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ABSTRACT

We obtain estimates, from above and below, on the fundamental solution to the Cauchy initial
value problem for parabolic equations having uniformly elliptic coefficients. We impose minimal
regularity requircments on the coefficients. The estimates are expressed in terms of an energy
functional associated with the coefficients.

1. Introduction

During the past few years, several authors [2,6,3], have applied semigroup
techniques to re-prove and refine the heat kernel estimates obtained originally by
D. Aronson [1]. In particular, E. B. Davies introduced a technique which
enabled him to sharpen the upper bound in Aronson’s estimates by replacing
Aronson’s qualitative bound, in terms of the Euclidean distance, with a bound
which is expressed in terms of the Riemannian distance associated with
second-order coefficients under consideration. Shortly after Davies, E. Fabes and
D. Stroock [3] discovered that the ideas of J. Nash in [4] can be used to not only
get Davies’ upper bound but also Aronson’s lower bound. Unfortunately, the
lower bound in [3] is, like Aronson’s, qualitative and therefore is not an entirely
satisfactory complement to Davies’ upper bound. Furthermore, in both [2] and
[3], the operators governing the heat flow have to be in divergence form (in [2]
the coefficients are independent of time, as well). A plan for removing this
restriction is outlined in § 2 of [5], but nothing is done there to improve the lower
bound. The purpose of the present article is to carry out the programme outlined
in [5] and, at the same time, to sharpen the lower bound.

We will now introduce the notation which we will use throughout. Let L be a
time-dependent second-order differential operator on functions on RY. For
maximal symmetry in taking L*-adjoint we write L in the form

(1.1) L=V-(a(t, x)V)+ab(t,x) - V— V- (ab(t, x)) +c(t, x).

The coefficients a, b, b and ¢ of L are measurable functions on R X R", a taking
its values in the set of N X N positive-definite symmetric matrices, b and 5 in R”,
and ¢ in R. Our concern is with the propagator P, ,, for t <u, associated with L.
and with its transition density p(f, x ; u, y), the hear kernel for L. Thus, at least

formally,
3
(2+1)P.=0,
(1.2)
lim P, , = Identity,
t u
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and
(13) Put)®)= | Pt x50, 0000 d.

When certain coefficients fail to be differentiable, L has to be interpreted in a
weak sense (cf. [5, § 3] for more details): for test-functions ¢ and ¥ on R" and
some fixed u €R, the meaning of (1.2) is that the function e (—, u]—
¢, = P, ,¢ satisfies

o (v3 ) (Y, V) — (Wb, Vob)a — (Vap, bbr) — (v, o).

Here ( , ) denotes the L? inner product in R, and ( , ), the L? inner product
for vector-valued functions, using a for the inner product on R”. Thus

V9,990, = [ (T, Vo)adr= ] (V9. alt 1) VoG, ) de

Equation (1.4) fully characterises the relation between the propagator and its
coefficients and is the starting point for all our analysis. Our aim is to find upper
and lower bounds on p(f, x ; u, y) relying only on the uniform positivity of a and
on bounds on each of the coefficients: for simplicity we suppose there are
constants A € [1, ) and A € [0, =) such that, uniformly on R x R”,

(1.5) AM<sa<sM and |b2+ |62+ |c| <A,

where the bounds on a hold in the sense of symmetric matrices, and where
|b2= (b, ab).

The upper bounds we obtain are expressed in terms of an energy function: for
t, ueR with t <u and x, y e R, define

N x5w5) =y Qo ul RY: vi=x, v =y and [ |7 ds <o}
and !
EGxiwy)= it <[ 1h-ab =BG mds

vel(tx;u,y) 4
When a is independent of time and b = b, we have
(1.6) E(t,x;u,y)=d(x, y)/4(u—1),

where d is the distance function on R" associated with the Riemannian metric
a~". In the lower bounds it is a modification of E that appears: define, for

B e (0, =),
. 1™ )
Eﬁ(f) XU, y) = yel“(tl.lrfu y)a -[ (p,ﬂ(u*r) * |Ys - a(b - B)Iczf')(s: y.s‘) dS,
where * denotes convolution in B" and
pe(z) = (4r) Mo,

The following result summarises Theorems 2.7 and 3.5.

THEOREM 1.1. Suppose that a and b — b are uniformly continuous. Then, for
every « € (3, 1) satisfying a*/(2a — 1) > A%, there is a constant C(a, A, N) € (0, =)
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such that, for all t, u € R™ with t <u and all x, y € R™, we have
(u— )" exp{—Eg(t, x ;u, y) —2Au — )
=~ G+ A= it 50w )PPy
=pt,x;uy)

- (C[l +A@m—O+EWx;u, y)lmh-”)m
N u~—t

X exp{—E(r, Xiu,y)+ ju sup, GIb+b62+c)s, z) ds},
for B=(1+A(u—1)+E(t, x;u, y)) V@D,

These estimates are strongest when « is near 1. We will see later that estimates
corresponding to & =1 hold when the energy function is Lipschitz continuous.
There are two cases when we know this is true: first when a and b — b are Holder
continuous (see Theorems 2.8 and 3.7 for the resulting estimates); second when
b =5 and a depends on position alone, whence E is Lipschitz by virtue of (1.6).
We do not set out the estimates for this second case in general, but here is the
result for the simplest and most important special case:

THEOREM 1.2. Suppose that a is independent of time, that b=56=0 and ¢ = 0.
Then there is a constant C(A, N) € (0, ©) such that, for all t, u € R™ with t < u and
all x, y e R, we have

(=) exp{—Eg(t, x ; 4, y) — C[1+ Ep(t, x s 1, y)¥]}

Cl[1+E(t, x;u,y)
u-—t

N2
=p(t,x;u,y) é( ) exp{—E(t, x ;u, y)},

for B=(1+E(t, x;u, y)*) .

The lower bound in this result is a special case of Theorem 3.7, though one
would want to make use of (1.6) rather than the results of the appendix in giving
a direct proof. The upper bound, due to E. B. Davies, does not require a to be
uniformly continuous and therefore is not implied by Theorem 2.8. A proof of
the upper bound as stated, making use of time independence at an earlier stage,
is given in [5]: just set 6 = (1 +d,(x, y)*/4¢)™" in formula (1.1.25) of that paper.

The following asymptotic results are corollaries of our global estimates.

CoroLLARY 1.3. Let a and b—b be uniformly continuous. Let o (), 1)
satisfying o®/(2a — 1)> A% be given. Then for all Ae[l1, =), A€ [0, ) and all T,
R, B€(0, ),

logp(t, x su, y)+ E(t, x ; u, y)

1 lim inf 0
@ M % O<u—t=<T E(t, x;u, y)l"(‘:ail) ’
x,yeRN

E(t,x;u,y)=M

I Lx;uy)+Elx;u,
2) limsup  sup o8P (X ) X y)s N

MAw  O<u-t=T log E(t, x ;u, y) 4o -2’
x,yeRN
E(tx;u,y)=M
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logp(t,xsu, y)+ Eg(t, x 5u, y)

3) liminf inf =infc,
(e—t) /= |x—y|=R u—t
. lo t,x;u,y)+E( x;u,
(4) limsup sup gp( L furdlt y)ésup(?z b+ B2+ c).
(u—1) 7% [x—y|<R u—t

Proof. (1) Use the lower bound of Theorem 1.1, together with the obvious
control of |Eg(t, x 5 u, y) — E(¢, x ; u, y)| deriving from the hypothesis of uniform
continuity.

(2) This is immediate from the upper bound of Theorem 1.1.

(3) This follows from (2.3), (3.4) and (3.6) on choosing & = (u — )%

(4) This is immediate from Theorem 1.1 and (2.3).

The class of propagators considered is stable under a number of transforma-
tions. This results in some economy of argument.

(1) Time reversal and L*-duality. The heat equation (1.4) yields information
on the heat kernel through (1.3). We have also

Pu))= | w@p(ex 5w y)d,

where P, , is the L>-dual of P,,. We note from (1.4) that the coefficients of 2,,
(when time is considered in the opposite sense) are a, b, b and c. That is, the
only change is that the roles of b and b are reversed.

