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(b) (infinitesimal definition) for all t,h > 0, conditional on X; = i, X¢yp Is
independent of (X, : s <t) and, as h | 0, uniformly in t, for all j

]PJ(XH_h :j | X; = l) = 62] + qi]'h—{— O(h);

(¢) (transition probability definition) for all n = 0,1,2,..., all times 0 < tg <
t1 <...<tpy1 and all states ig, ..., in41
]P)(th+1 = Z.n+1 | th = 2.0; S ath = ln) = Pinin+1 (tn+1 - tn)

where (p;;(t) 11,5 € I,t > 0) is the solution of the forward equation
Py = PQ, P(0)=1.

If (Xz)tzo satisfies any of these conditions then it is called a Markov chain with
generator matriz Q. We say that (X;);>0 is Markov(X, Q) for short, where A is the
distribution of Xj.

Proof. (a) = (b) Suppose (a) holds, then, as h | 0,
P Xy = 1) > Py(Jy > h) = e 4" = 14 g;5h + o(h)
and for j # ¢ we have
Pi(Xn =j) >PcJi <h,Y1=3,5S >h)
=(1- e_q’h)ﬂ'ije_%h = q¢;;h + o(h).
Thus for every state j there is an inequality
Pi(Xn = j) > b6ij + qijh + o(h)

and by taking the finite sum over j we see that these must in fact be equalities.
Then by the Markov property, for any ¢,h > 0, conditional on X; = i, Xyyp is
independent of (X, : s < t) and, as h | 0, uniformly in ¢

P(Xegn = j | X = i) = Pi(Xn = j) = 65 + qijh + o(h).

(b) = (¢) Set pi; (1) =Pi(Xy = j) =P(X;y = j | Xo =1). If (b) holds, then for all
t,h>

h >0, as h | 0, uniformly in ¢

pi(t+h) =Y Pi(Xe = k)P(Xegn=j | X = k)
kel

= Zpik(t)((skj + arjh + o(h)).

Since I is finite we have

pij(t hlz —ri(®) _ ;pik(t)qw +O(h)
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so, letting h | 0, we see that p;;(¢) is differentiable on the right. Then by uniformity
we can replace t by t — h in the above and let h | 0 to see first that p;;(¢) is
continuous on the left, then differentiable on the left, hence differentiable, and
satisfies the forward equations
() =D pirary,  pij(0) = &ij.
kel

Since I is finite, p;;(¢) is then the unique solution by Theorem 2.1.1. Also, if (b)
holds, then

P(Xtppy = tns1 | Xog =d0,. -, Xe, = 00n) = P(Xopyy = ingr | Xy, = in)

and, moreover, (b) holds for (X;, 4+¢)¢>0 so, by the above argument,
P(th-{-l = ZTL-I-l | th = Zn) = pinin-{-l (tn‘l'l - tn)’

proving (c).
(¢) = (a) See the proof of Theorem 2.4.3. O

We know from Theorem 2.1.1 that for I finite the forward and backward equa-
tions have the same solution. So in condition (c¢) of the result just proved we could
replace the forward equation with the backward equation. Indeed, there is a slight
variation of the argument from (b) to (¢) which leads directly to the backward
equation.

The deduction of (¢) from (b) above can be seen as the matrix version of the
following result: for ¢ € R we have

1 n
<1+2+0<—>> — el as n — o0.
n n

Suppose (b) holds and set
pij(t,t+h) =P(Xsgn =7 | Xe = 0);
then P(t,t 4 h) = (p;j(¢t,t + h) : i,j € I) satisfies
P(t,t+h) =T+ Qh+ o(h)
and
t t 2t — 1)t t IR
P(0,t)= P <0,—> P <—,—> .. P <ut> - <1+ Q —|—0<—>> .
n n’'n n n n
Some care is needed in making this precise, since the o(h) terms, though uniform
in t, are not a prioriidentical. On the other hand, in (¢) we see that
P(0,t) = ¢'?.
We turn now to the case of infinite state-space. The backward equation may
still be written in the form
Pty = QP@), PO)=1
only now we have an infinite system of differential equations
() =Y qirpri(t),  pii(0) = &
kel
and the results on matrix exponentials given in Section 2.1 no longer apply. A

solution to the backward equation is any matrix (p;;(¢) : 4,5 € I) of differentiable
functions satisfying this system of differential equations.
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Theorem 2.8.3. Let () be a Q-matrix. Then the backward equation
Pty = QP@), PO)=1

has a minimal non-negative solution (P(t) :t > 0). This solution forms a matrix
semigroup
P(s)P(t) = P(s+1) for all s,t > 0.

