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These notes are based on a course given to Masters students in Cambridge. Their
scope is the basic theory of Schramm-Loewner evolution, together with some underlying
and related theory for conformal maps and complex Brownian motion. The structure
of the notes is influenced by our attempt to make the material accessible to students
having a working knowledge of basic martingale theory and Ito calculus, whilst keeping
the prerequisities from complex analysis to a minimum.
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1 Riemann mapping theorem

We review the notion of conformal isomorphism of complex domains and discuss the ques-
tion of existence and uniqueness of conformal isomorphisms between proper simply con-
nected complex domains. Then we illustrate, by a simple special case, Loewner’s idea of
encoding the evolution of complex domains using a differential equation.

1.1 Conformal isomorphisms

We shall be concerned with certain sorts of subset of the complex plane C and mappings
between them. A set D C C is a domain if it is non-empty, open and connected. We say
that D is simply connected if every continuous map of the circle {|z| = 1} into D is the
restriction of a continuous map of the disc {|z| < 1} into D. A convenient criterion for
a domain D C C to be simply connected is that its complement in the Riemann sphere
C U {00} is connected. A domain is proper if it is not the whole of C. The open unit disc
D = {|z| < 1}, the open upper half-plane H = {Re(z) > 0}, and the open infinite strip
S = {0 <Im(z) < 1} are all examples of proper simply connected domains.

A holomorphic function f on a domain D is a conformal map if f'(z) # 0 for all z € D.
We call a bijective conformal map f : D — D’ a conformal isomorphism. In this case, the
image D' = f(D) is also a domain and the inverse map f~!: D’ — D is also a conformal
map. Every conformal map is locally a conformal isomorphism. The function z — e* is
conformal on C but is not a conformal isomorphism on C because it is not injective. We
note the following fundamental result. A proof may be found in [1].

Theorem 1.1 (Riemann mapping theorem). Let D be a proper simply connected domain.
Then there exists a conformal isomorphism ¢ : D — D.

We shall discuss ways to specify a unique choice of conformal isomorphism ¢ : D — D
or ¢ : D — H in the next two sections. In general, there is no usable formula for ¢ in
terms of D. Nevertheless, we shall want to derive certain properties of ¢ from properties
of D. We shall see that Brownian motion provides a useful tool for this.

1.2 Mobius transformations
A Mébius transformation is any function f on C U {oo} of the form

az+b
f) = (1)

where a,b,¢,d € C and ad — bc # 0. Here f(—d/c) = oo and f(oo) = a/c. Mobius
transformations form a group under composition. A Mobius transformation f restricts to
a conformal automorphism of H if and only if we can write (1) with a,b,¢,d € R and
ad —bc = 1. For 0 € [0,27) and w € D, define ®y,, on D by

0 2 — W
Pp(2) = e —rn.
ol2) = € 1 —wz



Then ®y,, is a conformal automorphism of D and is the restriction of a Mobius transfor-
mation to D. Define ¥ : H — D by
11—z
U(z) = .
(2) 1+ 2z
Then ¥ is a conformal isomorphism and ¥ extends to a Mobius transformation. The
following lemma is a basic result of complex analysis. We shall give a proof in Section 2.

Lemma 1.2 (Schwarz lemma). Let f : D — D be a holomorphic function with f(0) = 0.
Then | f(2)| < |z| for all z. Moreover, if | f(2)| = |z| for some z # 0, then f(w) = e®w for
all w, for some 6 € [0, 27).

Corollary 1.3. Let ¢ be a conformal automorphism of D. Set w = ¢~1(0) and 0 =
arg ¢'(w). Then ¢ = Dg,,. In particular ¢ is the restriction of a Mobius transformation to
D and extends to a homeomorphism of D.

Proof. Set f = ¢ o ®y ! . Then f is a conformal automorphism of D and f(0) = 0. Pick
u € D\ {0} and set v = f(u). Note that v # 0. Now, either |f(u)] = |v| > |u] or

|/~ (v)| = |u| = |v|. In any case, by the Schwarz lemma, there exists a € [0, 27) such that
f(z) = ez for all z, and so ¢ = f o @, = Doy Finally, & (w) = /(1 — |w|?) so
a=0. O

Corollary 1.4. Let D be a proper simply connected domain and let w € D. Then there
exists a unique conformal isomorphism ¢ : D — D such that ¢(w) = 0 and arg ¢’'(w) = 0.

Proof. By the Riemann mapping theorem there exists a conformal isomorphism ¢y : D —
D. Set v = ¢p(w) and § = —argdy(w) and take ¢ = Py, 0 ¢g. Then ¢ : D — D is
a conformal isomorphism with ¢(w) = 0 and arg¢’(w) = 0. If ¢ is another such, then
f =1o0¢~!is a conformal automorphism of D with f(0) = 0 and arg f'(0) =0, so f = $g
which is the identity function. Hence ¢ is unique. ]

1.3 Martin boundary

The Martin boundary is a general object of potential theory!. We shall however limit our
discussion to the case of harmonic functions in a proper simply connected complex domain
D. In this case, the Riemann mapping theorem, combined with the conformal invariance
of harmonic functions, allows a very simple approach. Make a choice of conformal isomor-
phism ¢ : D — . We can define a metric d, on D by dy(z,2") = |¢(z) — ¢(2')|. Then
d, is locally equivalent to the original metric but possibly not uniformly so. Say that a
sequence (z, : n € N) in D is D-Cauchy if it is Cauchy for ds. Since every conformal
automorphism of I extends to a homeomorphism of D, this notion does not depend on
the choice of ¢. Write D for the completion of D with respect to the metric? and define
the Martin boundary 6D = D \ D. The set D does not depend on the choice of ¢ and

1See for example [2]
2This is the set of equivalence classes of D-Cauchy sequences z = (z, : n € N), where z ~ 2’ if
(21,21, 22, 24, ...) is also a D-Cauchy sequence.



Figure 1: Two distinct points of D and their images under .

nor does its topology. This construction ensures that the map ¢ extends uniquely to a
homeomorphism D — D. It follows then that every conformal isomorphism v of proper
simply connected domains D — D’ has a unique extension as a homeomorphism D= D.
We abuse notation in writing ¢(z) for the value of this extension at points z € 0D. Write
0D for the boundary of D as a subset of C, that is the set of limit points of D in C,
which in general is not identifiable with 6D. For b € §D, we say that a simply connected
subdomain N C D is a neighbourhood of b in D if {z € D : |z — ¢(b)| < €} C ¢(N) for
some € > 0.