(2) Scaling. For 0 <o <= consider the scaled propagator and heat kernel

Po,= (M%) Py, M where (M°9)(y)= $(y/0).
A simple calculation shows that the corresponding operator L has coefficients
a(o’t, ox), ob(o’, ox), ob(o’, ox) and o*c(o™, ox)
and that the associated heat kernel is given by
po(t, x ;u, y) = o"p(d®t, ox ; o’u, oy).

Note that, so long as o € [0, 1], the coefficients again satisfy (1.5).
(3) Conjugation with a potential. For 8 € Ci(R x RY, R), let 6, = 6(s, ) and
consider the propagator

Pfu = E—BIPI,ueﬂu_

The associated operator L has coefficients
a®=a, b°=b+V0, b°=H-VO and ce=c+%?+ [VE1Z+ (b —5,V8),,

and the corresponding heat kernel is given by
pe(t, XU, y) = e_e(r'x)p(t, xu, y)ea(u,y)‘

This transformation will be used in § 2 in order to get the upper bound.
(4) Moving along a path. For y e Ci(R, R") consider the propagator

Pl.=t"P,, i where (729)(y) = ¢(y — y(u)).
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The associated operator L* has coefficients
a*(t, x)=a(t, x + v(t)),
bY(t, x) =b(t, x + (1)) — 2a"(t, x) ',
b7, x) =b(t, x + y(t)) + 1a”(t, )7,
c¥(t, x)=c(t, x + (1))

377

(the drifts 6 and b are not uniquely determined, but the choice made preserves

the notational L*-symmetry); and the corresponding heat kernel is given by

pY( x, 5w, y)=p(t x + y(0) s u, y + y(w)).

This transformation is, in a sense, dual to the one in (3) and will be used in § 3

when we derive the lower bound.

2. The upper bound

Let P,,, with t<u, be a propagator with coefficients a, b, b and ¢, as in § 1.
Fixing u € R and a positive test-function ¢ on R", set ¢, = P, ,¢, with t <u, and,

for q € (1, ), consider the function

G =l =([ orax)" <w.

We compute the derivative of G, using the heat equation (1.4). This leads
immediately to a bound on ||P, ||, (that is, the norm of P, , as an operator from
L?*to L?). Next we define the energy function E(Z, x ; u, y), generalising the usual

Gaussian exponential |y —x|?/4(u —t). We show in Lemma 2.1 that, when

the

potential 6 is ‘dominated’ by E, ||P?,|l,., (see § 1, (3)) satisfies the same bound
as || P, .||~z After combining this fact with an inequality due to Nash (cf. Lemma
2.2), we obtain a system of differential inequalities for G,, in terms of G,, where
ge{2,4,8, ...}, which leads ultimately to a bound on ||P,,|l;—.. A crude
Gaussian upper bound follows immediately. The main results, Theorems 2.7 and

2.8, are then obtained using this crude Gaussian bound, Lemma 2.1, and
sharp bounds on || P, ,||>—2.
To compute the derivative of G,, note that

Go=([ orax) [ o Za=c,er-o(e1 %)

and that, by the heat equation (1.4),
(97, 22) = (@ - D672 V8, V9. — (917, V),
—(@—1)(977>V ¢y, bo)a— (977", co)
e LR

the

~2(or, (G +(1-2)8)#27) - 90,
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Thus, by the quadratic inequality +2xy < x>+ y%/8, where 0< § <,
ap\ 4/ 1

2.1 ( a1, —)a— (1——— ) V($97), V(¢5?)),

2.1) iy qa((‘}b)(‘f’))

- (% Em ~1/q)b j+c, ¢?).

Taking § =1—1/g, we get
[lb +(g —1)bL
4g-1)

Since ¢ >0 is arbitrary and |P, ,y| < P, , || for any test-function v, this implies
a bound on P, , as an operator on L, where q € (1, ). We note in particular that

G,(t)= — sup

xsRY

+c(s, x)] G,(1).

(2.2) ||P,,,,,||2_,3=-<.exp[j sup (3 [b +b|2+ c)(s, x) ds]
1 xeRM
Recall the definition of the energy function E: for f, ueR with r<u and
x,y eR"Y,

1 173
Et,x;u,y)= inf{t—lf l7s — a(b — B)2-i(s, y.) ds: y e CY([1, u], R™)
with y,=x and y, =y}.

(The restriction from absolutely continuous paths to C'-paths does not affect the
value of the infimum.)

By the nature of its definition it will be very hard to calculate E in general;
indeed it is not trivial even to show that E is continuous (see the Appendix).
Nevertheless it is clear that one has the estimate

ly—xf _, Aly —xI°
2.3 ——— =i Alu-0=<E(t,x;uy)s———
@3 oy METOSEG I )<
in terms of the coefficient bounds 4 and A. The following result is the first step to
getting an upper bound on p(t, x ; u, y) in terms of E(¢, x ; u, y).

+3A(u—1),

LemMa 2.1. Suppose that a and b — b are uniformly continuous and that 0 is a
bounded measurable function on [t, u]l X R satisfying

(2.4) 0(s', 2")— 0(s, z2) < E(s, z ;5', 2")
whenever t<s<s'<u and z,z'€R™. Then the propagator P?,= e %P, e%
satisfies

1PE ez = epr sup (3 b+ B2+ c)(s, z) ds].

t zeRM
Proof. Take v=35(¢t+u) and s <v <s'. Then, by (2.4), we have

0(s', z)<B(s', z") = ianN [8(v, w)+ E(v, w;s', 2')],

6(s, z) = 0(s, z) = sup [6(v, w) — E(s, z ; v, w)].

weRN
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Since 6 also satisfies (2.4), it suffices to prove the lemma for §. By Theorem A.6
(p. 400) the functions E(v, w ; -, -) are equi-continuous in (v, ©) X R™ as w ranges
over compacts. Since 6 is bounded and

r I | = 12 1
. = 1 Py
E(v,w;s’, z") 86— ) A(s" —v),

this implies that @ is continuous in (v, @) x RY, and a similar argument shows
that it is also continuous on (—=,v) x R¥. It therefore suffices to prove the
lemma under the additional hypothesis that 6 is continuous away from {v} x R".

Take any smooth, compactly supported function ¥ =0 on R x R" of integral 1,
and set ,(s, z) =n™*"'y(ns, nz). Consider the approximating sequence 6, =
Y, * 6, where * denotes convolution in R X R". By (2.4), we have

1 "
0u(5", 2) = 0,65, )< [ (17— alb—BYE-rm ), 1) dr
for all paths y connecting (s, z) and (s', z’). By the uniform continuity of a and
b — b, there is then a sequence 8,0 such that 6, =6,/(1+ 8,) satisfies
(2.5) 6,(s',2') = B,(5, 2) < E(s, 2 ; 5", 2").
Fix (s, z) and consider any path y with y, = z; then

" = ol e
065", 1) = 8. )= [ £ (B, v ar

' 138 _
- 4 (7, V0, ), v,
L (ar (4, V8,) ), v,) dr

[ (5

"+ VOE+ (Y0, b= 6), ), v,) dr
) 4
+Zf IIYr'_'a'(bﬁB)la‘1 (r’ yr) dr

- f a3V, — sa~ ¥, — a(b — BY)P (v, v,) dr.

By (2.5), the left-hand side is no greater than the second integral on the right.
Hence, since we can choose y to make the third integrand vanish at r=s,
differentiation leads to

(2.6) (aai"+1vé,,1§+ (V8,, b—E),,)(s, z)=<0.

The coefficients of the propagator Pf:,se‘é"-'Pt,ueé"-" are given in § 1, (3). In
particular,

b+ 6% =b + 5,
and, by (2.6), c®<c. Thus (2.2) implies that
”Pf;;”zﬁ,z = exp[f sup (4 |6 + b2+ ¢)(s, 2) ds].
t zeRN

Finally, ]|Pf;]]2_,2—> I P¢.ll2—> by the continuity of 6.
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We have not yet exploited the full power of (2.1): the term in (V(¢7?), V(¢??))
can be turned to advantage by means of the following fundamental result.

LemMa 2.2 (Nash’s Inequality). There is a constant C(N) < such that, for all
test-functions ¢ on R",

gz < ClIVoliz l$lIT™.

