1.7 Invariant distributions

Many of the long-time properties of Markov chains are connected with the notion of an invariant distribution or measure. Remember that a measure λ is any row vector $(\lambda_i : i \in I)$ with non-negative entries. We say λ is invariant if

$$\lambda P = \lambda.$$

The terms equilibrium and stationary are also used to mean the same. The first result explains the term stationary.

Theorem 1.7.1. Let $(X_n)_{n \geq 0}$ be Markov(λ, P) and suppose that λ is invariant for P. Then $(X_{m+n})_{n \geq 0}$ is also Markov(λ, P).

Proof. By Theorem 1.1.3, $P(X_m = i) = (\lambda P^m)_i = \lambda_i$ for all i and clearly, conditional on $X_{m+n} = i$, X_{m+n+1} is independent of $X_m, X_{m+1}, \ldots, X_{m+n}$ and has distribution $(p_{ij} : j \in I)$. \square

The next result explains the term equilibrium.

Theorem 1.7.2. Let I be finite. Suppose for some $i \in I$ that

$$p^{(n)}_{ij} \to \pi_j \quad \text{as} \quad n \to \infty \quad \text{for all} \quad j \in I.$$

Then $\pi = (\pi_j : j \in I)$ is an invariant distribution.

Proof. We have

$$\sum_{j \in I} \pi_j = \sum_{j \in I} \lim_{n \to \infty} p^{(n)}_{ij} = \lim_{n \to \infty} \sum_{j \in I} p^{(n)}_{ij} = 1$$

and

$$\pi_j = \lim_{n \to \infty} p^{(n)}_{ij} = \lim_{n \to \infty} \sum_{k \in I} p^{(n)}_{ik} p_{kj} = \sum_{k \in I} \lim_{n \to \infty} p^{(n)}_{ik} p_{kj} = \sum_{k \in I} \pi_k p_{kj}$$

where we have used finiteness of I to justify interchange of summation and limit operations. Hence π is an invariant distribution. \square

Notice that for any of the random walks discussed in Section 1.6 we have $p^{(n)}_{ij} \to 0$ as $n \to \infty$ for all $i, j \in I$. The limit is certainly invariant, but it is not a distribution!

Theorem 1.7.2 is not a very useful result but it serves to indicate a relationship between invariant distributions and n-step transition probabilities. In Theorem 1.8.3 we shall prove a sort of converse, which is much more useful.

Example 1.7.3

Consider the two-state Markov chain with transition matrix

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$
Ignore the trivial cases $\alpha = \beta = 0$ and $\alpha = \beta = 1$. Then, by Example 1.1.4

$$P^n \rightarrow \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta} \right) \text{ as } n \rightarrow \infty,$$

so, by Theorem 1.7.2, the distribution $(\beta/(\alpha + \beta), \alpha/(\alpha + \beta))$ must be invariant. There are of course easier ways to discover this.

Example 1.7.4

Consider the Markov chain $(X_n)_{n \geq 0}$ with diagram

To find an invariant distribution we write down the components of the vector equation $\pi P = \pi$

$$\pi_1 = \frac{1}{2}\pi_3$$

$$\pi_2 = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_3$$

$$\pi_3 = \frac{1}{2}\pi_2 + \frac{1}{2}\pi_3.$$

In terms of the chain, the right-hand sides give the probabilities for X_1, when X_0 has distribution π, and the equations require X_1 also to have distribution π. The equations are homogeneous so one of them is redundant, and another equation is required to fix π uniquely. That equation is

$$\pi_1 + \pi_2 + \pi_3 = 1$$

and we find that $\pi = (1/5, 2/5, 2/5)$.

According to Example 1.1.6

$$p_{11}^{(n)} \rightarrow 1/5 \text{ as } n \rightarrow \infty$$

so this confirms Theorem 1.7.2. Alternatively, knowing that $p_{11}^{(n)}$ had the form

$$p_{11}^{(n)} = a + \left(\frac{1}{2} \right)^n \left(b \cos \frac{n\pi}{2} + c \sin \frac{n\pi}{2} \right)$$

we could have used Theorem 1.7.2 and knowledge of π_1 to identify $a = 1/5$, instead of working out $p_{11}^{(2)}$ in Example 1.1.6.