We shall prove this result by a probabilistic method in combination with Theo-
rem 2.8.4. Note that if 7 is finite we must have P(t) = ¢'? by Theorem 2.1.1. We
call (P(t) :t > 0) the minimal non-negative semigroup associated to @, or simply
the semigroup of @, the qualifications minimal and non-negative being understood.

Here is the key result for Markov chains with infinite state-space. There are
just two alternative definitions now as the infinitesimal characterization become
problematic for infinite state-space.

Theorem 2.8.4. Let (X;);>0 be a minimal right-continuous process with values
in I. Let Q@ be a Q-matrix on I with jump matrix Il and semigroup (P(t) :t > 0).
Then the following conditions are equivalent:
(a) (jump chain/holding time definition) conditional on Xo = i, the jump chain
(Yn)n>o of (Xy)i>0 Is discrete-time Markov(é;,11) and for each n > 1, condi-

tional on Yy, ...,Y,_1, the holding times S1,...,S, are independent expo-
nential random variables of parameters q(Yy), ... ,q(Yn—1) respectively;

(b) (transition probability definition) for all n = 0,1,2,..., all times 0 < tg <
t1 <...<tpy1 and all states ig,21,...,in41

P(Xtppr = tng1 | Xog =00, -, Xi, = i) = Pinings (tng1 — tn).

If (X;)i>0 satisfies any of these conditions then it is called a Markov chain with
generator matriz Q. We say that (X;);>0 is Markov(X, Q) for short, where A is the
distribution of Xj.

Proof of Theorems 2.8.3 and 2.8.4. We know that there exists a process (X;);>0
satisfying (a). So let us define P(t) by

pij(t) = Pi( X = j).
Step 1. We show that P(t) satisfies the backward equation.

Conditional on Xy = i we have J; ~ F(q1) and X5, ~ (m : k € I). Then
conditional on J; = s and X, =k we have (X;44)i>0 ~ Markov(6;, Q). So

]PJZ(Xt =5t< Jl) = E_Qit(sij

and

1
PZ(Jl < t,)(_]1 = k’,Xt = J) = / qie_qisﬂ'ikpkj(t — S)dS.
0
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Therefore

pii(1) = Pi(Xy =t < )+ Y PilJy <8, Xy, =k, X; = j)
k#i

= e~ U5y, -|-Z/ gie” " mikpr; (t — s)ds. (2.1)

k#£t

Make a change of variable u =t — s in each of the integrals, interchange sum and
integral by monotone convergence and multiply by e?? to obtain

ettt pJ - 62) +/ Eq e 'Tzkpk](u)du (22)
0 ki

This equation shows, firstly, that p;;(t) is continuous in ¢ for all ¢, j. Secondly,
the integrand is then a uniformly converging sum of continuous functions, hence
continuous, and hence p;;(t) is differentiable in ¢ and satisfies

" (qipi (1) + Pl (1) = > qie® minpr; (1),
k#£t

Recall that ¢; = —¢;; and ¢ = q;m; for k # ¢. Then, on rearranging, we obtain

pii(t) =) ainpij(t) (2.3)

kel

so P(t) satisfies the backward equation.
The integral equation (2.1) is called the integral form of the backward equation.

Step 2. We show that if ﬁ(t) 1s another non-negative solution of the backward
equation, then P(t) < P(t), hence P(t) is the minimal non-negative solution.

The argument used to prove (2.1) also shows that
Pi(Xy = j,t < Jny1)

4ww+2/w%¢mmm_ﬂﬁ<md (2.4)
k#£e

On the other hand, if ﬁ(t) satisfies the backward equation, then, by reversing the
steps from (2.1) to (2.3), it also satisfies the integral form:

pl]()_e qlté +Z/ qi€ — 'Tzlcpkj(t_s)d (25)

k#¢
If P(t) > 0, then

Pi(X: = j,t < Jo) =0 < ps;(t) for all 7,7 and ¢.
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Let us suppose inductively that
P Xy = j,t < Jn) < psj(t) for all 4, 7 and ¢,
then by comparing (2.4) and (2.5) we have
Pi(X: = j,t < Jng1) < Pij(t) for all 4,7 and ¢,
and the induction proceeds. Hence

pii(t) = lim P;(X; = j,t < Jpn) < pij(t) for all 7, j and t¢.

Step 3. Since (X;);>0 does not return from co we have

pij(s+1) = Pi(Xepe =j) = O _ P Xope = j | X, = b)Py(X, = k)
kel

=Y PiX. = b)Br(Xe = 5) = Y pin(s)pri (1)

kel kel

by the Markov property. Hence (P(¢) : ¢ > 0) is a matrix semigroup. This
completes the proof of Theorem 2.8.3.