Proof. Just for now, let P, be the classical heat semigroup on R". Recall that P,
is a self-adjoint contraction on L?, P, commutes with V, ||P,||;_,.. = (4a¢) ™2, and

R¢=¢+]tan¢ds.
Thus,
(6, P$) = (9, §)+ j (6, AP.) ds,

and so
l$lz= (¢, Pig) + J: (Pn V@, Pp Vo) ds < (4mt) ™™ ||plIT + ¢ |V |13
Now optimise over 0 <¢ <o,
By Nash’s inequality and the uniform positivity of a, we have

1 IPF2IE™ _ Gy())7+2™)
ql2 ql2 =_ gl 2;3 i q
(V(d)t )’ V(d’f ))ﬂ = A ”V(¢K )”2 CA. ”d):;n‘Z”tluN CAGqu(t)Z‘I"N )

Now, by taking 6 =% in (2.1), we get

(2—4/q) G ()"
Chg G n(t2"™

(2.7) G,(t) = my(1)G,(t),

where

j+ c](t, x).

xeRY

m,(t) = sup [% ’~g+ (1 — ;)5

Now suppose ||¢||>=1; then (2.2) would give us a bound on G,(t), for tr <u.
Then (2.7) with ¢ =4 would lead to a bound on G,(t), from which we would get a
bound on Gg(r), and so on. We have to carry out this procedure with some care
because we ultimately want to let g — . For this reason, we first show how (2.7)
is related to a simpler system of differential equations, and then we apply an
elementary estimate on that system to get the desired bounds.

Let u and i be uniform bounds on |b|2 and ||?, respectively. Set & =2/CAN
and, for g =2, 4, 8, ..., define

M, () =@Gq - -1+ r sup (3 1b + 612+ ¢)(s, x) ds,

t xeRY
F(6) = ele™ G, )] 2.

We have
my(t) = —My(t),

my(t) —mya(t) <igh = —(M, — M,,)'(1), forg=4,8, ....
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Hence,
m ()< —Myt), forq=2,4,8, ...,

and therefore, by (2.7),

2
20¢ [ 20040

]G, (0 IGye) - MG, 0]

Fi)=-
4(q 2)¢.. .
gCAN ~qCiN

When g =2, this only shows that F3(t) <0 and therefore that F(t) = F(u) =¢.
But, for g =4, §, ..., we get

M, (r) Gq' (t))—Zq!N_

Q8 )= =€ o] L (M,(0) ~ Mynl) (e HG o)) 0
= _eﬁqz(u—r)( qu(t))il’
where = fi/2N.

LemMa 2.3. Let =0 and £>0. Define inductively a sequence of functions
fo(0), for0=t<w, g=2,4,8,.., by

Lty=e and f,(t)= Lt eﬁ"zs(fq,z(s))2 ds for g =4,8, ...

Then there is an absolute constant A > 0 such that
2.9) f,(0) = e7(Are*#ta= D=t
for all 0=t <= and each q.
Proof. We will define a decreasing sequence A, for which (2.9) holds for

A=A, It will then suffice to observe that limA,>0. Take A,=1. Assuming
that we have found A = A, <1 such that (2.9) holds, we see that

fzq(f)> e*P75(f,(s))? ds

t(1—1/447)
= Go7gs OP4B( — 1/44°)(q + (g ~ Dl ~ D)J(AK(L~ 1/4g?)¢

Using the inequality (1—1/4¢%)(g°+ (g —1)(g—2))=2q—1)(g—1) for the
exponential term, we see that this implies

fog(8) = €7[A(1 — 1/4g%)(1/4g%) "9~ Deh2a—ija—1,
Thus the recursive relation
A=Ayl - 1/4¢°)(1/4¢%) "~V
defines a suitable sequence.

THEOREM 2.4. Recall that ji is a uniform bound on |b|>. There is a constant
C = C(4, N) < such that

C Ni4
1Pllen=(75) enp[3aGu=0)+ [ sup (4 1o+ BE+ )5, x) s |

t t xeRN
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Proof. After reversing the direction of time, apply Lemma 2.3 to (2.8) to
obtain
E()= e"(A(u — t)e"ﬁ(q*l)(“—!))qﬂ—l

with B = fi/2N. Thus, for ||¢|,=1,
il = Gy (1) = e O (Fy(8)/ )2

1 N(g—2)iq . i i
< (Aﬁa(u—r)) exp[i#(l —2/q)(u—1) +I sup G1b+b62+c)(s, x) ds];

and so the theorem follows from

1P llosee = lim | P, |
q—)ﬂ)

CoroLLARY 2.5. There is a constant C(A, N) e (0, ®) such that

e C _pyo oyl
P(""’“’Y)‘(uk;)me"p[m(” Z C)u(u“t)]

forall t<uand x,y e RV,

Proof. Fix x,y e R, 0 < a <, and set
0(z)=a(lx —z| A |x —y|), where z e R™.

Recalling that the propagator PY, =e¢~ %P, .e% corresponds to coefficients b? =
b+V6,6°=5-V6, and

c®=c+|VOPE+(VO,b—5),,
apply Theorem 2.4 and conclude that, for some C(A, N) € (0, =),

N4
[ P (u_—r) exp[Ca’A(u — 1) + SCA(u — 1)) where v = (¢ + u).

Hence, since
I1P3 ullioz = 1P yllomses
which satisfies a similar bound, we have

. — p—alx—yI 8 ) —ap—
P(t:x , U, y) =€ P ‘vIP (tyx U, )’)se bl ”va||2—’m ||P3u|!1az

C N/i2
& (u__t) exp[}Ca?A(u — 1) + CA(u — 1) — a |x — y[].

Now optimise the choice of a.
LemMma 2.6. Assume a and b — b are uniformly continuous. Let (u, y) € (0, ) X

R be given. There is a bounded measurable function 0: [0, u] x R” - R such
that

(2.10) B(u, y)—6(0,0)=E(0,0;u,y),
and

(2.11) 6(s',z")—0(s,2)<E(s,z;8',2"), forO0<s<s'<uandz z’eR".
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Moreover, 6 may be chosen so that, for each a € (3, 1) satisfying o*/(2a —1) >
A%, there is a C = C(a, A) € (0, ®) such that, setting K = C(|y| + u)"*/u, we have

(2. 12) 8(0, Z) - 6(0, 0) =K |le_1"“ and B(u’ y) — 6(“, z) =K IZ — y|2—llaf
for all z e R™.

Proof. We will assume =0 and x=0. Take a path y*eT(0,0;u,y) of
minimal energy, set v = iu and w* = y¥, Then

E@©,0;v, w*)+ E(u, w*;u,y)<EQ0,0;v,w)+ E(v, w;uy) forall weR",
so there is a function 8, on R”" such that
E(u,w*;u,y)— E(v, w;u,y)=0,(w)

<E(0,0;v,w)—E(0,0;v, w*) forall weR",

and
—E@Q0,0;v, w*)<6,<E(u,w*;u,y) uniformly.

Choose such a 8, and define

sup [6,(w)— E(s, z ;u, w)] ifO0ss=<u,

weRN

O(s, z)=
inf [0,(w)+E(v,w;s, 2)] ifvss=u.
N weRN

It is a simple matter to check that @ satisfies (2.10) and (2.11). To show that €
satisfies (2.12) we use the following fact proved in the Appendix, Theorem A.6:
there is a constant C(a, A) <% such that, for all w, z e R",

(2.13) E(0, z ;v, w) = E(0, 0; v, w) <(C/v)[|w| + |w — z| + ATv]Y* |z|2~ V=,

(Warning: the Appendix uses different notation, set out at the beginning of the
Appendix.) Now consider two cases. First suppose |z|=|y|+ Azu. Then, for
C=34,

6(0, z) — 8(0, 0) < E(0, 0 u, y) < C(|y*/ue + Au) < (Clu)(|y| + Abu)V« |z]>~ =,

Secondly, if |z|=<|y| + Afu, then by our crude bounds (2.3) on E, there is a
constant C(A) < o such that

6(0, z) =sup{6,(w) — E(0, z ;u, w): |w|+ |z —w|= C(|y| + Alu)};
hence (2.13) implies for some C(a, A) < that
(0, z) — (0, 0) < (C/u)(|y| + Adu)"™ |z >~ V=,

We have established the first of the inequalities (2.12); the second follows by
symmetry.