A Jordan curve is a continuous injective map v : 0D — C. Say D is a Jordan domain
if 0D is the image of a Jordan curve. It can be shown in this case that any conformal
isomorphism D — D extends to a homeomorphism D — D, so we can identify 6 D with 0D.
On the other hand, a sequence (z, : n € N) in H is H-Cauchy if either it converges in C or
|2n| = 00 as n — oco. Thus we identify dH with RU{oco}. For the slit domain D = H\ (0, 7]
and, for z € [0,4), the sequences (z + (1 +4i)/n :n € N) and (2 + (=1 +1i)/n : n € N)
are D-Cauchy but are not equivalent, so their equivalence classes z* and 2~ are distinct
Martin boundary points.

Corollary 1.5. Let ¢ be a conformal automorphism of H. If p(00) = oo, then ¢(z) = oz+u
for all z € H, for some 0 >0 and p € R. If ¢(c0) = 00 and ¢(0) =0, then ¢(z) = oz for
all z € H, for some o > 0.

Proof. Set u = ¢(0) and o = ¢(1) — ¢(0). Since ¥ o ¢ o ™! is a conformal automorphism
of D, we know by Corollary 1.3 that ¢ is a Mdbius transformation of H, so ¢(z) = (az +
b)/(cz + d) for all z € H, for some a,b,c,d € R with ad — bc = 1. This formula extends by
continuity to dH = R U {oco}. So we must have ¢ =0, u =b/d and 0 = a/d > 0. O

Corollary 1.6. Let D be a proper simply connected domain and let by, bs, bs € 6D, ordered
anticlockwise. Then there exists a unique conformal isomorphism ¢ : D — H such that

¢(b1) =0, ¢(b2) =1 and ¢(bs) = oo.



Proof. By the Riemann mapping theorem there exists a conformal isomorphism ¢y : D —
D. Set § = 7 — arg ¢o(bs) and take ¢y = W1 o Py 0 ¢y. Then ¢ : D — H is a conformal
isomorphism, and Py o ¢o(bs) = —1 so ¢1(b3) = 00. Now ¢y(b1) < ¢1(ba) so there exist
o € (0,00) and p € R such that ¢y (b1)+p = 0 and o¢1(be) +p = 1. Set ¢(2) = o¢1(2)+p
then ¢ : D — H is a conformal isomorphism satisfying the given constraints. If v is another
such then f = 1 o ¢! is a conformal automorphism of H with f(0) = 0, f(1) = 1 and
f(00) = 00. Hence f(z) = z for all z € H and so ¢ is unique. O

Note that in both Corollary 1.4 and Corollary 1.6, we obtain uniqueness of the conformal
map by the imposition of three real-valued constraints.

1.4 SLE(0)

This section and the next are for orientation and do not form part of the theoretical
development. Consider the (deterministic) process (7;);>0 in the closed upper half-plane H

given by
v = 2iV/t.

This process belongs to the family of processes (SLE(k) : k € [0,00)) to which these notes
are devoted, corresponding to the parameter value £ = 0. Think of (7;);>¢ as progressively
eating away the upper half-plane so that the subdomain H, = H\ K; remains at time ¢,
where K; = (0,t] = {75 : s € (0,t]}. There is a conformal isomorphism g; : H; — H given

by
gi(2) = V22 + 4t

which has the following asymptotic behaviour as |z| — oo
2t _
gi(z) =z + T O(]z]7?).

In particular g;(2) — 2z — 0 as |z| — oo. As we shall show in Proposition 4.3, there is only
one conformal isomorphism H; — H with this last property. Thus we can think of the
family of maps (g;);>0 as a canonical encoding of the path (7;)>o0-

Consider the vector field b on H \ {0} defined by

2 2z —iy)
z

b(z) = - = PR

Fix 2 € H\ {0} and define

C<Z>_1nf{t207t_z}_{y2/4’ le:Zy

0, otherwise.

Then ¢(z) > 0, and z € K; if and only if {(z) < t. Set z; = g,(2). Then for t < ((2)
2

Vi 4t

7

= b(z) (2)

Zt:



and, if ((z) < oo, then z, — 0 as t — ((z). Thus (g(2) : z € H\ {0}, t < ((2)) is
the (unique) maximal flow of the vector field b in H \ {0}. By mazimal we mean that
(2 1 t < ((2)) cannot be extended to a solution of the differential equation on a longer
time interval.

1.5 Loewner evolutions

Think of SLE(0) as obtained via the associated flow (g:):>0 by iterating continuously a
map ¢s;, which nibbles an infinitesimal piece (0, 2@\/&] of H near 0. Charles Loewner, in
the 1920’s, studied complex domains H; = H \ (0, t] for more general curves (7;);>0, by a
similar continuous iteration of conformal maps, obtained now by considering the flow of a
time-dependent vector field H of the form

b(t,z) = t>0, zeH.

2
z=&
Here, (& : t > 0) is a given continuous real-valued function, which is called the driving
function or Loewner transform of the curve v. We shall study this flow in detail below,
showing that it always provides a construction of a family of domains (H; : t > 0), and
sometimes also a path . Note that the flow lines (g:(2))=0 for SLE(0) separate, left
and right, each side of the singularity at 0, with the path (7;);~0 growing up between the
left-moving flow lines and the right-moving ones. In the general case, assuming that the
qualitative picture remains the same, when we move the singularity point & to the left, we
may expect that some left-moving flow lines are deflected to the right, so the curve (7;);>0
turns to the left. Moreover, the wilder the fluctuations of (&), the more convoluted we
may expect the resulting path (7;):=0 to be.

Oded Schramm, in 1999, realized that for some conjectured conformally invariant scal-
ing limits (7¢)¢=0 of planar random processes, with a certain spatial Markov property, the
process (&t)i=o would have to be a Brownian motion, of some diffusivity x. The asso-
ciated processes (7;)i>0 were at that time totally new and have since revolutionized our
understanding of conformally invariant planar random processes.



2 Brownian motion and harmonic functions

We first prove a conformal invariance property of complex Brownian motion, due to Lévy.
Then we prove Kakutani’s formula relating Brownian motion and harmonic functions, and
deduce from this the maximum principle for harmonic functions and the maximum modulus
principle for holomorphic functions. This used to prove the Schwarz lemma.

2.1 Conformal invariance of Brownian motion

Theorem 2.1. Let D and D' be domains and let ¢ : D — D' be a conformal isomorphism.
Fiz z € D and set 2/ = ¢(2). Let (By)i=0 and (B})i=0 be complex Brownian motions starting
from z and 2’ respectively. Set

T=if{t>0:B,¢D}, T'=inf{t>0:B,¢D'}.
Set T = fOT |¢/(By)|dt and define fort < T
7(t) = inf {s >0: / |/ (B,)|?dr = t} , By = o(Br)-
0

Then (T, (By),-7) and (T', (B})i<1) have the same distribution.