In the next two results we shall show that every irreducible and recurrent stochastic matrix P has an essentially unique positive invariant measure. The proofs
1.7 Invariant distributions

rely heavily on the probabilistic interpretation so it is worth noting at the outset
that, for a finite state-space \(I \), the existence of an invariant row vector is a simple
piece of linear algebra: the row sums of \(P \) are all 1, so the column vector of ones is
an eigenvector with eigenvalue 1, so \(P \) must have a row eigenvector with eigenvalue
1.

For a fixed state \(k \), consider for each \(i \) the expected time spent in \(i \) between visits
to \(k \):

\[
\gamma_i^k = E_k \sum_{n=0}^{T_{i-1}} I_{\{X_n = i\}}.
\]

Here the sum of indicator functions serves to count the number of times \(n \) at which
\(X_n = i \) before the first passage time \(T_k \).

Theorem 1.7.5. Let \(P \) be irreducible and recurrent. Then

(i) \(\gamma_i^k = 1 \);
(ii) \(\gamma_i^k = (\gamma_i^k : i \in I) \) satisfies \(\gamma^k P = \gamma^k \);
(iii) \(0 < \gamma_i^k < \infty \) for all \(i \in I \).

Proof. (i) This is obvious. (ii) For \(n = 1, 2, \ldots \) the event \(\{ n \leq T_k \} \) depends only
on \(X_0, X_1, \ldots, X_{n-1} \), so, by the Markov property at \(n - 1 \)

\[
P_k(X_{n-1} = i, X_n = j \text{ and } n \leq T_k) = P_k(X_{n-1} = i \text{ and } n \leq T_k)p_{ij}.
\]

Since \(P \) is recurrent, under \(P_k \) we have \(T_k < \infty \) and \(X_0 = X_{T_k} = k \) with probability
one. Therefore

\[
\gamma_j^k = E_k \sum_{n=1}^{T_k} I_{\{X_n = j\}} = E_k \sum_{n=1}^{\infty} I_{\{X_n = j \text{ and } n \leq T_k\}}
\]

\[
= \sum_{n=1}^{\infty} P_k(X_n = j \text{ and } n \leq T_k)
\]

\[
= \sum_{i \in I} \sum_{n=1}^{\infty} P_k(X_{n-1} = i, X_n = j \text{ and } n \leq T_k)
\]

\[
= \sum_{i \in I} p_{ij} \sum_{n=1}^{\infty} P_k(X_{n-1} = i \text{ and } n \leq T_k)
\]

\[
= \sum_{i \in I} p_{ij} E_k \sum_{m=0}^{T_k-1} I_{\{X_m = i \text{ and } m \leq T_k-1\}}
\]

\[
= \sum_{i \in I} p_{ij} E_k \sum_{m=0}^{T_k-1} I_{\{X_m = i\}} = \sum_{i \in I} \gamma_i^k p_{ij}.
\]

(iii) Since \(P \) is irreducible, for each state \(i \) there exist \(n, m \geq 0 \) with \(p_{ik}^{(n)} p_{ki}^{(m)} > 0 \).
Then \(\gamma_i^k \geq \gamma_k p_{ki}^{(n)} > 0 \) and \(\gamma_i^k p_{ki}^{(n)} \leq \gamma_k^k = 1 \) by (i) and (ii). \(\square \)
Theorem 1.7.6. Let P be irreducible and let λ be an invariant measure for P with $\lambda_k = 1$. Then $\lambda \geq \gamma^k$. If in addition P is recurrent, then $\lambda = \gamma^k$.