Step 4. Suppose, as we have throughout, that (X;);>o satisfies (a). Then, by the
Markov property

P(an-u = Z.n+1 |Xt0 =10,... ,th = zn)
= pin(an+1—tn = in+1) = pinin+1 (tn+1 _ tn)

o (Xi)i>o satisfies (b). We complete the proof of Theorem 2.8.4 by the usual
argument that (b) must now imply (a) (see the proof of Theorem 2.4.3, (¢) =

(a)). O

So far we have said nothing about the forward equation in the case of infinite
state-space. Remember that the finite state-space results of Section 2.1 are no
longer valid. The forward equation may still be written

P'(t)= P(1)Q, P(0)=1,

now understood as an infinite system of differential equations

P () =D pir(tarj,  pij(0) = 8.
kel

A solution is then any matrix (pz-j (t):1,5€ I) of differentiable functions satisfying
this system of equations. We shall show that the semigroup (P(t) 1t > O) of @
does satisfy the forward equations, by a probabilistic argument resembling Step 1
of the proof of Theorems 2.8.3 and 2.8.4. This time, instead of conditioning on the
first event, we condition on the last event before time ¢. The argument is a little
longer because there is no reverse-time Markov property to give the conditional
distribution. We need the following time-reversal identity, a simple version of
which was given in Theorem 2.3.4.
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Lemma 2.8.5. We have

G, P(Jn <t < Jpt1 | Yo=i0,Y1=101,...,Y, =1p)
= qig]p(t]n S i< Jn+1 |YO = ln, ;Yn—l = il,Yn = Zo)

Proof. Conditional on Yy = 4g,...,Y, = in, the holding times S1,...,S,41 are
independent with Sy, ~ E(q;,_,). So the left-hand side is given by

n
/ 9, exp{—qi, (t—s1 —...— sp)} H Qir_, XP{—i,_, Sk 1Sk
A(t) k=1

where A(t) = {(s1,...,8n): 851+ ...+ 8, <tand s1,...,8, > 0}. On making the
substitutions u;1 =t —s1 — ... — s, and up = sp_p42, for k =2,... ,n, we obtain

QZn]p(JTL S t< Jn+1 |YO = i0;~-- )Yn = Zn)

n
= / Gi exp{—io(t —u1 — ... = un)} [ Gincnsn €XP{—ir_spr it Fur
A(t) k=1
=i P(Jn <t < Jpy1 [ Yo =in, ..., Y1 =141, Y, = dp). O

Theorem 2.8.6. The minimal non-negative solution (P(t) it > O) of the back-
ward equation is also the minimal non-negative solution of the forward equation

P'(t)= P()Q, P(0)=1.

Proof. Let (X;)¢>0 denote the minimal Markov chain with generator matrix ). By
Theorem 2.8.4

pij(t) = Pi(X: = j)

Ezpz(Jn <t < Jn+1;Yn—1 = k:Yn :.7)
0k#j

n

Now by Lemma 2.8.5, for n > 1, we have

pz(Jn S t < Jn+1 | Yn—l = k‘,Yn = _])
=(4:/0)Pj(Jn <t < Jpg1 | Y1 =k, Y, =1)

1
= (qi/qJ)/ gje P Jao1 <t —s < Jn | Yao1 = i)ds
0

1
= Qi/ e (qr/qi)Pi(Jno1 <t — s < Jn | Y1 = k)ds
0
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where we have used the Markov property of (},), >0 for the second equality. Hence

0o 1
pij(t)zéije_q’t—l—ZZ/ ]Pi(Jn_lgt—s< In |Yn_1 :k‘)
0

n=1k#j
X pi(Yn—l = k’,Yn = j)qke_stdS

60 1
=6ieT Y Z/ Pi(Jno1 <t —s < Jn,Va_1 = k)qempje9°ds
n=1kz;”0

13
= (Sije_Qit + / Zpik(t - S)qkje_qjsds (26)
0

k#j

where we have used monotone convergence to interchange the sum and integral at
the last step. This is the integral form of the forward equation. Now make a change
of variable u = t — s in the integral and multiply by e%? to obtain

t
pi]-(t)e‘“t = 6; +/ Zpik(u)qkjeqj“du. (2.7)

0 k#j

We know by equation (2.2) that e%’p;1(t) is increasing for all i, k. Hence either

Zpik(U)ij converges uniformly for u € [0, 1]
k#j

or

ZPik(U)ij =oo forallu>t.

k#j
The latter would contradict (2.7) since the left-hand side is finite for all ¢, so it is the
former which holds. We know from the backward equation that p;;(¢) is continuous
for all i, j; hence by uniform convergence the integrand in (2.7) is continuous and
we may differentiate to obtain