Figure 2: A Brownian motion stopped upon leaving the unit square, and its image under
a conformal transformation

Proof. Assume for now that D is bounded and ¢ has a C' extension to D. Then T' < oo
almost surely and we may define a continuous semimartingale® Z and a continuous adapted

3Here and below, where we use notions depending on a choice of filtration, such as martingale or
stopping time, unless otherwise stated, these are to be understood with respect to the natural filtration

(]:t)t>0 of (Bt)tgo-



process A by setting?

TAt
Zy = o(Bra) + (Bi— Bra)), A= / 16/(B)ds + (t — (T A1)).

Moreover, almost surely, A is an (increasing) homeomorphism of [0,00), whose inverse
is an extension of 7. Denote the inverse homeomorphism also by 7. Write ¢ = u + v,
By = X; +1Y, and Z; = M; + ¢N,;. By Itd’s formula, for t < T,

) ) ) )
a—Z(Bt)dXt + a—Z(Bt)dYt, dN, = a—Z(Bt)dXt + a—Z(Bt)dYt

and so, using the Cauchy-Riemann equations,
dM,dM; = |¢'(B,)|*dt = dA, = dN,dN,, dM;dN, = 0.
On the other hand, for t > T,
dM, = dX;, dN;=dY;, dMdM;=dt=dA; =dN;dNy, dMdN; =0.

Hence (Mt)tQO; (Nt)j}o, (Mt2 — At>t>07~(Nt2 — At)t}() and (MtNt)t>O are all COHtinUOU? local
martingales. Set M, = M, and N, T(s): Then, by optional stopping, (M;)s>o,
(No)sz0, (M2 = 8)ss0, (N2 = 8)sz0 and (M N,),z are continuous local martingales for

the filtration (F;)s0, where Fy = Fr,). Define (ZS)5>0 by Z, = M, + iN,. Then, by
Lévy’s characterization of Brownian motion, (Zs)s>0 is a complex (Fy)s>o-Brownian motion
starting from 2’ = ¢(z). Now B; = Z, for t < T and, since ¢ is a bijection, T = inf{t >0 :
Z, ¢ D'}. So we have shown the claimed identity of distributions.

In the cases where D is not bounded or ¢ fails to have a C' extension to D, choose a

sequence of bounded open sets D,, T D with D,, C D for all n. Set D! = ¢(D,,) and set
T,=if{t>0:B,¢D,}, T.=inf{t>0:B,¢&D,}.

Set T, = [, " |¢/(By)|?dt. Then T,, T and T}, + T' almost surely as n — oo. Since ¢ is C"
on D, we know that (T, (Bt)t<Tn) and (7}, (B})t<1 ) have the same distribution for all n,
which implies the desired result on letting n — oo. ]

th —

Corollary 2.2. Let D be a proper simply connected domain. Fiz z € D and let (By)i>o
be a complex Brownian motion starting from z. Set T(D) = inf{t > 0: B; € D}. Then
P.(T(D) < o0) = 1.

Proof. There exists a conformal isomorphism ¢ : D — . By conformal invariance of
Brownian motion (¢(B;) : t < T(D)) is a time-change of Brownian motion run up to the
finite time when it first exits from D. Hence |¢(B;)| > 1/2 eventually as t 1 T'(D). But
(Bi)i=0 is neighbourhood recurrent so visits the open set {z € D : |¢(z)| < 1/2} at an
unbounded set of times almost surely. Hence T'(D) < oo almost surely. ]

4Whereas It6 calculus localizes nicely with respect to stopping times, and we exploit this, Lévy’s
characterization of Brownian motion is usually formulated globally. The extension of Z and A beyond the
exit time T exploits the robustness of Itd calculus to set up for an application of Lévy’s characterization
without localization.

10



2.2 Kakutani’s formula and the circle average property

A real-valued function u defined on a domain D C C is harmonic if u is twice continuously

differentiable on D with
0? 0?
Au=|—+—5|u=0
(3502 3y2)
everywhere on D. Harmonic functions can often be recovered from their boundary values
using Brownian motion.

Theorem 2.3 (Kakutani’s formula). Let u be a harmonic Junction defined on a bounded
domain D and having a continuous extension to the closure D. Fix z € D and let (By)i=0
be a complex Brownian motion starting from z. Set T(D) =inf{t > 0: B, € D}. Then

u(z) = E.(u(Brpy)).

Proof. Suppose for now that u is the restriction to D of a C? function on C. Denote this
function also by w. Define (M;)s~o by the 1t6 integral

My = u(z) + /Ot Vu(B;)dBs.

Then (M;);>0 is a continuous local martingale. By 1td’s formula, u(B;) = M, for all t < T.
Hence the stopped process M7 is uniformly bounded and, by optional stopping,

For each n € N, the restriction of u to D, = {z € D : dist(z,0D) > 1/n} has a C*
extension to C, regardless of whether u itself does. The preceding argument then shows
that u(z) = E.(u(Brnp,))) for all z € D,. Now T'(D,) T T(D) < oo as n — oo almost
surely. Since B is continuous and u extends continuously to D, we obtain the desired
identity by bounded convergence on letting n — oo. ]

In fact, the validity of Kakutani’s formula, even just in the special case where D is a
disc centred at z, turns out to be a useful characterization of harmonic functions. We will
use the following result in Section 3. A proof may be found in [2].

Proposition 2.4. Let D be a domain and let uw : D — [0,00] be a measurable function.
Suppose that u has the following circle average property: for all z € D and any r €
(0,d(z,0D)), we have

27
u(z) = %/0 u(z + re')do.

Then, either u(z) = oo for all z € D, or u is harmonic.

11



2.3 Maximum principle

Kakutani’s formula implies immediately that a harmonic function u on a bounded domain
D, which extends continuously to D, cannot exceed the supremum of its values on the
boundary 0D. Moreover, as we now show, a harmonic function cannot achieve a maximum
value on its domain, unless it is constant.

Theorem 2.5 (Maximum principle). Let u be a harmonic function defined on a domain
D. Suppose there exists a point z € D such that uw(w) < u(z) for all w € D. Then u is
constant.

Proof. 1t will suffice to consider the case where u has a finite supremum value m, say, on
D. Consider the set Dy = {z € D : u(z) = m}. Then Dy is relatively closed in D, since
u is continuous. On the other hand, if z € Dy, then for ¢ > 0 sufficiently small, the disc
B(z,¢) of radius € and centre z is contained in D. So, by Kakutani’s formula

1

m:u(z):%

2
/ u(z + ee”)df.
0
Since u is continuous and bounded above by m, this implies that w € Dy whenever |w—v| =

€. Hence Dy is open. Since D is connected, Dy can only be non-empty if it is the whole of
D. O

By the Cauchy-Riemann equations, the real and imaginary parts of a holomorphic
function are harmonic. Hence, if f is holomorphic on a bounded domain D and extends
continuously to D, then f may be recovered from its boundary values, just as in Kakutani’s
formula: for all z € D

f(2) = E=(f(Brw)))

and we have the estimate

1f(2)] < sup |f(w)].

wedD

Then a small variation on the argument for the maximum principle leads to the following
result.

