
reveal so as to explore the percolation interface. Keep track of left/right boundary lengths of
cluster. Holes cut out from ∞ are independent � of the disk given their ∂-length. Have a hole
of ∂-length k with probability � k−5/2.

The left/right ∂-length processes converge to
independent stable-3/2 Lévy processes.
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Continuum characterization

I A subsequential limit of the percolation exploration is a random path on a Brownian
surface with the following properties:

I Its left/right boundary lengths evolve as independent 3/2-stable Lévy processes
I The holes it cuts out are conditionally independent Brownian disks
I The unexplored region is a Brownian surface

I It turns out that these three properties characterize SLE6 on a Brownian surface

I Proved using the connection between Brownian surfaces and Liouville
quantum gravity / GFF
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Where are we now?

Convergence results for planar maps (RPM) decorated with a statistical physics model to
SLE on a random surface.

Gromov-Hausdorff topology

I Self-avoiding walks on RPM (Gwynne, M.)

I Percolation decorated RPM (Gwynne, M.)

Peanosphere sense (Duplantier, M., Sheffield)

I FK-weighted RPM with q ∈ (0, 4)

I Infinite volume (Sheffield)
I finite volume (Gwynne, Mao, Sun and Gwynne, Sun)

I Bipolar orientation decorated RPM (Kenyon, M., Sheffield, Wilson)

I Active spanning tree decorated RPM (Gwynne, Kassel, M., Wilson)

I Schnyder woods (Li, Sun, Watson)
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Thanks!
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