Pl (1) +pii (g = Y pir(as;.
k#j

Hence P(t) solves the forward equation.
To establish minimality let us suppose that p;;(¢) is another solution of the
forward equation; then we also have

i
pij(t) = 8574 + Z/ Din(t — s)qrje” 9 ds.
k#j 70
A small variation of the argument leading to (2.6) shows that, for n > 0

]PZ'(Xt = j,t < Jn+1)

1
= 5ij6_q’t + Z/ ]pi(Xt =41 < Jn)qkje_qjsds. (28)
k#j 70
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If P(t) > 0, then

P(X;=j,t < Jo) =0<p;(t) foralli,jandt.
Let us suppose inductively that

Pi(Xy = j,t < Jn) < psj(t) forall4,j and ¢;

then by comparing (2.7) and (2.8) we obtain

Pi(X: = j,t < Jng1) < Pij(t) forall i, jand ¢
and the induction proceeds. Hence

pij(t) = nlLIIOIO Pi(X: = j,t < Jn) < psj(t) forall i, jandt. O

Exercises

2.8.1 Two fleas are bound together to take part in a nine-legged race on the ver-
tices A, B, C' of a triangle. Flea 1 hops at random times in the clockwise direction;
each hop takes the pair from one vertex to the next and the times between succes-
sive hops of Flea 1 are independent random variables, each with with exponential
distribution, mean 1/A. Flea 2 behaves similarly, but hops in the anticlockwise
direction, the times between his hops having mean 1/u. Show that the probability
that they are at A at a given time ¢t > 0 (starting from A at time ¢t = 0) is

12 3O+ p)t V(A — p)t
g—i—gexp{— 2 }cos{ 7 }

2.8.2 Let (X;);>0 be a birth-and-death process with rates A, = nA and u, = np,
and assume that Xo = 1. Show that h(¢) = P(X; = 0) satisfies

i
h(t) :/ e~ OIS 4 AR( — 5)2)ds
0
and deduce that if A # p then

h(t) = (et — )/ (et — AeM).

2.9 Non-minimal chains

This book concentrates entirely on processes which are right-continuous and min-
imal. These are the simplest sorts of process and, overwhelmingly, the ones of
greatest practical application. We have seen in this chapter that we can associate
to each distribution A and @-matrix ) a unique such process, the Markov chain
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with initial distribution A and generator matrix . Indeed we have taken the
liberty of defining Markov chains to be those processes which arise in this way.
However, these processes do not by any means exhaust the class of memoryless
continuous-time processes with values in a countable set 7. There are many more
exotic possibilities, the general theory of which goes very much deeper than the
account given in this book. It is in the nature of things that these exotic cases have
received the greater attention among mathematicians. Here are some examples to
help you imagine the possibilities.

Example 2.9.1

Consider a birth process (Xt)tZO starting from 0 with rates ¢; = 2% for i > 0. We
have chosen these rates so that

(0] (0]
Zq[l = E?‘i < 00
=0 i=0

which shows that the process explodes (see Theorems 2.3.2 and 2.5.2). We have
until now insisted that X; = co for all ¢ > (, where ( is the explosion time. But
another obvious possibility is to start the process off again from 0 at time {, and
do the same for all subsequent explosions. An argument based on the memoryless
property of the exponential distribution shows that for 0 < ¢o < ... < 41 this
process satisfies

P(Xt,pr = ing1 | Xeg =0, .., Xi, = in) = Piyiny (tng1 —tn)

for a semigroup of stochastic matrices (P(¢) : ¢ > 0) on I. This is the defining
property for a more general class of Markov chains. Note that the chain is no
longer determined by A and @ alone; the rule for bringing (X;):>0 back into I after
explosion also has to be given.

Example 2.9.2

We make a variation on the preceding example. Suppose now that the jump chain
of (Xt)tZO is the Markov chain on 7 which moves one step away from 0 with
probability 2/3 and one step towards 0 with probability 1/3, and that Yy = 0.
Let the transition rates for (X;)i>0 be ¢; = 2lil for i € Z. Then (X¢)i>0 is again
explosive. (A simple way to see this using some results of Chapter 3 is to check that
(Yn)n>o0 is transient but (X;);>o has an invariant distribution — by solution of the
detailed balance equations. Then Theorem 3.5.3 makes explosion inevitable.) Now
there are two ways in which (Xt)tzo can explode, either X; — —o0 or X; — o0.
The process may again be restarted at 0 after explosion. Alternatively, we may

choose the restart randomly, and according to the way that explosion occurred.
For example

0 if Xy - —ccast |

X = { .
Z if Xy —occast](

where Z takes values +1 with probability 1/2.