Theorem 2.6 (Maximum modulus principle). Let f be a holomorphic function defined on
a domain D. Suppose there exists a point z € D such that |f(w)| < |f(2)] for all w € D.
Then f is constant.

We can now prove Lemma 1.2.

Proof of the Schwarz lemma. Let f : D — D be a holomorphic function with f(0) =
0. Consider the function g(z) = f(2)/z. By Taylor’s theorem, ¢ is analytic and hence
holomorphic in D. Fix z € D and r € (|2],1). Then

|9(2)] < sup [g(w)] <

w|=r

S|

12



Letting » — 1, we get |g(z)| < 1 and hence |f(z)| < |z] for all z € D. If |f(2)| = |2| for
some z # 0, then |g(2)] = 1, say g(z) = €. Then g is constant on D by the maximum

modulus principle, so f(w) = ¢?w for all w € D. O

13



3 Harmonic measure and the Green function

3.1 Harmonic measure

Harmonic measures are objects of potential theory. Here, we will consider harmonic mea-
sures in the particular context of planar domains, introducing them through their interpre-
tation as the hitting distributions of Brownian motion. We further confine our attention
to the case of proper simply connected domains. Let D be such a domain and let D be
its Martin boundary. Let (By);>0 be a complex Brownian motion starting from z € D and
consider the first exit time 7" = T'(D) as in Section 2.2. We have shown that 7' < oo
almost surely. In the case D = D and z = 0, we know that B; converges in D as ¢t 1 T,
with limit By uniformly distributed on the unit circle. In general, there exists a conformal
isomorphism ¢ : D — D taking z to 0. Then, by conformal invariance of Brownian motion,
as t 1T, B; converges in D to a limit By € §D. Denote by hp(z,.) the distribution of By
on 0D. We call hp(z,.) the harmonic measure for D starting from z. By the argument
used for Kakutani’s formula, if » is a harmonic function on D which extends continuously
to 15, then we can recover u from its boundary values by®

u(z) = E,(u(Br)) = /w u(s)hp(z,ds).

We can compute hp(z,.) as follows. By conformal invariance of Brownian motion, for
s1,82 € 0D and 6,05 € [0,27) with 0; < 0y and ¢(s;) = €' and ¢(s2) = €2, we have

~

, , 0, — 0
hp(z, [s1,82]) = P.(Br € [s1,52]) = Po(BT(D) € [6191, ew?]) -2 7t

2

We often fix an interval I C R and a parametrization s : I — D of the Martin boundary.
We may then be able to find a density function hp(z,.) on I such that

to
/ hp (2, 8) dt = hp (2, [s(t1), s(t2)])
t1

If we determine 6 as a continuous function on I such that e?®) = ¢(s(t)), then®

1 do

h t
pl=1) = 2 dt”
The following two examples are not only for illustration but will also be used later.

Example 3.1. Take D = D and parametrize the boundary as (e* : t € [0,27)). Fiz
w =z +1y € D and recall from Section 1.3 the conformal automorphism ®¢,, on D taking

5This is not Kakutani’s formula, unless D is a Jordan domain. For example, if D = H \ (0,i], then
the requirement that u extend continuously to D imposes that u have a limit at co but allows different
boundary values on each side of the slit [0, 7).

SNote that the function # on I is determined uniquely by D and s up to an additive constant.
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w to 0. The boundary parametrizations are then related by ¥ = (e — w)/(1 — we'). On
differentiating with respect to t, we find an expression for df/dt, and hence obtain

11— Jw? 1 1— a2~y
hp(uw, ) = =i 1 ry

= — = — , 0t <2,
21 |e?t —w]? 27 (cost — )% 4 (sint — y)? "

Example 3.2. Take D = H with the obvious parametrization of the boundary by R. Fix
w = x+1iy € H and consider the conformal isomorphism ¢ : H — D taking w to 0 given by
#(2) = (z—w)/(z—w). The boundary parametrizations are related by e = (t—w)/(t —w),

1 1 Y
=g ”1(t-—zu) rt—oF )

3.2 An estimate for harmonic functions ()

We will mark with (%) some sections and proofs which might be omitted on a first reading,.
The following lemma allows us to bound the partial derivatives of a harmonic function in
terms of its supremum norm. In conjunction with the Cauchy—Riemann equations, this
will later allow us to deduce estimates on a holomorphic function starting from estimates
on its real part. We present it here to illustrate how explicit calculations of harmonic
measure can be used as a tool to obtain general estimates.

Lemma 3.3. Let u be a harmonic function in D and let z € D. Then

ou | o Al
ox = mdist(z,0D)"

Proof. 1t will suffice to show that, for all € > 0, the estimate holds with 4 replaced by
4(1+¢). Fix e > 0. By scaling and translation, we reduce to the case where z = 0 and
dist(0,0D) = 1+ &. Then u is continuous on D so, for z € D,

u(z) = /0 ’ u(e)hp(z, 0)do.

On differentiating the formula for the harmonic density obtained in Example 3.1, we see
that Vhp(-,0) is bounded on a neighbourhood of 0, uniformly in 0, with Vhp(0,0) =
(cos@,sinf)/m. Hence we may differentiate under the integral sign to obtain

27
Vu(0) = l/ u(e)(cos 6, sin §)db.
™ Jo
e 0 el [ lulloe  4(1+2)
U Ul [T |l A1+ €)||t|lo0o
8:6(0)‘ S /0 | cos 6df mdist(0,0D)
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3.3 Dirichlet heat kernel and the Green function

We give a probabilistic definition of these two functions associated to a domain D and derive
some of their properties. This will be used later in our discussion of the Gaussian free field.
It will be convenient to have the following regularity property for exit probabilities of the
Brownian bridge.

Proposition 3.4. Define fort € (0,00) and z,y € D
mp(t,x,y) =P (Xs; € D for all s € [0,1])

where (Xs)o<s<t be a Brownian bridge from x to y in time t. Then wp symmetric in its
second and third arguments and is jointly continuous in all three.