Treorem 2.7 (the upper bound). Suppose that a and b—b are uniformly
continuous. Then, for every a € (3, 1) satisfying

/(2 —1)> A%,
there is a constant C(e, A, N) € (0, ) such that, for all t <u and x, y e R",
Cl+A(u—-t+E( x;u, y)]”(z"”‘”)""'2
u—t

p(t,x;u,y)é(

X exp{J'u sup (3 |b +b2+c)(s, z)ds — E(t, x ;u, y)}‘

zeRN
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Proof. We will assume that £=0 and x =0. Let 6 be the function of Lemma
2.6. Define the new propagator P?. =¢ %P, .e% as in § 1, (3) and let p® be its
heat kernel. Take e=[2+Au+E(0,0;u, y)]7"®* Ve (0, 1) and set ' = eu,
u' =(1— g)u. We have by (2.10),

eE(O,O;u,y)p(O’ 05u,y) =Pe(0: 05u,y)
=”PB(0, 0;¢, 2)p°(t', z 50, wp®(u', wiu, y) dzdw

<|Ip°0, 05", N2 1P wrllaz 1P @', + 5 86 Y)]l2
By (2.11) and Lemma 2.1,

1PEulla<exp{ [ supilb +BE+c)(s, 2) ds .
 zeRN

By (2.11) again,
6(t', z)— 6(0, z) s At', forall zeR",
so from (2.12),
B(t', z)— 6(0, 0) <K |z]>"V*+ Ar'.
By Corollary 2.5 there is a constant C(A, N) € (0, =) such that

p(0,0;1, 2) <(C/t')N2eCM 12 for all z e RY.
Hence

pB(O, 0 ; t', Z) - eG(r',z)——B(D,O)p (0, 0 : tr, Z) = (C/tr)lee(C+l)Az'eK|z|2’1"‘"—}z\2lc‘:"
and so there is a constant C(a, A, N) € (0, «) such that

C N - 2-la Cll1+Au+E 0, 5 V(2a—1)y NH
12°0, 031/, Y= () eenvecmnng (AU EQ 05w N )™

By symmetry the same bound applies to ||p®(u’, -;u, y)|,, and the result
follows.

THEOREM 2.8 (the upper bound for Holder continuous coefficients). Suppose
that a and b — b are uniformly continuous. Suppose further that a and (b — b)/A:
are Hélder continuous in time of exponent « € (0, 1] and constant A € [0, =), and
that |b — b]2/A is Holder continuous of exponent « and constant AJ/A*?. Then
there is a constant C(e, A, N) € (0, ») such that, for all t, u € R with t <u and all
x, y eRY,

P, x 1, )< (C[(l +AY*(u — 1)1 -:;/i(:; —t)+E(t, x ;u, y))])zwz

X exp{r sup(3 16 + B2+ c)(s, z)ds — E(t, x ;u, y)}.

zeRN

Proof. We follow the proofs of Lemma 2.6 and Theorem 2.7, the only
difference being that by our stronger continuity hypothesis on a and b — 6, we can
show that E and hence 6 (as constructed in Lemma 2.6) are Lipschitz, with
control of the constant. By Theorem A.7, there is a constant C(a, 1) < such
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that
EQ,z;u,w)—E0,0;v, w)y=s(C/v)[(jw]|+ |w — z| -t—A%v)(l +A”"v)%] |z].

Using this bound in place of (2.13), we can replace (2.12) by the following
stronger estimates: there is a constant C(wa, A) <o such that, setting K =
(C/w)[(ly] + Atu)(1 + AVu)3), we have, for all z € RY,

0(0,2)-6(0,0)=K |z, O(u,y)—0(u, z)<K [z =yl
Take
e=3[(1+ A u)(1+ Au+EQ, 0;u, y)]™";

then £€(0, 1) and euK*< C? so by the argument of Theorem 2.7, there is a
constant C(4, N) < such that

CI(L+ A" u)(1 + Au+ E(0, 0 ; u, y))])”“
A .

1P°0, 0 e, )l < (

The rest of the proof is identical to that of Theorem 2.7.

3. The lower bound

Let P, ,, for t<u, be a propagator with coefficients a, b, 6 and ¢ as in § 2. As
before, after fixing u € R and a test-function ¢ >0 on R, we set ¢, = P, ¢, for
t<u. Let p be a probability density function on R”. The lower bound is obtained
via differential inequalities for functions of the form

G(t) = f p log ¢, dy,
RN

which are derived from the heat equation (1.4). The main argument draws on
three other results, firstly a spectral gap estimate for the classical Laplacian
(Lemma 3.1), secondly a control on the loss of mass under P, , (Lemma 3.2), and
thirdly the crude upper bound of Corollary 2.5. In Lemma 3.3 we choose p to be
the classical heat kernel and obtain a lower bound for the associated function G.
(The spectral gap estimate plays a role here analogous to Nash’s inequality in
§ 2, being the way in which information on the classical heat kernel is fed into the
argument.) This is then used to get a crude Gaussian lower bound in Theorem
3.4. This first lower bound actually enables us to strengthen Lemma 3.3, in
particular to allow a more general choice of the function p. Then, using a more
careful version of the argument for Theorem 3.4, we get a more precise lower
bound in Theorem 3.5. When the coefficients are Holder continuous this bound
may be sharpened further (Theorem 3.7).
We use the following notation:

(@)= o0, . 9)=] vopdr and var(9)=] @-(8), 00

Lemma 3.1 (spectral gap estimate). Let p$, with 0 <1<, be the classical heat
kernel

pix) = (4nt) 2 exp(— |x[>/47), where x € R".
Then for any test-function v on R",
varp(Y) < 27(|Vy[*) .



386 JAMES R. NORRIS AND DANIEL W. STROOCK

Proof. In the proof we shall suppress the superscript ¢. By substitution and
scaling, we reduce to the case when 7=} and (), =0. Set p = ps. Let P, be the
Ornstein—Uhlenbeck semi-group on R™. That is,

P = $0)pa-ialy —e 0 dy.

Then

3
5:R=(A_x V)P, and VeP =e PV,

and so, by an integration by parts, for i, = P,3 we have,

d
&[ wiody==2 \wyrpay=—2e%[ |nVyPpay.
dt RN NN [RN

Hence, since, as the preceding makes clear,

d
— | |RVy|Ppdy=
2l Jveeody <o,

we find that
d _
d—tf Yipdy=—2e 2‘j [Vy|* p dy,
RNy RN

which, after integration, yields

limf w,zpdy—f Y pdy = —f 2e"2’dtf |V o dy.
RN Ry 0 RN

t—ro0

Finally, because y,— () p = 0 uniformly on R" as t— », we conclude that
f Vpdy SJ IVy|? p dy.
RY RM

Lemma 3.2 (loss of mass). Suppose that A<1and 0<u—t=<1. Then there is a
constant 0 < C(A, N) < such that

1
LNp(t,x;u, y)dxaE forall y e RY.

Proof. Obviously, it suffices to handle the case when y = 0. To this end, define
o(x) =exp[-C(1 + |x)3], for x e R¥,

where C = C(N) is chosen so that [z~ @ dx =1. Clearly, |V(log w)| < C. Next,
take any strictly positive test-function ¢ on RY with [pv¢pdx =1, and set
¢, =P, ¢, for t<u, and

Hg (1) =j w¢fdy for Be(0,2) and t<u.
RN
One then has that
d
Hy(t) = ( A1 — )
.ﬁ() ﬁ (H(P, dt ¢’:

=—B(L—-B)PF* Vo, ¢ V¢)ea
+ B(¢#*[V(log ) — b+ (1= B)b], 7' Vo )u
—ﬁ((V(log (U), 6)a+ ¢, qb,ﬂ)m.
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By quadratic inequalities we find there is a constant C(A, N) < such that for
0<p<1,

Hp(t)< =3B(1 = B)(Vor, $F 72V ,)ay +—— Hy (1),

ﬁ

and

H{(t) = %ﬁ(l =BV, .e - V(abt)ap + Hz_ﬁ(t) + CHy(1).

