1.3 Hitting times and absorption probabilities

Let (Xn)n>0 be a Markov chain with transition matrix P. The hitting time of a
subset A of I is the random variable H4 : Q — {0,1,2,...} U {oo} given by

HA(w) =inf{n > 0: X,(w) € A}

where we agree that the infimum of the empty set () is oo. The probability starting
from 4 that (X,,)n>0 ever hits A is then

ht = P(H” < o).

When A is a closed class, hf‘ is called the absorption probability. The mean time
taken for (X,)n,>0 to reach A is given by

k= Bi(H*) = > nP(H" =n) + coP(H* = c0).

%
n<oo

We shall often write less formally

ht = Pi(hit A), k* = F;(time to hit A).
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Remarkably, these quantities can be calculated explicitly by means of certain linear
equations associated with the transition matrix P. Before we give the general
theory, here is a simple example.

Example 1.3.1

Consider the chain with the following diagram:

N
N =
N =

N =

Starting from 2, what is the probability of absorption in 47 How long does it take
until the chain is absorbed in 1 or 47

Introduce
hi = Pz(hlt 4), k’z = E,-(time to hit {1,4})

Clearly, hy = 0, hy =1 and k; = k4 = 0. Suppose now that we start at 2, and
consider the situation after making one step. With probability 1/2 we jump to 1
and with probability 1/2 we jump to 3. So

ho=31hi +L1hs, ks =1+ 31k + 3ks.

The 1 appears in the second formula because we count the time for the first step.
Similarly,
hs = 1h2+%h4, k3=1+%k2+%k‘4.
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Hence

h = 3hs = 5(3h2 + 3),

ky =1+ $ks =14 3(1 + k2).
So, starting from 2, the probability of hitting 4 is 1/3 and the mean time to
absorption is 2. Note that in writing down the first equations for hy and ks we
made implicit use of the Markov property, in assuming that the chain begins afresh

from its new position after the first jump. Here is a general result for hitting
probabilities.

Theorem 1.3.2. The vector of hitting probabilities h* = (h#* : i € I) is the
minimal non-negative solution to the system of linear equations

{ hf‘ =1 forie A

ht = Zjelpz’jhf fori g A.

(Minimality means that if x = (x; : i € I) is another solution with x; > 0 for all i,
then x; > h; for all i.)
Proof. First we show that h* satisfies (1.3). If Xo = i € A, then H4 = 0, so
h{f =1. If Xg =i ¢ A, then HA > 1, so by the Markov property

P(H* < oo | Xy = j) = Pj(H* < 00) = h}

(1.3)

and
hit = Pi(H* < 00) =) Py(H" < 00, X1 = j)
jel
=Y P(HA < oo| X1 = j)Pi(X1 =j) = D pishit.
jel jEI
Suppose now that x = (z; : i € I) is any solution to (1.3). Then h{! = z; = 1 for
i € A. Suppose i € A, then

i = sz'jﬂfj = Zpij + sz'jmj-
jel jeA JgA

Substitute for z; to obtain

Ti = sz'j + Zpij (Z Djk + Zij%)

JEA jgA keA kgA
=P(X1 € A)+ R(X1 ¢ A, X2 € A)+ ) Y pijpjkas.
JEARZA

By repeated substitution for z in the final term we obtain after n steps

x; =PZ(X1 € A)++R(X1 €A, , Xn—1 gA,Xn € A)

+ Z Z Pij1Pjrja -+ - Pjn—1jnTin -
1A jndA

Now if z is non-negative, so is the last term on the right, and the remaining terms
sum to P;(HA < n). So z; > P;(H4 < n) for all n and then

z; > lim Py(H” <n)= Pi(H* < 00) = h;. O
n—oo
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Example 1.3.1 (continued)

The system of linear equations (1.3) for h = ht*} are given here by

hy=1,
hy = 1hi + Lhs, hg = Fho + 1hy

so that
hoy = %hl + %(%hz + %)
and
h2=%+%h1, h3=%+%h1-

The value of h is not determined by the system (1.3), but the minimality condition
now makes us take hy = 0, so we recover hy = 1/3 as before. Of course, the extra
boundary condition h; = 0 was obvious from the beginning so we built it into
our system of equations and did not have to worry about minimal non-negative
solutions.

In cases where the state-space is infinite it may not be possible to write down
a corresponding extra boundary condition. Then, as we shall see in the next
examples, the minimality condition is essential.

Example 1.3.3 (Gamblers’ ruin)

Consider the Markov chain with diagram

qg p g9 p g p
0 1 i 1+ 1

where 0 < p =1 — ¢ < 1. The transition probabilities are

Poo =1,

Diji—1 = 4, Piyi+1 =P for ¢ = 1,2, PR
Imagine that you enter a casino with a fortune of £ and gamble, £1 at a time, with
probability p of doubling your stake and probability ¢ of losing it. The resources

of the casino are regarded as infinite, so there is no upper limit to your fortune.
But what is the probability that you leave broke?

Set h; = P;(hit 0), then h is the minimal non-negative solution to

ho = 1,
hi = phiy1 +qhi_1, fori=1,2,....



