1.6 Recurrence and transience of random walks

In the last section we showed that recurrence was a class property, that all recurrent
classes were closed and that all finite closed classes were recurrent. So the only
chains for which the question of recurrence remains interesting are irreducible with
infinite state-space. Here we shall study some simple and fundamental examples of
this type, making use of the following criterion for recurrence from Theorem 1.5.3:

a state ¢ is recurrent if and only if Y >° pE?) = 00.

Example 1.6.1 (Simple random walk on Z)

The simple random walk on Z has diagram

where 0 < p =1 — ¢ < 1. Suppose we start at 0. It is clear that we cannot return
to 0 after an odd number of steps, so pé%"H) = 0 for all n. Any given sequence
of steps of length 2n from 0 to 0 occurs with probability p™q™, there being n steps
up and n steps down, and the number of such sequences is the number of ways of

choosing the n steps up from 2n. Thus

n 2n
pho” = (n>p”q”-

Stirling’s formula provides a good approximation to n! for large n: it is known that
n! ~V2mn(n/e)"” asn — oo

where a, ~ b, means a,/b, — 1. For a proof see W. Feller, An Introduction
to Probability Theory and its Applications, Vol I (Wiley, New York, 3rd edition,
1968). At the end of this chapter we reproduce the argument used by Feller to
show that

nl ~ Ay/n(n/e)®  asn — oo

for some A € [1,00). The additional work needed to show A = /27 is omitted, as
this fact is unnecessary to our applications.

For the n-step transition probabilities we obtain

en) _ )t o (4pg)™
Py " = (n|)2 (pq) A\/m

In the symmetric case p = ¢ = 1/2, so 4pg = 1; then for some N and all n > N we
have

as n — 00.

(2”) >
Poo " = 94 /n
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which shows that the random walk is recurrent. On the other hand, if p # ¢ then
4pg = r < 1, so by a similar argument, for some N

Zp&ﬁ’gi Y <o
n=N n=N

showing that the random walk is transient.

Example 1.6.2 (Simple symmetric random walk on Z?)

The simple symmetric random walk on Z2 has diagram

N
PN

[ Ll
=

and transition probabilities
(14 ifli-jl=1
Y10 otherwise.

Suppose we start at 0. Let us call the walk X,, and write X, and X, for the
orthogonal projections of X, on the diagonal lines y = +x:
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Then X} and X, are independent simple symmetric random walks on 2~/2Z and
X, = 0if and only if X;7 =0 = X . This makes it clear that for X, we have

2
(2n) _ [ (20 (1 " 2 as n — oo
Py~ = n 2 A?n

by Stirling’s formula. Then ) >° p(()g) = 00 by comparison with Y >° 1/n and

the walk is recurrent.

Example 1.6.3 (Simple symmetric random walk on Z3)

The transition probabilities of the simple symmetric random walk on Z2 are given

by
1/6 ifli—j]=1
Py = { 0 otherwise.

Thus the chain jumps to each of its nearest neighbours with equal probability.
Suppose we start at 0. We can only return to 0 after an even number 2n of steps.
Of these 2n steps there must be ¢ up, ¢ down, j north, j south, k£ east and k west
for some 4, j,k > 0, with i + j + k = n. By counting the ways in which this can be
done, we obtain

e 5 OO0 5 66

i+jthen i+jthen
Now n
1
> () () =
et ijk 3
itith=n

the left-hand side being the total probability of all the ways of placing n balls
randomly into three boxes. For the case where n = 3m, we have

n\ _ nl < n
ijk) ik — \mmmm
for all 4,4, k, so

(2n)< o, 1 2n n 1 n L E 3/2 .
Poo = n 2 mmm 3 243 \n as = 0o

by Stirling’s formula. Hence, > °_, p((]?)m) < oo by comparison with 320 n=3/2.

But pi™ > (1/6)* p{o™ 2 and pi&™ > (1/6) piS™ ) for all m so we must have

oo
> pi < oo
n=0
and the walk is transient.

Exercises

1.6.1 The rooted binary tree is an infinite graph 7' with one distinguished vertex
R from which comes a single edge; at every other vertex there are three edges and
there are no closed loops. The random walk on T jumps from a vertex along each
available edge with equal probability. Show that the random walk is transient.

1.6.2 Show that the simple symmetric random walk in Z* is transient.