Proof. (x) A simple scaling and translation allows us to vary the time and endpoints of
the Brownian bridge. Thus, from a single Brownian bridge (W,)o<s<1 in R? from 0 to 0 in
time 1, we can realise (X;)o<s<; With explicit dependence on ¢,z and y by

X, =(1—(s/t)z+ (s/t)y +ViWy, 0<s<L

This makes clear that mp(t, z,y) = mp(t,y, x), since (Wy)ocs<1 is time-reversible.
Fix ¢ € (0,1/2) and define

D(e) ={z € D : dist(z,0D) > €}, WS)(t,x,y) =P (X, € D for all s € [et, (1 —e)t]).
Note that

7'('(5) (t,z,y) = /[)2 p((1 — 2€)t,$’,y’)p(€)(:v’, y)dx'dy

where p© is the joint density of (Xet, X(1—eyt). Then, for all sequences t,, = t, x, — x,
and ¥, — y, with obvious notation, we have

X2 — Xl <|on — 2] + |y — y| + VI — VE] S<u<pl\Ws|

0<s<

and p™ — p© in L'(D?), where £, € (0,1/2) is determined by (1 — 2e,)t, = (1 — 2¢)t
for n sufficiently large. Hence

lim inf 7rD(tn, Ty, yn) Z TD(e) (ta xz, y)

and

lim sup 7p (tn, Tny Yn) < limﬁl—f")(tn,xmyn) = WS)(t,x,y).

But mp)(t,z,y) — 7p(t,z,y) and WS)(t,w,y) — mp(t,xz,y) as ¢ — 0. Hence 7p is
continuous as claimed. O
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Define the Dirichlet heat kernel pp on (0,00) x D x D and the Green function Gp on
D x D by

pD<t7$7y) :p(t,x,y)ﬂp(t,x,y), GD($7y) = /OOOpD(t,Jﬁ,y>dt (3)

where p(t, z,y) = (2rt) e #=9"/) Note that 7p(t,z,2) — 1 ast — 0, so Gp(z,z) = co
for all x € D. The Green function is related directly to Brownian motion as an expected
occupation density: thus, for all x € D and all non-negative measurable functions f on D,
we have

T(D)
/DGD(:U,y)f(y)dy = Ex/o f(By)dt. (4)

This follows from the definition using Fubini’s theorem and is left as an exercise.

Extend Gp by 0 outside D x D. Then, for any sequence of domains D, T D, we
have Gp, (x,y) T Gp(z,y) for all z,y € D. This follows from the definition by monotone
convergence and is left as an exercise.

We say that a domain D is Greenian if Gp(z,y) < oo for some z,y € D.

Proposition 3.5. Fvery bounded domain is Greenian. Moreover, for any Greenian domain
D, the Green function Gp is finite and continuous on {(z,y) € D x D : x # y}.

Proof. (x) For D bounded, there is a constant A > 0 such that 7p(1,2,y) < e for all
r,y € D. Then, by the Markov property, 7p(t,z,y) < e 2= for all ¢, so pp(t,z,y) <
eMleMe0°/(2) whenever |z — y| > 6. Then, by Proposition 3.4 and dominated conver-
gence, GGp is finite and continuous away from the diagonal. In particular D is Greenian.

Fix y € D and choose a sequence of probability density functions f,,, with f,, supported
in {z € D:|z—y| <1/n}. Set g,(x) = [, Gp(x,2)fn(2)dz. Then g, is a finite non-
negative measurable function on D and ¢, — Gp(.,y) as n — oo locally uniformly on
D\ {y} by continuity. Moreover, using the identity (4) and the strong Markov property,
gn has the circle average property on {z € D : |z —y| > 1/n}. Hence Gp(.,y) has the
circle average property on D \ {y}.

Now take any domain D, fix y € D and choose bounded domains D,, T D. Then Gp, 1
G p so, by monotone convergence, Gp(., y) has the circle average property on D\{y}. Hence
Gp(.,y) is either identically infinite or harmonic on D \ {y}. Then, if D is Greenian, we
can use symmetry to see that Gp is finite and continuous on {(x,y) € Dx D :x # y}. O

Conformal invariance of Brownian motion leads to a simple conformal invariance prop-
erty for the Green function.

Proposition 3.6. Let ¢ : D — ¢(D) be a conformal isomorphism of planar domains.
Then

G¢(D)(¢(x), o(y)) =Gp(z,y), x,y€D.
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Proof. Since Gp, 1 Gp for D, 1 D, it will suffice to consider the case where D and ¢(D)
are bounded when we know that Gp and Ggp) are finite and continuous away from the
diagonal. Fix z € D and a non-negative measurable function f on D. Set g = (f o ¢)|¢'|*.
Then, by the Jacobian formula,

[ Gao@(@. 6y = [ Guoy(ote) sy

¢(D)

T(¢(D)) T(D)
= Ey / J(B)dt = E, / o(B,)dr = / G (e, 9)g(y)dy.
0 0 D

Hence Gyp)(¢(2),d(y)) = Gp(z,y) for all y € D. ]

For the upper half-plane, we can calculate explicity using the reflection principle
pH(tyxuy) :p(tux7y)_p(t7j7y)u %?JEH-

Then the integral (3) can be evaluated, using the formula e=%/* — ¢7%/* = ¢! fab ety
and Fubini, to obtain

-
y—x|
Then, by conformal invariance, every proper simply connected domain is Greenian. Also,

by a suitable choice of ¢, we get the following simple formula for the Green function of the
unit disc

1
Gu(r,y) = —~ log

lo
G]D)(an) = _ya ) S D.
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4 Compact H-hulls and their mapping-out functions

A subset K of the upper half-plane H is called a compact H-hull if K is bounded and
H =H\ K is a simply connected domain. We shall associate to K a canonical conformal
isomorphism g : H — H, the mapping-out function of K. At the same time we associate
to K a real constant agx, which we will identify later, in Section 6.2, as the half-plane
capacity of K. These are all basic objects of Loewner’s theory, or more precisely of its
chordal variant, where we consider evolution of hulls in a given domain towards a chosen
boundary point. We shall see later that the theory has a property of conformal invariance
which allows us to reduce the general case to the study of the special domain H with oo
as the boundary point, which is mathematically most tractable.

H=H\K

- /

K

Figure 3: A compact H-hull.

4.1 Extension of conformal maps by reflection

We start by explaining how a conformal isomorphism ¢ : D — H can be extended analyt-
ically to suitably regular parts of the boundary dD. We have already seen that ¢ extends
continuously to the Martin boundary but now we want more regularity. The idea is to
reflect the domain across the boundary. Given a proper simply connected domain D C HI,
define

D" = {x € R: D is a neighbourhood of z in H}, D*=DuUD’U{z:z € D}.
More generally, for any open set U C D°, define
D, =DuUU{z:z¢€ D}.

As U varies, the sets Dy, are exactly the open sets which are invariant under conjugation
and whose intersection with H is D. Say that a function f* : D}, — C is reflection-invariant
if

[1(2) = f*(2), zeDyp.