C

=p
By the upper bound of Corollary 2.5, there is a constant C(A, N) < such that,
for0<pg<1,

C =8
H, g(t)= (m) H(1).
Thus, by taking B =1—-1/N, we get
(Hp + Hy)'(6) < C(L+ (u ~ 1) 3)(Hp + H,)(1);
and therefore, since H(u) = (¢),, and Hy(t) < H,(t)", we conclude that
H,(f) = C min{1, (¢ )=},

Hence, after letting ¢ tend to the delta function, one has

f plt,x;u, 0)dx=C.
RN

We return now to the main argument: p is a probability density function on
RY, ¢ >0 is a test-function on R and ¢, = P, ,¢, where ¢ < u. Setting

G(r)=jmplog by dx

we have, from the heat equation (1.4),

c'0=(2 7 )
= —(V(log ¢,), V(log ¢.))a, — (V(log ¢,), b — b — V(log p)),.
_(V(log p)! 5)pa - (c)p'

Fix some probability density function p, with the property that

B Flipl)= flvﬂlidx<

Define, for 0 <t <,
p(x)=r1

then H(p,) = H/t. If we take p = p, above and write G = G,, then on completing
squares in various ways, we find both that

s B |
N2p(t7%x), where x e RY;

1
(1) Guo=—3 [ p.IVog gz dx +CQL N, A, =, H),
RN

and that for all &' € (0, »),

C(A, i\’, H) (1

(3.2) Gyn = +%)+J p{51b-b2+¢ |b+b|2—c} dx.
£ RN
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Both these inequalities will be used below: (3.1) will be applied in the following
lemma in the case where ¥ =1 and

pi(x) = (4m) " exp(—% |x[*), for x eRY,

when we have H(p,) = 4N. We will apply (3.2) with p, Gaussian in Theorem 3.4,
and more generally in Theorem 3.5. The inequalities lie at the heart of our
method and have been derived together at this stage to emphasise the unity of
the techniques involved.

LemmMa 3.3. Let p%, for 0<t <, be the classical heat kernel
px) = (4mt) "V exp(—|x|*/47), where x e R”.

Assume that A<1 and 0<u —1=<1. Then there is a constant C(A, N) < such
that

(3.3) j p5_[(x)logp(t, x ;u, 0)dx = —3N log(u —t) — C.
RN

Proof. In the proof we shall suppress the superscript c. By the scaling
transformation of § 1, (2) we see that, for 0 < o <, (3.3) is equivalent to

j Poru—n(xNogp' (o’ x', 0°u, 0) dx' = ~3Nlog o*(u — 1) — C,

HN

where p’ is a heat kernel corresponding to coefficients with A’ = 4 and A’ = A/ o™
In particular, choosing o =1/(u —t), we still have that A’<1 and are thereby

reduced to the case where 4 —¢t = 1. By Corollary 2.5 and Lemma 3.2, we know
that there is a C = C(4, N) € (0, =) such that

C
p(t,x;u,y)smexp[—[y —x*/C(u—1)], forO<u—r=<1andx,yeR",

and

1
fp(t,x;u,y)dx?z for0<u—t=<1andyeR"
RN
Thus, for some R = R(A, N) € (0, »),
1
f pt,xsu,y)dr<s— forO<u—t=<1land|y|=1.
|=R 2C

Now let ¢ >0 be any test function with [prv @(¥)dy =1, [, <; ¢(¥)dy =3 and
define

GO=Gi)= [ p@log ) ds, for 1<
"N
as above. Then by Lemma 3.1 we have, on the one hand, that
[ pi1Vtog )z s =55 [ pitton 6.~ G e

- R2/4

> 2a@my e K- G(6))*vol({x: |x| <R and ¢,(x)=e™}).
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On the other hand, by the preceding paragraph, we know that
Ni2 1 1
¢, <2V°C fors<u—t<1 and ¢ x)dx=— for0<u-—r=1,
|%[=R 4C
and therefore that

lg- ¢.(x) dx <e ®vol({x: |x| =R})
4C |xl=1

+ Cvol({x: |x| =R and ¢(x)=e%}), forisu—-r=<1.
Hence, there is choice of K = K(A, N) € (0, ) for which
vol({x: |x|<R and ¢,(x)=e *})=1/K forisu—-r<1,
and with this choice we have by (3.1) that
G')=-e(-K-G@®)*+M, fori<su—t=1,

for some &e=¢g(A, N)>0 and M=M(A, N)e(0,=). Thus, if Gu—1)=<
—2K — M, then G(t)<2K, 3=<u—t=1, and so

G'(t)<—1eG()*+ M forisu—t=<1,
from which it is easy to deduce that
Gu—-1)= —[(ZK +iM) v (A—; tanhﬁl(%(sM)%))].
Finally by making ¢ tend to the delta function at 0, we find that
LNpl(x) logp(u—1, x;u,0)dx=—-C(A, N),
as required.

THEOREM 3.4. There is a constant 0 < C(A, N) <o such that, for all 0= A <o,
t<uandx,yeR",

C kaxq
——

)Mz exp[—CA(u —t)— —,

p(t,X;u,y)B(C(u_r)

Proof. We assume that t=0 and x =0, and initially that u<1 and A<1.
Define a path y: [0, u]—R", by

0, for 0=s=<iu,
1
y(s)= 2(3 - Z)y for u=<s =<3y,

¥y, forduss=u.
Consider the new heat kernel
pY(s, 28, 2")y=p(s, 2+ v(s);s', 2’ + v(s")).

The coefficients associated with p? are listed in § 1, (4). By our choice of y, for
0<s<jiu, we have 7, =0, so A"=|b!2+ |bY2+ |cY|<1. Let pS, for 0< 7 <w,
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be the classical heat kernel as in Lemma 3.3. For the remainder of the proof we
suppress the superscript ¢. By Lemma 3.3,

f Pua(z)log p7(0, 0; 3u, 2) dz =~ 3N logju — C.
RN

On the other hand, (3.2) shows, on taking £ =1 and letting ¢ tend to a delta
function at 0, that

d 4C
T fw Pua(2)logp¥(0,0;s, 2)dz = — T 2 = 3(Pua* 17— a(b — B)2-)(s, v,).

Integrating this inequality from s = ju to s = 3u and adding the result to the one
above we get

|| pus()ogp™0, 03 4u, 2) dz
RN

ul2
2_%N log %u—C—C—%u— f pul4*|}”s_a(b_5)|§“ (S, Ys‘)ds
u/4

-

=—1Nlog Cu—C |y|*/u,
for some 0 < C(4, N) <. Similarly,

[ puseogpGu, 23, 0)dz =~ 4N tog Cu~ ClyP/u
33
Hence, by Jensen’s inequality,

logp(0, 0;u, y)=1logp™(0, 0; 4, 0)

= log[f p¥(0,0;3u, z)p"(3u, z ; u, 0) dz]
RN

=log| [ 70,053, 2)p"Chu, 251, 0) 2222 g
R ”pu."4uw

=INlogmu+ [ puu(2)ogp™(0,0:3u, 2) dz
RN

+ f Pua(z) log p?Gu, z 5u, 0) dz
[RN

= —INlog Cu—C |y|]*/u.

In the case where 0<u —¢=<1 and A =<1 we have shown that

N2 )
Lxiu )= (———) e-Cly-stiu-n
pltx;u,) (C(u—r)) ¢

To remove the restriction that u — =<1, we use

p(t,x;u,y) =f plt,x v, 2)p(v, z ;u, y) dz
ERN

for t<v <u, together with the corresponding property of the classical heat
kernel, in order to show that the preceding estimate for u —t <1 gives

_Cly—xiz]

1
p(t,x;u,Y)?WeXP[*C(u—f) i
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for arbitrary u — ¢ > 0. Finally, to remove the restriction that A < 1, we repeat the
scaling argument given in Lemma 3.3.