Proof. For each $j \in I$ we have
\[
\lambda_j = \sum_{i_0 \in I} \lambda_{i_0} p_{i_0,j} = \sum_{i_0 \neq k} \lambda_{i_0} p_{i_0,j} + p_{k,j} \\
= \sum_{i_0, i_1 \neq k} \lambda_{i_0} p_{i_0,i_1} p_{i_1,j} + \left(p_{k,j} + \sum_{i_0, i_1 \neq k} p_{k,i_0} p_{i_0,j} \right) \\
\ldots \\
= \sum_{i_0, \ldots, i_n \neq k} \lambda_{i_0} p_{i_0,i_1} \ldots p_{i_n,j} \\
+ \left(p_{k,j} + \sum_{i_0, \ldots, i_n \neq k} p_{k,i_0} p_{i_0,j} + \ldots + \sum_{i_0, \ldots, i_{n-1} \neq k} p_{k,i_{n-1}} \ldots p_{i_n,j} \right) \\
\geq P_k(X_1 = j \text{ and } T_k \geq 1) + P_k(X_2 = j \text{ and } T_k \geq 2) \\
\ldots + P_k(X_n = j \text{ and } T_k \geq n) \\
\to \gamma_j^k \text{ as } n \to \infty.
\]
So $\lambda \geq \gamma^k$. If P is recurrent, then γ^k is invariant by Theorem 1.7.5, so $\mu = \lambda - \gamma^k$ is also invariant and $\mu \geq 0$. Since P is irreducible, given $i \in I$, we have $p_{ik}^{(n)} > 0$ for some n, and $0 = \mu_k = \sum_{j \in I} \mu_{ij} p_{ij}^{(n)} \geq \mu_i p_{ik}^{(n)}$, so $\mu_i = 0$. \(\square\)

Recall that a state i is recurrent if
\[P_i(X_n = i \text{ for infinitely many } n) = 1\]
and we showed in Theorem 1.5.3 that this is equivalent to
\[P_i(T_i < \infty) = 1.\]
If in addition the expected return time
\[m_i = E_i(T_i)\]
is finite, then we say i is positive recurrent. A recurrent state which fails to have this stronger property is called null recurrent.

Theorem 1.7.7. Let P be irreducible. Then the following are equivalent:
(i) every state is positive recurrent;
(ii) some state i is positive recurrent;
(iii) P has an invariant distribution, π say. Moreover, when (iii) holds we have $m_i = 1/\pi_i$ for all i.

Proof. (i) \Rightarrow (ii) This is obvious.
(ii) \Rightarrow (iii) If i is positive recurrent, it is certainly recurrent, so P is recurrent. By Theorem 1.7.5, γ^k is then invariant. But
\[\sum_{j \in I} \gamma_j^k = m_i < \infty\]

1.7 Invariant distributions

so \(\pi_j = \gamma_j^k/m_k \) defines an invariant distribution.

\[(\text{iii}) \Rightarrow (\text{i}) \] Take any state \(k \). Since \(P \) is irreducible and \(\sum_{i \in I} \pi_i = 1 \) we have

\[\pi_k = \sum_{i \in I} \pi_i \phi_i^{(n)} > 0 \text{ for some } n. \]

Set \(\lambda_i = \pi_i / \pi_k \). Then \(\lambda \) is an invariant measure with \(\lambda_k = 1 \). So by Theorem 1.7.6, \(\lambda \geq \gamma^k \). Hence

\[m_k = \sum_{i \in I} \gamma_i^k \leq \sum_{i \in I} \pi_i = \frac{1}{\pi_k} < \infty \quad (1.7) \]

and \(k \) is positive recurrent.

To complete the proof we return to the argument for \((\text{iii}) \Rightarrow (\text{i}) \) armed with the knowledge that \(P \) is recurrent, so \(\lambda = \gamma^k \) and the inequality (1.7) is in fact an equality. \(\square \)

Example 1.7.8 (Simple symmetric random walk on \(Z \))

The simple symmetric random walk on \(Z \) is clearly irreducible and, by Example 1.6.1, it is also recurrent. Consider the measure

\[\pi_i = 1 \quad \text{for all } i. \]

Then

\[\pi_i = \frac{1}{2} \pi_{i-1} + \frac{1}{2} \pi_{i+1}, \]

so \(\pi \) is invariant. Now Theorem 1.7.6 forces any invariant measure to be a scalar multiple of \(\pi \). Since \(\sum_{i \in Z} \pi_i = \infty \), there can be no invariant distribution and the walk is therefore null recurrent, by Theorem 1.7.7.