Given a continuous function f on D, there is at most one continuous, reflection-invariant
function f* on Dj; extending f. Then f* is the continuous extension by reflection of f.
Such an extension f* exists exactly when f has a continuous extension to D U U which
is real-valued on U. Any continuous extension by reflection of a holomorphic function is
holomorphic, by an application of Morera’s theorem. This is called the Schwarz reflection
principle.

Proposition 4.1. Let D C H be a simply connected domain. Let I be a proper open subin-
terval of R with I C D° and let x € I. Then there exists a unique conformal isomorphism
¢ : D — H which extends to a homeomorphism DU I — HU (—1,1) taking x to 0. In
particular I is naturally identified with an interval of the Martin boundary 6D. Moreover
¢ extends further to a reflection-invariant conformal isomorphism ¢* : D} — H?—l,l)‘

Proof (x). Note that D} and Hf_, ,) are proper simply connected domains. By the Riemann
mapping theorem, there exists a unique conformal isomorphism ¢* : D} — HZ‘_l 3 with

¢*(z) = 0 and arg(¢*)'(z) = 0. Define p : D} — H , ,, by p(z) = ¢*(z). Then p is
a conformal isomorphism with p(z) = 0 and argp’(z) = 0. Hence p = ¢* and so ¢* is
reflection-invariant. Then ¢*(I) C (—1,1) and (¢*)~'(—1,1) C I, so ¢*(I) = (—1,1). Now
¢*(D) is connected and does not meet (—1,1). Since arg(¢*)’(z) = 0, by considering a
neighbourhood of z, we must have ¢*(D) C H. The same argument shows that (¢*)~!(H) C
D, so ¢*(D) = H. Hence ¢* restricts to a conformal isomorphism ¢ : D — H with the
required properties.

On the other hand, any map 1 with these properties has a continuous extension * by
reflection to D7, which is a bijection to H{_, ;) and is holomorphic by the Schwarz reflection
principle. Moreover ¢*(z) = 0, and arg(y*)'(z) = 0 since ¥*(I) = (—1,1). Hence ¢* = ¢*
and so ¥ = ¢. O

Proposition 4.2. Let D C H be a simply connected domain and let ¢ : D — H be a
conformal isomorphism. Suppose that ¢ is bounded on bounded sets. Then ¢ extends by
reflection to a conformal isomorphism ¢* on D*.

Proof (x). Fix x € D° and a bounded open interval I C D° containing x. Write ¢, ; for
the conformal isomorphism obtained in Proposition 4.1. Then f = ¢ o gb;} H — His a
Mobius transformation which is bounded, and hence continuous, on a neighbourhood of
(—1,1) = ¢, s(I) in H. Hence ¢ = fo¢,  extends by reflection to a conformal isomorphism
@7 = [*o ¢, on Dj. The maps ¢7 must be consistent, and hence extend to a conformal
map ¢* on D*. Now ¢* can only fail to be injective on D° but, as a conformal map, can
only fail to be injective on an open set in C. Hence ¢* is a conformal isomorphism. O]

4.2 Construction of the mapping-out function

Given any compact H-hull K, we now specify a particular conformal isomorphism g = g :
H\ K — H. This will give us a convenient way to encode the geometry of K. We get
uniqueness by requiring that gx looks like the identity at co.

20



Theorem 4.3. Let K be a compact H-hull and set H = H \ K. There ezists a unique
conformal isomorphism gx : H — H such that gx(z) — 2z — 0 as |z| — oco. Moreover
9K (z) — z is bounded uniformly in z € H. Moreover, for some ax € R, we have

gxc(2) :z+“7K+0(|zr2), 2] — oo. (5)

Moreover gi extends by reflection to a conformal isomorphism gy on H*.

The notation gx will be used throughout. The function gx takes H\ K to the standard
domain H, so K no longer appears as a defect of the domain. Thus we call gx the
mapping-out function of K. The condition gx(z) — 2z — 0 at oo which makes gx unique
is sometimes called the hydrodynamic normalization. The constant ay, which we will see
later is non-negative, is the half-plane capacity.

Proof. Set D = {z : —2~' € H}. Then D C H is a simply connected domain which is
a neighbourhood of 0 in H. Choose a bounded open interval I C D° containing 0. By
Proposition 4.1, there exists a conformal isomorphism ¢ : D — H which extends to a
reflection-invariant conformal isomorphism ¢* on Dj, with ¢*(0) = 0 and arg(¢*)'(0) = 0.
Consider the Taylor expansion of ¢* at 0. Since ¢* maps I into R, the coefficients must all
be real. So, as z — 0, we have

¢*(2) = az + bz + c2* + O(|2]*Y)

for some a € (0,00) and b,c € R. Define gx on H by gx(z) = —ad(—271)"1 — (b/a). Tt
is a straightforward exercise to check that gk is a conformal isomorphism to H and that
gx has the claimed expansion at co, with ax = (b/a)? — (¢/a). In particular, gx(z) — 2
is bounded near co. Now ¢* is a homeomorphism of neighbourhoods of 0, so gx can only
take bounded sets to bounded sets. Hence gx(z) — z is uniformly bounded on H and, by
Proposition 4.2, gx extends by reflection to a conformal isomorphism on H*.

Finally, if g : H — H is any conformal isomorphism such that g(z) —z — 0 as |z| — oo,
then f = go gy is a conformal automorphism of H with f(z) — 2 — 0 as |z| — oo. Then
f(o0) = 00, so f(z) = 0z + p for some o € (0,00) and p € R by Corollary 1.5, and then
f(z) = z for all z, showing that g = gk ]

The mapping-out function has a simple form for the half-disc D N H and for the slit
(0,4 = {uy : y € (0,1]}:

gorm(z) =2 +1/2, goa(z) = Va2 +1=2+1/(22) + O(|2] 7). (6)
4.3 Properties of the mapping-out function

The following scaling and translation properties may be deduced from the defining char-
acterization of the mapping-out function. The details are left as an exercise.
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Proposition 4.4. Let K be a compact H-hull. Let r € (0,00) and = € R. Set
rK={rz:2€e K}, K4+z={z+z:2€ K}

Then rK and K + x are compact H-hulls and we have
9ri(2) =19 (2/1),  gr+a(2) = gr(z — @) + 2.

Nested compact H-hulls Ky € K may be encoded by the composition of mapping-out
functions.

Proposition 4.5. Let Ky and K, be compact H-hulls. Set K = KoU gy (K1). Then K is
a compact H-hull K containing Ky and we have

9k = gk, © 9Ky OK = AK, T 0K, (7)
Moreover we obtain all compact H-hulls K containing Ky in this way.