In the statement of the lower bound that follows there appears a probability
density function p, which may be chosen subject to certain restrictions. A
probability density function p will be called admissible if the following quantities,
the characteristics of p, are finite:

IVol*
B(p)=sup p(z), H(p)= e

zeRN {p>0}

dz S(p)=[ 1P p(e) ez

Any Gaussian is admissible. There are also admissible functions of compact
support. Notice however that any bound on H prevents p from being too close to
a delta-function. Given a probability density function P = p1, we define for
0<T<on,

=Nr2

p(z)=1?p (173z), where z € RV.

Notice that B(p,) =t"?B(p,), H(p.)= H(p,)/7 and S(p,) = S(py)r.
We define the smoothed energy function Eg:for0<f<w, r<uandx,yeR",
set

1 :
Eplt,x3,y) =int{; [ oy (17— alb ~ BYE-)(s, 7) ds:
’
Y€ C'([t, u], RY) with y,=x, , =y}.

We should more precisely call E; ‘an energy function associated with the
smoothings of certain functions associated with the coefficients’: it is not a
smoothing of E. Notice that the crude bounds (2.3) apply to Eg as well as E. In
particular, for C = C(A, N), the expression C[A(u —t) + Eg(t, x s u, y)] is equiv-
alent to C[A(u—t) + E(t, x ; u, y)].

THEOREM 3.5 (the lower bound). Let p be admissible with characteristics B, H
and S. For all ae(3,1) satisfying a*/(Qa—1)>12, there is a constant

C(e, A, B, H, N, S) < such that, for all t, u € R with t < u and all x,y €eR", for
B=(1+Alm—1)+E(@ x;u,y)) Véeb,

1 '
: Bo_E . —FEq(t, x ; + | i
plt,x;u,y) 1" exp{ Es(t, x 31, y) J: zlergN c(s, 2) ds
—Cl(1+ A(u — 1) + Eg(t, x ; u, y))Vé=—0

+(1+ A~ ) + Eg(t, x 5 1, y)) 6% YA (u — t))%]}.

Proof. The degree of smoothing in the smoothed energy function Ej is
proportional to u —¢. In the proof we consider a smoothed energy function in
which the degree of smoothing is fixed: define

Ex ) =inf{; [ oo (9, — a6 - E)G, 1) ds:

v € CM([1, u], R™) with y, = x, Ve =y}.
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Fix e€(0, ] and set t' =t + e(u —t), u' = u — e(u — t). By Theorem A.6 there is
a constant C(a, ) < such that

(3.4) E*(t',x;u’,y)<E"(t,x;u,y)+ CE™(t, x;u,y) + Alu—1)]e**".

(Warning: different notation is used in the Appendix.) From Theorem 3.4 we
deduce that for all A € [0, =), § € (0, ) and ¢t <u,

(4:5) | pous@logp(e xsu 0)ds

=—INlog(u —1)— C(A, N)(1+ 88 + A(u—1)).

Notice the improvement over (3.3). We will use this estimate, together with
essentially the same argument as used for Theorem 3.4, to show that there is a
constant C(, B, H, N, §) < such that for all 8 € (0, ®), t<u and x, y e R",

1 373
(3.6) p(t,x;uy) 2—(14 e exp{—E'B(“*’)(t’, x,u',y) +J ianc(s, z)ds
I

zelR

- C[l g 8.1, eA(u—1) + (/—\Qi_—r))z]}
e B B
Noting that EP®“~9(¢, x ;u, y) = Eg(t, x ;u, y), we see that the theorem follows
on taking
B=QQ+Au—1t)+E(t x ;u, y)) Ve,
e=B+AW—10)+E®F x;u,y)) 20D

and using (3.4).
Take any y € C'([¢', '], R") with ¥, =x and y,. =y and extend y to [t, u] by

)= {x iftss=¢,
)= y ifu'ss=su
Consider the new heat kernel
p¥(s, z58', z)=p(s, z+ y(s) ;5', 2" +y(s")).

The coefficients associated with p" are listed in § 1, (4). We have for § € (0, «),
by (3.5),

f Pow-n(2)logp™(t, 0; 1, z) dz
R

= L Pow-n(2)logp(t, x 31’ x +2) dz

= —INloge(u—t)— C(A, N)(1+ S + Ae(u —1)).

Set v=3(¢t+ u). Let ¢ tend to a delta-function in (3.2) to obtain for s € [¢', v],

et (1*3)

- %(pﬁs(u—t) |y, —a(b — 5)|3-1)(5, ¥s)-

% f Pss—n(2)logp¥(t, 05, 2)dz = — —&'A+ inf c(s, 2)
RN

zeRN
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Integrating this inequality from s =t' to s = v and adding the result to the one
above we get

f pﬁs(u—t)(z)py(t’ O U, Z) dz
RN

= —-1Nlog e(u —t)—C[1+ O+ (e+ 42')A(u—t)+6i (1+l,)]
g £

v 1
+J inf c(s, z)ds ——

.- " 2 f (Psequ—n * |7 — a(b — B)2-)(s, v.) ds.

By time reversal there is a corresponding lower bound for

f Poeu-n(2)P"(V, 2 5u, 0) dz.
RN
Just as in the proof of Theorem 3.4, by Jensen’s inequality,
logp(t, x;u, y)=logp¥(t,0;u, 0)
= —log B+ 4N log Se(u —1) +f Pt 18, 0w, 2Yidz
RN
+ f Npés(u—t)(z)p Y(U) zZUu, O) dZ
R
" , 1 1
=—Nlog(u—t)—C[1+6+ (e+e)A(u—1) +6— (1 —l——,)]
£ £

u . 1 ' .
+J’ inf C(S; Z) ds — Z j’ (pé'e(u—r)* |35 =a{h= E)li—l)(&', Ys) ds.

zeRN

Taking 6 = B/¢ and maximizing over y and ¢’ we arrive at (3.6).
We now consider the case of Holder continuous coefficients.

Lemma 3.6. Let a and (b — b)/A} be uniformly Hélder continuous in space of
exponent « €(0,1] and constant A€ (0, ). Suppose that supp p, c {|z| <1}.
Then there is a constant C(A) <o such that, for all t <u and x, y e R",

Eg(t, x 5u, y)<E(t, x ;u,y) + C(E(t, x ;u, y) + A(u — 1)) AB**(u — £)*2.

Proof. Set = f(u—1t). Note that supp p, c {|z| = 72}. Consider any path y
from (¢, x) to (u, y). We have, in an obvious notation,
I =10+ [ (17— a® - BR)*(po= p)(s, 1) ds
’

<I(y) + CAU(y) + Al — ) AT*".

Now minimise over .

Tueorem 3.7 (the lower bound for Holder continuous coefficients). Let a and
(b —b)/A? be Holder continuous in time of exponent « € (0,1] and constant
A €0, ), and let |b—b|3/A* be Hélder continuous in space of exponent a and
constant A[A*"?,
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(a) For any admissible probability density function p, with characteristics B, H
and S, there is a constant C(a, A, B, H, N, §) < such that, for all t <u and
x, y € RY, setting

B=[1+AYw—0)A+ A -0+ E@ x;u y)) 73,

we have

1 1
plt,x;u, y)Bmexp{—Eﬁ(r, X ;u,y)-&—j 1nf - c(s, z) ds
3

— C[(1 + AY(u — 1))(1 + A(u — £) + Eg(t, x ; 4, y))}
(A= )L+ A = )1+ Aw = 1)+ Byl x5, )]
(b) Suppose further that a and (b — b)/A* are Hélder continuous in space of

exponent o and constant A2, Then there is a constant C (@, A, N) << such that for
all t,ueR witht<uand all x, y e R",

1 1
t’ ; £l 2—. - £ ; ¥ i b
plt:x5m y) (u_t)mzexp{ E(t,x;u y)+J: zlergivc(s z) ds

_ C[uﬂ(a+2)vc'/(r¥+2) + #(m+1)f(d+2)vll(a+2)
+ (A(u _ t))%(‘uﬂ(a+2)var/(a+2))%]}’
where u=1+Au—t)+E(t, x ;u,y) and v=1+ AY(u —1).

Proof. (a) The proof is identical to Theorem 3.5 except that, instead of
Theorem A.6, we can now use Theorem A.7 to find a constant C(ea, A) <o, such
that

(3.7) E*(t,x;u',y)<E"(t, x;u,y)
+C[(1+AY*(u — ) (A —t)+ E™(t, x ; u, e

Set B=[(1+AY*(u—1))(1+Au—1)+E(t, x;u,y))]% and £=16% in (3.6),
then, using (3.7) in place of (3.5), we obtain the result.