Example 1.7.9

The existence of an invariant measure does not guarantee recurrence: consider, for example, the simple symmetric random walk on \(Z^3 \), which is transient by Example 1.6.3, but has invariant measure \(\pi \) given by \(\pi_i = 1 \) for all \(i \).

Example 1.7.10

Consider the asymmetric random walk on \(Z \) with transition probabilities \(p_{i,i-1} = q < p = p_{i,i+1} \). In components the invariant measure equation \(\pi P = \pi \) reads

\[\pi_i = \pi_{i-1} p + \pi_{i+1} q. \]

This is a recurrence relation for \(\pi \) with general solution

\[\pi_i = A + B(p/q)^i. \]

So, in this case, there is a two-parameter family of invariant measures – uniqueness up to scalar multiples does not hold.

Example 1.7.11

Consider a success-run chain on \(Z^+ \), whose transition probabilities are given by

\[p_{i,i+1} = p_i, \quad p_0 = q_i = 1 - p_i. \]
Then the components of the invariant measure equation \(\pi P = \pi \) read
\[
\pi_0 = \sum_{i=0}^{\infty} q_i \pi_i,
\]
\[
\pi_i = p_{i-1} \pi_{i-1}, \quad \text{for } i \geq 1.
\]

Suppose we choose \(p_i \) converging sufficiently rapidly to 1 so that
\[
p = \prod_{i=0}^{\infty} p_i > 0
\]
which is equivalent to
\[
\sum_{i=0}^{\infty} q_i = \infty.
\]

Then for any solution of \(\pi P = \pi \) we have
\[
\pi_i = \left(\prod_{j=0}^{i-1} p_j \right) \pi_0 \geq p^n \pi_0
\]
and so
\[
\pi_0 \geq p^n \sum_{i=0}^{\infty} q_i.
\]

This last equation forces either \(\pi_0 = 0 \) or \(\pi_0 = \infty \), so there is no invariant measure.

Exercises

1.7.1 Find all invariant distributions of the transition matrix in Exercise 1.2.1.

1.7.2 Gas molecules move about randomly in a box which is divided into two halves symmetrically by a partition. A hole is made in the partition. Suppose there are \(N \) molecules in the box. Show that the number of molecules on one side of the partition just after a molecule has passed through the hole evolves as a Markov chain. What are the transition probabilities? What is the invariant distribution of this chain?

1.7.3 A particle moves on the eight vertices of a cube in the following way: at each step the particle is equally likely to move to each of the three adjacent vertices, independently of its past motion. Let \(i \) be the initial vertex occupied by the particle, \(o \) the vertex opposite \(i \). Calculate each of the following quantities:

(i) the expected number of steps until the particle returns to \(i \);

(ii) the expected number of visits to \(o \) until the first return to \(i \);

(iii) the expected number of steps until the first visit to \(o \).

1.7.4 Let \((X_n)_{n \geq 0} \) be a simple random walk on \(\mathbb{Z} \) with \(p_{i,i-1} = q < p = p_{i,i+1} \). Find
\[
\gamma_i^0 = E_0 \left(\sum_{n=0}^{T_i-1} 1\{X_n = i\} \right)
\]
and verify that
\[\gamma_i^0 = \inf_{\lambda} \lambda_i \quad \text{for all } i \]
where the infimum is taken over all invariant measures \(\lambda \) with \(\lambda_0 = 1 \). (Compare with Theorem 1.7.6 and Example 1.7.10.)

1.7.5 Let \(P \) be a stochastic matrix on a finite set \(I \). Show that a distribution \(\pi \) is invariant for \(P \) if and only if \(\pi(I - P + A) = a \), where \(A = (a_{ij} : i, j \in I) \) with \(a_{ij} = 1 \) for all \(i \) and \(j \), and \(a = (a_i : i \in I) \) with \(a_i = 1 \) for all \(i \). Deduce that if \(P \) is irreducible then \(I - P + A \) is invertible. Note that this enables one to compute the invariant distribution by any standard method of inverting a matrix.