1.4 Strong Markov property

In Section 1.1 we proved the Markov property. This says that for each time \(m \), conditional on \(X_m = i \), the process after time \(m \) begins afresh from \(i \). Suppose, instead of conditioning on \(X_m = i \), we simply waited for the process to hit state \(i \), at some random time \(H \). What can one say about the process after time \(H \)? What if we replaced \(H \) by a more general random time, for example \(H - 1 \)? In this section we shall identify a class of random times at which a version of the Markov property does hold. This class will include \(H \) but not \(H - 1 \); after all, the process after time \(H - 1 \) jumps straight to \(i \), so it does not simply begin afresh.

A random variable \(T : \Omega \rightarrow \{0, 1, 2, \ldots \} \cup \{\infty\} \) is called a stopping time if the event \(\{T = n\} \) depends only on \(X_0, X_1, \ldots, X_n \) for \(n = 0, 1, 2, \ldots \). Intuitively, by watching the process, you know at the time when \(T \) occurs. If asked to stop at \(T \), you know when to stop.

Examples 1.4.1

(a) The first passage time

\[T_j = \inf \{n \geq 1 : X_n = j\} \]

is a stopping time because

\[\{T_j = n\} = \{X_1 \neq j, \ldots, X_{n-1} \neq j, X_n = j\}. \]

(b) The first hitting time \(H_A \) of Section 1.3 is a stopping time because

\[\{H_A = n\} = \{X_0 \not\in A, \ldots, X_{n-1} \not\in A, X_n \in A\}. \]

(c) The last exit time

\[L_A = \sup\{n \geq 0 : X_n \in A\} \]

is not in general a stopping time because the event \(\{L_A = n\} \) depends on whether \((X_{n+m})_{m\geq1} \) visits \(A \) or not.

We shall show that the Markov property holds at stopping times. The crucial point is that, if \(T \) is a stopping time and \(B \subseteq \Omega \) is determined by \(X_0, X_1, \ldots, X_T \), then \(B \cap \{T = m\} \) is determined by \(X_0, X_1, \ldots, X_m \), for all \(m = 0, 1, 2, \ldots \).

Theorem 1.4.2 (Strong Markov property). Let \((X_n)_{n \geq 0} \) be Markov(\(\lambda, P \)) and let \(T \) be a stopping time of \((X_n)_{n \geq 0} \). Then, conditional on \(T < \infty \) and \(X_T = i \), \((X_{T+n})_{n \geq 0} \) is Markov(\(\delta_i, P \)) and independent of \(X_0, X_1, \ldots, X_T \).

Proof. If \(B \) is an event determined by \(X_0, X_1, \ldots, X_T \), then \(B \cap \{T = m\} \) is determined by \(X_0, X_1, \ldots, X_m \), so, by the Markov property at time \(m \)

\[
P(\{X_T = j_0, X_{T+1} = j_1, \ldots, X_{T+n} = j_n\} \cap B \cap \{T = m\} \cap \{X_T = i\})
\]

\[
= P(X_0 = j_0, X_1 = j_1, \ldots, X_n = j_n)P(B \cap \{T = m\} \cap \{X_T = i\})
\]
where we have used the condition $T = m$ to replace m by T. Now sum over $m = 0, 1, 2, \ldots$ and divide by $P(T < \infty, X_T = i)$ to obtain
\[
P([X_T = j_0, X_{T+1} = j_1, \ldots, X_{T+n} = j_n] \cap B \mid T < \infty, X_T = i)
= P([X_0 = j_0, X_1 = j_1, \ldots, X_n = j_n] \cap B \mid T < \infty, X_T = i).
\]

The following example uses the strong Markov property to get more information on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3