(b) Choose p, in (a) to have support inside the unit ball. Then, by Lemma 3.6,
there is a constant C(A) <o such that

Eg(t, x;u, y)<E(t, x ;u,y) + C(E(t, x5, y) + A(u — t))Ali(u —£)*2pe2,
Hence by (3.6) and (3.7),

1 u
. o —E . -
plt,x;u,y) P exp{ & xsuy) +J: }égfv c(s, z) ds

- C[l + €+%+ uve + u(vp)*? + (A(%L))%]}

The result follows on optimising over ¢ and .



HEAT FLOWS WITH UNIFORMLY ELLIPTIC COEFFICIENTS 395

Appendix. Continuity of the.energy function

Write I'(¢, x ; u, y) for the set of absolutely continuous paths from x at time ¢ to
y at time u; that is,

I, x;u, y)={}’€C([A ul, RY): v,=x, y.=y andf I}"slzds<°°}-
I

Let a be a continuous function on R X R" with values in the set of N X N real
symmetric matrices. Let b and ¢ be continuous functions on R x R™ with values
in RY and R respectively. We suppose for certain constants A e [1, ©) and
A € (0, =) that, uniformly on R X R",

(A1) AUsas<AL |b|<AA, |c|=A%

The energy of a path y e I'(t, x ; u, y) (for given coefficients a, b and ¢) is defined
by

1= {5 60 19 + (s 55, 1) + s, 1)) s,

and the energy function by
(A.2) E(t,x;u,y)= inf I(y).

vel(rx; u,y)

In earlier sections we defined the energy of a path y e I'(t, x ; u, ¥) to be

1 1
i) a6 myas

where a, b and b satisfied the bounds
AU=sas<AM, |b2+|62<A.

If we take A = A? and make a and b — b continuous, this notion of energy falls
into the set-up we are now considering. Moreover, if we take A=A (no
continuity required) the smoothed energy function of § 3 falls into our set-up. Of
course the quantities a, b and ¢ do not play the same réles as in the earlier sections.

We show in Theorem A.6 that the energy function E is Holder continuous with
an exponent depending on A. We also give an example to show that for A
sufficiently large E may fail to be Holder continuous of any given exponent. We
show further in Theorem A.7 that if the coefficients a, b and ¢ are themselves
Haolder continuous, then E is Lipschitz continuous.

We begin by noting some easy facts. There is a constant C(4) € (0, ) such that

(A.3) [ 1P ds =<l + 4%w-0)
and
(A4) 1 =c| [ 1Pds+ a0
It follows that

[ ; 2
(A.5) e <C[E@ x;u, p) + A%(u —1)]
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and

. 1y _x|2 2
(A.6) E(t, x;u, y)sC[ﬁ+A (u—-r)].
Since [ is lower semi-continuous on I'(t, x ;u, y) for the topology of weak
convergence, (A.3) and the usual sort of compactness argument show that the
infimum in (A.2) is attained: minimal energy paths y* always exist. Having
established this fact, we will not need the hypothesis of continuity of a, b and ¢
again. In particular, in cases of discontinuous coefficients where we know for
other reasons that minimal energy paths exist, the results of the appendix still
work. For paths of minimal energy we have, for t <s <s'=uy,

an  w-vi=] ma<e -] wea)

[

g 1
<Clly — x|+ A(u— t)](s S)z.
u—ti
Taking s =t and s’ =u, we find that this provides a bound on the length of any
minimal energy path. It also shows such paths must be Hdélder continuous of
exponent 3; it is a key step in showing the energy function is continuous to show
that this exponent can be improved to some > 1.

The following example is intended to show that the energy function may fail to
be Lipschitz continuous. The coefficient @ which is chosen is only lower
semi-continuous, but this is still enough to make I lower semi-continuous. In any
case we exhibit minimal energy paths.

ExampLE. Let the dimension N =1. Given B € (3, 1), choose A > B/(28 — 1)%,
Take
A ifs>0and z <s?,

ats, )= {4

Take b =0 and ¢ =0. Then
(1) the unique path in T(0, 0; 1, 1) of minimal energy is given by s> sP,
(2) there is a constant C(f3, A) € (0, ») with the property that

otherwise.

E0,0:1,1)—E©,x;1, 1)=Cx>" forallxe[0,1—f].

To see (1), first note that any minimal energy path in I'(0, 0 ; 1, 1) will consist
of arcs of the curve s~ s” and/or chords joining points on the curve; it is an easy
exercise to show that every arc has a lower energy than the chord between its
endpoints, which implies (i). For x € [0, 1 — §], the unique path inT'(0, x ;1, 1) of
minimal energy has the form

o JRENE TEE[0, §7,
Y (s)‘{sﬁ if s € (s*, 1],

where 7n* and s* are determined by the requirement that y* and ¥* be
continuous at s*. It is now simple to calculate C(, A) and establish (2).

In dimension 1, for x <y, we write T', (¢, x ; u, y) for the set of non-decreasing
elements of I'(¢, x ; u, y). This set also contains an element of minimal energy.
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LemMMA A.1. Let the dimension N =1. Let B € (3, 1) satisfying B2/(28 — 1) > A2
be given. Let A=1. Then there is a constant C(B, 1) € (0, ©) such that, for all
y=0, forall y* el ,(0,0;1,y) of minimal energy, for all s € [0, 1],

(A.8) y¥<C[y +1]s8

Proof. Fix a = a(f, A) € (8, 1) for which o®/(2a — 1) > A% and set

=)
Ra—1)2
define £ = (B, A) € (0, 1) by the equation

1— g@P-DCa—Db = 20— 1))/ g,
and set

1o,
e* 8% b

C= min{

Suppose that y€T'.(0,0;1, y) and that y, = Ksf for some s, € (0, 1], where
K=C(1+y). Then
Ve 2 Y, = Ks* for all so=s5<sf*
Thus, if
E=min{s € [0, so]: v,=Kt*for t € [s, 50]}
and
n =max{s € [so, 1]: y,=Kzt* for t € [s,, 5]},

then &<so and 7 =s§"*, and therefore & < n*”, Moreover, because Ke*=y =
Yn = K1 %, we know that n < £. In particular, this means that 7 <1 and therefore

that y, = Kn® Thus, if we define

- {(s/n)yn for s €[0, n],
Ys ¥, for s e [n, 1],

then y' €I’ (0,0;1, y) and
! ' 1 " -2 ? 12
I(y)-I(y)=I(y I[o,nl) —I(y |{o.n1) 31 L ysds — lj Y'“ds = 2A(y, + ).
0

The key to our argument lies in the observation that, for g, = K5,
1 " n

(A.9) f ?Edsaf ?3ds2f £: ds.
0 H £

To see the second of these, set ¢ =y —g on [£, n]. Then ¢ =0 and (&)=
¢(n)=0. Hence, after integrating by parts and using § <0, one sees that

n n
J' }’ffﬁ?f g.;%ds*'qb:g.u
t t

for any ¢ € (&, n]. When £>0, the preceding immediately extends to ¢ = & and
yields the desired result. When & =0, one gets the same conclusion, only here it
is necessary to recall that &>3 and that ¢ is Holder continuous of order 1,
Plugging (A.9) into our estimate for /(y) — (') and recalling that £ < n*#, we
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find that
I(y) = 1(y") = n**'[(K8)* = 24(Kn' ™+ 0>~ )] > 0.

Thus y is not of minimal energy, and so any path y* of minimal energy must
satisfy (A.8).

LemMa A.2. Let the dimension N =1. Suppose that a(0, z)=1 for all zcR,
and that A = 1. Suppose also that a and b are Hdlder continuous in time and c is
Hoélder continuous in space, all of exponent a € (0, 1] and constant A € [0, ).
Then there is a constant C(w, A) € (0, ©) such that, for all y=0, all y*e
I.(0,0;1,y) of minimal energy, and ail s € [0, 1],

(A.10) yr<Cl(y + (1 + A",

Proof. We will show that, for all s € [0, 1],

Yorz i s
(A.11) —=maxj1, (1+34%%%) =,

s/2 s
Bearing in mind that y* is non-decreasing, we may restrict attention to the case
where

(A.12) yaa=3(1+ g)ys for some £€[0, 1]
and
(A.13) yE=1is.