Proof. Set Hy = H\ Ky and H = H\ K. We can define a conformal isomorphism ¢g : H — H
by ¢ = gk, © gk,- In particular H is a simply connected domain. Consider a sequence of
points (z,) in Hy with |z,| — oco. Then gk, (2,)/2, — 1 and |gk,(z,)| — 0o. Hence there
exists N such that for all n > N we have gg,(z,) ¢ K; and then

20(9(2n) = 2n) = 20(9K, (950 (20)) — 9o (2n)) + 20(9Ko (20) — 2n) — ak, + ax,.

Hence K is bounded and g = gx and ax = ak, + ax, .

On the other hand, suppose K is any compact H-hull containing K,. Define K; =
9r, (K \ Ko) and Hy = gg,(H\ K). Then K = KOUg;(i(Kl) and H, = H\ K;. Also, K is
bounded and H; is a simply connected domain, so K is a compact H-hull, as required. [
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5 Estimates for the mapping-out function

5.1 Boundary estimates

Recall from Section 3.1 the Brownian limit éT( my which is a random variable in the Martin
boundary § H. Recall also that gk extends to a homeomorphism from §H to dH = RU{oco}.

Proposition 5.1. Let S C 6H be measurable. Then
lim Wny—i-zy(BT(H) € S) = Leb(gK(S)) (8)

y—00,x/y—0
Proof. Write g (x+iy) = u+iv. Then u/y — 0 and v/y — 1 as y — oo with z/y — 0. By
conformal invariance of Brownian motion, and using the known form (3.2) for the density
of harmonic measure in H, we have

. v
+ y( T(H) € S) + ( T(H) € 9K<S)> /gK(S) W((t _ u)2 T+ v2)

On multipying by 7y and letting y — oo and z/y — 0 we obtain the desired formula. [J

For an interval (a,b) C H°, we can take S = (a,b) and z = 0 in Proposition 5.1 to
obtain

9x(0) = gx(a) = lim myPiy(Bram) € (a,0)). (9)
On the other hand, we can also take S = dH \ H° to obtain
yhj{)lo yPiy(Brm) € K) = ylg& TyPiy (Brn € H) = Leb(R \ gk (H)). (10)

Here we used the fact that 9H \ (K U H?) is countable for the first equality.

Proposition 5.2. Let K be a compact H-hull and let x € R. Suppose that the interval
[z,00) does not intersect K. Then gx(x) > x. If also K C D and z € (1,00), then
gr(z) <z +1/z.

Proof. For b > x and y > rad(K), we have

Multiply by 7wy and let y — oo, using Proposition 5.1, to obtain gx(b) — gx(z) < b — x.
Subtract b and let b — oo to see that gx(z) > z. If K CD and = € (1,00), then also

Piy(Branp € (7,0)) < Piy(Bra € (2,0)).

Multiply by 7y and let y — oo, using Proposition 5.1 again and the known form (6) of the
mapping-out function for D N H, to obtain

(b+1/b) — (z + 1/2) < gk (b) — gk (2).
Then subtract b and let b — oo to see that gx(z) <z + 1/x. O
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5.2 Continuity estimate

Define B
rad(K) = inf{r > 0: K CrD+ z for some = € R}.

Proposition 5.3. Let K be a compact H-hull. Then
lgr(2) — 2] < 3rad(K), z€ H. (11)

Proof. By a scaling and translation argument, using Proposition 4.4, it will suffice to
consider the case where K C D and rad(K) = 1. Fix z € H and consider a complex
Brownian motion (B;):>¢ starting from z. For ¢t < T = T(H), set Gy = gx(B;). By
conformal invariance of Brownian motion, G; converges almost surely as t T T to a limit
Gr € R. Moreover G € gx(H?) if and only if By € H, and then G = gx(Br).

Recall that gx(z) — 2z is a bounded holomorphic function on H. For ¢t < T', set M; =
g (B;) — By = Gy — By. Then (M;);<7 is a continuous and bounded local martingale, and
M, — Gr — Br as t T T. Hence, by optional stopping,

9k (2) — 2z =E,(Gr — Br). (12)

Note that {|z] > 1} C H° and {|z| > 2} C gx({|z| > 1}). If |Br| > 1, then By € H°,
so, by Proposition 5.2, |Gr — Br| = |gx(Br) — Br| < 1/|By| < 1. On the hand, if
|Br| < 1, then Gr & gx({|z| > 1}), so |Gr| < 2. In any case |Gy — Br| < 3. Hence
g (2) — 4 < 3. .

5.3 Differentiability estimate

The expansion (5) at oo for mapping-out functions states that, for every compact H-hull
K, there are constants C'(K) < oo and R(K) < oo such that,

The next result strengthens this estimate, stating that, if K C D, then we can take
C(K) = Cag and R(K) = 2, where C' < 0o does not depend on K.

Proposition 5.4. There is an absolute constant C' < oo with the following properties. For
all r € (0,00) and all £ € R, for any compact H-hull K C rD+ ¢,

ax Crag
z—&| T 2=

Proof. We shall prove the result in the case 7 = 1 and §{ = 0, when K C D. The general
case then follows by scaling and translation. Let D = H\ D = {z € H : |z| > 1}. Write
T =T(H) and define for 6 € [0, 7]

gr(z) — 2z — |z —&| = 2r. (13)

a(0) = Eo(Im(Br)).
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For z € D, using (12) and then the strong Markov property, we have
Im(z — gx(z)) = E,(Im(Br)) = / hp(z,0)a(6)db.
0

Consider the conformal isomorphism g : D — H given by g(2) = z + z~!. Note that
g(e?) = 2cosf. Then, for 2 € D and w = g(z),

hp(z,0) = hH(w,QCOSQ)%g(ew) - Im( 1 ) 25in 0

2cosf —w T

by the chain rule. Hence

Im(z—gK(z)):/OWIm( ! )Qsmea(ﬁ)d&

2cosf —w T
Set " 9 gin 8
a:/ i a(0)do. (14)
0 T

Consider the holomorphic function f on H*\ {0} given by
f(z) = gk (2) =z —a/z,

and set v(z) = Im(f(2)). Observe that there is a constant C' < oo such that, for all
|z| > 3/2 and 6 € [0, 7],

~ [2cosf — 271 C
Cz2llz+ 2t —2cos0] T |22

1 1
w—2cosf =z

and hence, for z € H with |z| > 3/2,

0(2)] < / ”

Since v(Z) = —v(z), the same bound holds without the restriction z € H. Then, for |z| > 2,
we can apply Lemma 3.3 in the domain D, = {w € C : |w| > (3/4)|z|} to obtain, for a
new constant C' < oo,

1 1

w—2cosf =z

28m9a(0)d9 < Ca

m ER

ov
%(2)

?

ov Ca
(2| < =3

dy [2[*

By the Cauchy-Riemann equations, the same bound holds for |f’(z)| for all |z] > 3/2.
Now f(z) — 0 as |z| — oo so, for |z| > 2 we have,

> Ca [ C
f(2)] = / f’(tz)zdt‘ < —‘;/ t8dt = —. (15)
| El ||
Hence zf(z) — 0 as |z| — o0, so a = ax and (15) is the desired estimate. O
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6 Capacity and half-plane capacity

We discuss two notions of capacity for compact H-hulls and study their properties. The
second of these plays a key role in Loewner’s theory.