Consider the Markov chain $(X_n)_{n \geq 0}$ with diagram

```
0 ---- q ---- p ---- i ---- q ---- p ---- q ---- p ---- i + 1 ----
```

where $0 < p = 1 - q < 1$. We know from Example 1.3.3 the probability of hitting 0 starting from 1. Here we obtain the complete distribution of the time to hit 0 starting from 1 in terms of its probability generating function. Set
\[
H_j = \inf\{n \geq 0 : X_n = j\}
\]
and, for $0 \leq s < 1$
\[
\phi(s) = E_1(s^{H_0}) = \sum_{n < \infty} s^n P_1(H_0 = n).
\]

Suppose we start at 2. Apply the strong Markov property at H_1 to see that under P_2, conditional on $H_1 < \infty$, we have $H_0 = H_1 + \overline{H}_0$, where \overline{H}_0, the time taken after H_1 to get to 0, is independent of H_1 and has the (unconditioned) distribution of H_1. So
\[
E_2(s^{H_0}) = E_2(s^{H_0} \mid H_1 < \infty)E_2(s^{H_0} \mid H_1 < \infty)P_2(H_1 < \infty)
= E_2(s^{H_1}1_{H_1 < \infty})E_2(s^{\overline{H}_0} \mid H_1 < \infty)
= E_2(s^{H_1})^2 = \phi(s)^2.
\]

Then, by the Markov property at time 1, conditional on $X_1 = 2$, we have $H_0 = 1 + \overline{H}_0$, where \overline{H}_0, the time taken after time 1 to get to 0, has the same distribution as H_0 does under P_2. So
\[
\phi(s) = E_1(s^{H_0}) = pE_1(s^{H_0} \mid X_1 = 2) + qE_1(s^{H_0} \mid X_1 = 0)
= pE_1(s^{1 + \overline{H}_0} \mid X_1 = 2) + qE_1(s \mid X_1 = 0)
= psE_2(s^{H_0}) + qs
= ps\phi(s)^2 + qs.
\]
Thus $\phi = \phi(s)$ satisfies
\[ps\phi^2 - \phi + qs = 0 \] (1.5)
and
\[\phi = (1 \pm \sqrt{1 - 4pq^2})/2ps. \]

Since $\phi(0) \leq 1$ and ϕ is continuous we are forced to take the negative root at $s = 0$ and stick with it for all $0 \leq s < 1$.

To recover the distribution of H_0 we expand the square-root as a power series:
\[
\phi(s) = \frac{1}{2ps} \left\{ 1 - \left(1 + \frac{1}{2}(-4pq^2) + \frac{1}{2}(-\frac{1}{2})(-4pq^2)^2/2! + \ldots \right) \right\} \\
= qs + pq^2 s^3 + \ldots \\
= s P_1(H_0 = 1) + s^2 P_1(H_0 = 2) + s^3 P_1(H_0 = 3) + \ldots .
\]
The first few probabilities $P_1(H_0 = 1), P_1(H_0 = 2), \ldots$ are readily checked from first principles.

On letting $s \uparrow 1$ we have $\phi(s) \to P_1(H_0 < \infty)$, so
\[P_1(H_0 < \infty) = \frac{1 - \sqrt{1 - 4pq}}{2p} = \begin{cases} 1 & \text{if } p \leq q \\ q/p & \text{if } p > q. \end{cases} \]

(Remember that $q = 1 - p$, so
\[\sqrt{1 - 4pq} = \sqrt{1 - 4p + 4p^2} = |1 - 2p| = |2q - 1|. \])

We can also find the mean hitting time using
\[E_1(H_0) = \lim_{s \uparrow 1} \phi'(s). \]

It is only worth considering the case $p \leq q$, where the mean hitting time has a chance of being finite. Differentiate (1.5) to obtain
\[2ps\phi' + ps^2 - \phi' + q = 0 \]
so
\[\phi'(s) = (ps\phi(s)^2 + q)/(1 - 2ps\phi(s)) \to 1/(1 - 2p) = 1/(q - p) \quad \text{as } s \uparrow 1. \]

See Example 5.1.1 for a connection with branching processes.