If p # q this recurrence relation has a general solution

hi=A+B(g> .
b

(See Section 1.11.) If p < ¢, which is the case in most successful casinos, then the
restriction 0 < h; < 1 forces B =0, so h; =1 for all i. If p > ¢, then since hg = 1
we get a family of solutions

v+ (- G));

for a non-negative solution we must have A > 0, so the minimal non-negative
solution is h; = (¢/p)i. Finally, if p = ¢ the recurrence relation has a general
solution

hi=A+ Bi

and again the restriction 0 < h; < 1 forces B =0, so h; =1 for all i. Thus, even if
you find a fair casino, you are certain to end up broke. This apparent paradox is
called gamblers’ ruin.

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

il Y4l ai pi 4i+1 Pit1
0 1 i 1+1
where, for i = 1,2,..., we have 0 < p; =1 — ¢; < 1. As in the preceding example,

0 is an absorbing state and we wish to calculate the absorption probability starting
from ¢. But here we allow p; and ¢; to depend on i.

Such a chain may serve as a model for the size of a population, recorded each
time it changes, p; being the probability that we get a birth before a death in a
population of size i. Then h; = P;(hit 0) is the extinction probability starting from
i.

We write down the usual system of equations

ho =1,
hi = pihip1 + gihi—y, fori=1,2,....

This recurrence relation has variable coefficients so the usual technique fails. But
consider u; = h;—1 — h;, then p;u;41 = g;u;, so

_(Qi) _(%’%’—1---‘]1) B
i1 = [ — Jui= [ —— ) ug =y
bi piPi—1---P1
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where the final equality defines 7;. Then
w1+ ... +u; = hg — h;
o
hi=1—=A(y+...+7i-1)

where A = u; and 79 = 1. At this point A remains to be determined. In the case
Yoo Vi = 00, the restriction 0 < h; < 1 forces A =0 and h; = 1 for all 4. But if
Z;’io v; < 0o then we can take A > 0 so long as

1—A(yo+...+7-1) >0 foralli.

Thus the minimal non-negative solution occurs when A = (32 ;) ~ and then

h; = Z’Yj/ Z’Yj-
=i =0

In this case, for ¢ = 1,2,..., we have h; < 1, so the population survives with
positive probability.

Here is the general result on mean hitting times. Recall that k! = E;(H4),
where H4 is the first time (Xn)n>o0 hits A. We use the notation 1p for the indicator
function of B, so, for example, 1x,—; is the random variable equal to 1 if X; = j
and equal to 0 otherwise.

Theorem 1.3.5. The vector of mean hitting times k4 = (k4 : i € I) is the
minimal non-negative solution to the system of linear equations

{kf‘:O forie A

1.4

Proof. First we show that k4 satisfies (1.4). If Xo = i € A, then HA = 0, so
kA =0.If Xo =i & A, then HA > 1, so, by the Markov property,

E;(HA | X, = j) = 1+ E;(H?)
and

k} = Ei(H*) =) Ei(H*1x,=)
jel
=Y EH" | Xy =j)P(X1=j) =1+ piki.
Jjel JgA
Suppose now that y = (y; : 4 € I) is any solution to (1.4). Then k! = y; = 0 for
i€ A Ifi g A, then

yi=1+ sz’jyj

JgA
=1+ p; (1 + Zij.%)
jga kg A

=P(H">1)+P(H*>2)+ Y > pijpirys-
JEA k¢A
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By repeated substitution for y in the final term we obtain after n steps

yi=P(HA > 1)+ ..+ PBH*>n)+ > . D PiiPirso -+ Pin—rjuYin-
hEA  ingA

So, if y is non-negative,

yi > P(H* > 1)+ ...+ P(H" > n)

and, letting n — oo,

oo
yi > Y P(H* >n) = Ei(H*) = z;. O

n=1

Exercises

1.3.1 Prove the claims (a), (b) and (c) made in example (v) of the Introduction.

1.3.2 A gambler has £2 and needs to increase it to £10 in a hurry. He can play
a game with the following rules: a fair coin is tossed; if a player bets on the right
side, he wins a sum equal to his stake, and his stake is returned; otherwise he loses
his stake. The gambler decides to use a bold strategy in which he stakes all his
money if he has £5 or less, and otherwise stakes just enough to increase his capital,
if he wins, to £10.

Let X¢g = 2 and let X, be his capital after n throws. Prove that the gambler
will achieve his aim with probability 1/5.

What is the expected number of tosses until the gambler either achieves his aim
or loses his capital?

1.3.3 A simple game of ‘snakes and ladders’ is played on a board of nine squares.

7 8| FINISH 9

6 5 4

1 2 3
START




1.8 Hitting times and absorption probabilities 7

At each turn a player tosses a fair coin and advances one or two places according
to whether the coin lands heads or tails. If you land at the foot of a ladder you
climb to the top, but if you land at the head of a snake you slide down to the tail.
How many turns on average does it take to complete the game?

What is the probability that a player who has reached the middle square will
complete the game without slipping back to square 1?7

1.3.4 Let (X,)n>0 be a Markov chain on {0,1,...} with transition probabilities
given by

1+1

2
por =1, piiv1+piic1 =1, piip1= ( ) Dii-1, ©>1.

Show that if Xy = 0 then the probability that X,, > 1 for all n > 1 is 6/72.