Then by (A.12) we have
-5 Y*Z
(A.14) f yRdr=(1+5)=.
0 h)

Define yeT' (0,051, y) by

_ {(r/s)y;" for r € [0, 5],
Ye y¥ for re[s, 1];
then

-5 ,Y*Z
(A.15) f ydr="
0 s

By minimality
0<I(y)—I(y*)=1(y |jo.5) — I(v* |[U,s])

=(1 +As“)[ ]‘/fdr—(l—As"’)j ¥32dr+ A(yls® + 5719,
0 0

50, by (A.13), (A.14) and (A.15) we find that £ <3A%s“?, establishing (A.11).
Observe that

o

[T a+32"**)<x forall @€ (0, 1].

n=0

Take t = (1 + AY*)™; then by (A.7),
vilt<CA)[(y + 1)1+ AV
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But by (A.11), fors=27", n=0,1, 2, ...,
n—1
yils < [T (1+3@) (A + /)< Cle, V[(y + 1)1 + AV,
k=0

for some C(a, A) € (0, ). Since y* is non-decreasing, such a bound therefore
holds for all s € [0, 1].

Lemva A3. Let A=1 and let B € (3, 1) satisfying B>/(2B — 1) > A? be given.
Then there is a constant C(f, 1) € (0, =) such that, for all y € R™, for all
y*eT(0,0;1,y), forall s e[0, 1],

lvs1=< Clly| +1]s”.

Proof. By (A.7) we have

oELWﬂmscumm+u

We can write y* = yog* where y €eI'(0, 0 ; 0, y) is parametrised by arc-length and
g*eTl,(0,0;1, o). Define for s € [0, 1] and & €0, o],

ti(S, E) = (?&’ a(s, YE)}‘,&):
5(51 5) = (f”;’f b(S, YE)):
c(s, &) = c(s, ve)-
Write [ for the energy on T'.(0,0;1,0) associated with coefficients a, b and é

Then, in an obvious notation, A=1, A= A=1 and I(y*)=1I(yog*)=1(g").
Since y* minimises I, g* must minimise I, so by Lemma A.l, for some

C(B, 1) € (0, ),
Y51 =17l <g*(s) = Clo + 1]s%.

LemMa A.4. Let A =1. Suppose that a and b are Hélder continuous in time and
¢ is Holder continuous in space, all of exponent « € (0, 1] and constant A € [0, »).
Then there is a constant C(a, A) € (0, ®) such that, for all yeR", all y*¢
I'0,0;1, y), and all s €0, 1],

[y <= Cl(Iyl + 1)1 + AY*)is.

Proof. By (A.7) we have

1
aamemmmscumm+n

We can write y* = yog* where yeI'(0,0; g, y) is parametrised by the arc-length
associated with the Riemannian metric a(O -), and g*e€T'.(0,0; 1, ¢). Define 4,
b, ¢ and I as in the proof of Lemma A.3. Then, in an obvmus notation,
a(0,£)=1 for all £€[0,0], A=2*, A=A=1, @=a and A=1A. We have
I(y*)=1I(y°g*) =I(g*) and since y* minimises /, g* must minimise /. Hence, by
Lemma A.2, for some C(a, ) € (0, ),

1751 = Vgm0l < Ag*(s) < C[(0 + 1)(1 + AV*)¥)s.
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LEmMa A.5. Let A=1. Suppose for some € (3, 1] and K €[1, =), for some
y*eT(0, 0;1, y) of minimal energy, we have
ly¥| = Ks? forallse|0,1].
There is a constant C(A) such that for all s e [—1, 3] and all x e R,

(A.15) E(s,0;1,y)— E(0,0;1, y)=< CK*s?
and
(A.16) E0,x;1,y)— E(0,0;1, y)< CK"# |x[>" VP,

Proof. First consider the case where s € [—1, 0]. Define y e I'(s, 0; 1, y) by

Y L[s,o]EO. ¥ 1[0, y=r*
Then

0
E(s, 01, y)— E(0, 01, y) < I(y) — I(y*) =j oir. 0) drss.

Now consider the case where s € (0, 3]. Choose y € I'(s, 0; 1, y) such that

I(Y l2) = E(5, 0325, v3) and y lizs.11= 7" |2y
Then, by (A.6),
E(s, 051, y)—E0, 051, y)<I(y) — I(y*) S E(s, 05 25, v3)
< C(M)[lysl*/s +s]< CK?s*P1.
This completes the proof of (A.15); we turn to (A.16). Set s = (|x|/K)"* and
choose y € I'(0, x ; 1, y) such that
I(y I[O,s]) =E@,x;s5, v;) and vy l[s,l] =y I[5,1]~
Then, by (A.6),
EQ© x31,y)—E(0,0;1,y)<I(y) = I(y")<E(0, x5, ¥{)
s C(M[|yF —x|*/s +5]=< CK"E |x|*" V¢,

We will use a scaling argument below. For p, o€ (0, «), set z' = pz and
s'=os;seta'(s', z)=a(s, z), b'(s', 2')=(p/o)b(s, 2), c'(s', z') = (p/ 0)*c(s, 2)
and y..=(y,)'. Then in an obvious notation, A'=A4, A'=(p/o)A, I'(y")=
(p*/ o) (y) and E'(t', x' ;u', y') = (p?/ 0)E(t, x ;u, y). We will need to impose a
condition of Hélder continuity on the coefficients for one of our results. We do
this in a way which transforms well under the scaling: the requirement that a and
b/A be Holder continuous in time of exponent « € (0, 1] and constant A € [0, ),
and c/A* be Hélder continuous in space of exponent o and constant A{A®, is
equivalent to the corresponding requirement in which a, b, ¢ and A are replaced
bya’, b’, ¢’ and A’ and A by A'=A/c"

THEOREM A.6. Let B € (3, 1) satisfying B*/(28 — 1) > A” be given. Then there is
a constant C(B, A) € (0, ) such that for all t, u € R with t <u, and all x, y e R",
(A17) |E(t, x5u,y)—E(@t x;u,y)

[y*x|+A(u—t)]2 , - . u ¢
il ¢ or 5 =———=
(M—I)ﬁ | | frz(w—t_—<2

-
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and

(A.18) |E(t,x";u,y)—E(t, x;u,y)|

ly —xl+ 1y —x'|+ A(u—1)
(u—1)f

g
SCI: ] Ix' —x>"Y#  for x' e R™.

Proof. Note that the rbles of ¢ and ¢’ in (A.17) are essentially identical,
likewise x and x" in (A.18): it therefore suffices to prove the inequalities without
the modulus signs on the left-hand side. We may assume that x =0 and ¢=0.
Then by a scaling (with o =1/u and p = 1/Au) we are reduced to the case where
w=1and A=1. By Lemma A.3, any y*eI'(0, 0; 1, y) satisfies

7SI =< Cllyl +1]s%,

so we can apply Lemma A.5 with K = C[|y| + 1] and get the desired result.

THEOREM A.7. Let a and b/A be Hélder continuous in time of exponent
a € (0, 1] and constant A € [0, =), and let ¢/A* be Holder continuous in space of
exponent o and constant A/ A*. Then there is a constant C(a, A) € (0, ®) such that,
forall t, u e R with t <u, and all x, y e R",

(A19) |E(t,x;u,v)—E(t x u,y)

_ 2 -
< C[(%ﬂi\)(l +AY*(u —t))%] |t' —t| for %su <2
— —

and

(A.20) |E(t x' 5u,y)—E(t, x;u,y)

SC[(I£::I+ lyu—_xr |+A)(1 + AV (u - t))%] |x' —x| for x' e R™.

Proof. The proof is identical to that of Theorem A.6 except that we use
Lemma A.4 to show that any y* e I'(0, 0; 1, y) satisfies
|71= ClAyl + DA +AY)s,

and take K = C[(|y| + 1)(1 + AY*)?] and B=1 in Lemma A.5.
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