Example 1.4.4

We now consider an application of the strong Markov property to a Markov chain $(X_n)_{n \geq 0}$ observed only at certain times. In the first instance suppose that J is some subset of the state-space I and that we observe the chain only when it takes values in J. The resulting process $(Y_m)_{m \geq 0}$ may be obtained formally by setting $Y_m = X_{T_m}$, where
\[T_0 = \inf\{ n \geq 0 : X_n \in J \} \]
and, for \(m = 0, 1, 2, \ldots \)
\[
T_{m+1} = \inf \{ n > T_m : X_n \in J \}.
\]
Let us assume that \(\mathbb{P}(T_m < \infty) = 1 \) for all \(m \). For each \(m \) we can check easily that \(T_m \), the time of the \(m \)th visit to \(J \), is a stopping time. So the strong Markov property applies to show, for \(i_0, \ldots, i_{m+1} \in J \), that
\[
P(Y_{m+1} = i_{m+1} \mid Y_0 = i_0, \ldots, Y_m = i_m)
= P(X_{T_{m+1}} = i_{m+1} \mid X_{T_m} = i_0, \ldots, X_{T_m} = i_m)
= P_{i_m}(X_{T_{m+1}} = i_{m+1}) = \overline{p}_{i_m, i_{m+1}}
\]
where, for \(i, j \in J \)
\[
\overline{p}_{ij} = h_i^j
\]
and where, for \(j \in J \), the vector \((h_i^j : i \in I) \) is the minimal non-negative solution to
\[
h_i^j = p_{ij} + \sum_{k \neq j} p_{ik} h_i^k. \tag{1.6}
\]
 Thus \((Y_m)_{m \geq 0} \) is a Markov chain on \(J \) with transition matrix \(\overline{P} \).

A second example of a similar type arises if we observe the original chain \((X_n)_{n \geq 0}\) only when it moves. The resulting process \((Z_m)_{m \geq 0}\) is given by \(Z_m = X_{S_m} \) where \(S_0 = 0 \) and for \(m = 0, 1, 2, \ldots \)
\[
S_{m+1} = \inf \{ n \geq S_m : X_n \neq X_{S_m} \}.
\]
Let us assume there are no absorbing states. Again the random times \(S_m \) for \(m \geq 0 \) are stopping times and, by the strong Markov property
\[
P(Z_{m+1} = i_{m+1} \mid Z_0 = i_0, \ldots, Z_m = i_m)
= P(X_{S_{m+1}} = i_{m+1} \mid X_{S_0} = i_0, \ldots, X_{S_m} = i_m)
= P_{i_m}(X_{S_{m+1}} = i_{m+1}) = \overline{p}_{i_m, i_{m+1}}
\]
where \(\overline{p}_{ii} = 0 \) and, for \(i \neq j \)
\[
\overline{p}_{ij} = p_{ij} / \sum_{k \neq i} p_{ik}.
\]
Thus \((Z_m)_{m \geq 0} \) is a Markov chain on \(I \) with transition matrix \(\overline{P} \).

Exercises

1.4.1 Let \(Y_1, Y_2, \ldots \) be independent identically distributed random variables with \(P(Y_1 = 1) = P(Y_1 = -1) = 1/2 \) and set \(X_0 = 1, X_n = X_0 + Y_1 + \ldots + Y_n \) for \(n \geq 1 \). Define
\[
H_0 = \inf \{ n \geq 0 : X_n = 0 \}.
\]
Find the probability generating function \(\phi(s) = E(s^{H_0}) \).

Suppose the distribution of \(Y_1, Y_2, \ldots \) is changed to \(P(Y_1 = 2) = P(Y_1 = -1) = 1/2 \). Show that \(\phi \) now satisfies
\[
s\phi^3 - 2\phi + s = 0.
\]
1.4.2 Deduce carefully from Theorem 1.3.2 the claim made at (1.6).