6.1 Capacity from oo in H (%)
Define for a compact H-hull K the capacity from oo in H by

cap(K) = ;Lrgo YPiy(Brmy € K).

The existence of this limit was shown in (10). It is clear from the definition that
cap(K) < cap(K’) whenever K C K'.
We use (10) together with known properties of mapping-out functions to obtain
cap(DNH) =4, cap((0,i]) =2
and, for r € (0,00) and z € R,
cap(rK) = rcap(K), cap(K + z) = cap(K).
Proposition 6.1. Let K be a compact H-hull such that K is connected. Then
rad(K) < cap(K) < 4rad(K).

Proof. Set r = rad(K). Then K C rDNH + x for some z € R. So (without using
connectedness) )
cap(K) < cap(rDNH + z) = 4r.

By translation and scaling we may assume that » = 1 and that there exist s € (0,1] and
c € [0,1] such that s> + ¢ =1 and is € K and either c € K or —c € K. Set

Ko=(0,is], p(K)={-z+iy:z+iye K}, o(K)=KUp(K).

Fix y € (1,00) and consider a complex Brownian motion B starting from iy. Note that B

cannot hit S = Ky U [—c, ¢|] without first hitting o(K). Hence, by symmetry,
Piy(Brm) € §) < 2Piy(Bran € K) = 2Piy(Bran € K).

If ¢ > 0 then gk, (£c) = £vs?2 + ¢ = £1, whilst if ¢ = 0 then gx,(0+) = £1. Hence, by
Proposition 5.1, in both cases, on multiplying by 7y and letting y — oo, we obtain

2 < 2cap(K).
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Proposition 6.2. Let A and K be disjoint compact H-hulls. Then

cap(ga(K)) < cap(K).

Proof. Write g4(iy) = u+iv and recall that v/y — 1 and u — 0 as y — oo. By conformal
invariance of Brownian motion, we have

Pytiy(B hits ga(K) before R) = P;, (B hits K before AUR) < P;,(B hits K before R).
Now multiply by 7wy and let y — oo, using Proposition 5.1, to obtain the desired inequality.
[

6.2 Half-plane capacity

There is a second notion of capacity for a compact H-hull K. Define the half-plane capacity
by
heap(K) = ylggo yEiy, (Im(Brmy).

To see that this limit exists, recall from Theorem 4.3 that, as |z| — oo,
2(gr(2) — 2) > axg €R
and, from (12), for all z € H, we have
9K (2) — 2 = E.(Gr — Br),
where T = T(H) and G = gx(Br) € R. So, taking z = iy, we obtain
yEiy(Im(Brm))) = —yImE.(Gr — Br) = Re(2(gx(2) — 2)) = ax.

So the limit not only exists but equals the constant ax associated to K via its mapping-out
function.
From the explicitly known mapping-out functions (6), we deduce that

hcap(DNH) =1, hcap(0,i] = 1/2.

The following two propositions allow us to relate the half-plane capacities of different
compact H-hulls. They follow from Propositions 4.4 and 4.5 and are left as exercises.

Proposition 6.3. Forr € (0,00) and x € R, we have
hecap(rK) = r*hcap(K), hcap(K + ) = hcap(K).

Proposition 6.4. Let K and K’ be compact H-hulls with K C K'. Set K = gx(K'\ K).
Then

heap(K') < heap(K') + heap(K) = heap(K').
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We deduce that, for K C 7D, we have hcap(K) < hcap(rD NH) = 2. Hence, for all
compact H-hulls K,
heap(K) < rad(K)?.

Note from the proof of Proposition 3.3 the formula (14)

heap(K) = g/ Eeio (Im(Brmy)) sin 0d0
0

™

which shows that hcap(K) > 0 for all non-empty compact H-hulls.
The next result is deeper, relying on Beurling’s estimate, which is proved below as
Theorem 16.3. It may be considered as a continuity estimate for half-plane capacity.

Proposition 6.5. (x) Suppose K C K' are two compact H-hulls, and that dist(z, 0KUR) <
e for all z € OK' and some ¢ > 0. Then

16
heap(K') < heap(K) + — rad(K’)*?e'/2.
T
Proof. We reduce to the case where K’ C D by scaling and translation. Let B be a complex

Brownian motion starting from z € H'. Write T' = T'(H) and 7" = T(H') and note that
T > T'. By Beurling’s estimate, for z € 0K’ and r > 0,

P.(|Br—z|=27) <P(T =2 T(z+rD)) < 2y/¢/r

so, using the strong Markov property at T", for z = € and 6 € (0, 7), we have

]P)E'LG(|BT — BT’| } 7”) < 2\/6/7".
Now | Im(Br) — Im(Bz)| < |Br — By| A1, so

1
]Eei0| Im(BT) - Im(BT/)] = / ]P)eie(’BT — BT” 2 T’)dT < 4\/5
0

Then, using (14),

»
hcap(K") :/ Eeio (Im(B71)) Smed@
0 m
2 0 2 0 1
/ B, (tm(Br) > g + / W d@:hcap(K)Jr_(*\/g_
0 s
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7 Chordal Loewner theory I

We establish a one-to-one correspondence between continuous real-valued paths (&)~ and
increasing families (K;);>o of compact H-hulls having a certain local growth property. The
null path & = 0 corresponds to K; = (0, 2iv/t]. For smooth paths (&) starting from 0, it
is known that K; = {7, : 0 < s < t} for some continuous simple path (v;);o in H starting
from 0 and such that 44 € H for all ¢ > 0. In the absence of smoothness, the situation
can be more complicated, as we shall see later. In this chordal version of the theory, the
boundary point co plays a special role as the point towards which the hulls evolve. In the
alternative radial theory, which we will not discuss, an interior point of the domain plays
this special role instead.

7.1 Local growth property and Loewner transform

Let (Ky)i=0 be a family of compact H-hulls. Say that (K;);so is increasing if Ky is strictly
contained in K; whenever s < t. Assume that (K)o is increasing. Set K, = Ny K
and, for s < t, set Ky = gr, (K¢ \ Ks). Say that (K)o has the local growth property if

rad(Kisyn) — 0 as h | 0 uniformly on compacts in ¢.

This is a type of continuity condition for the growth of (K;);>o but note that K; \ K can
be large even when K, is small. See Figure 4 for an illustration.

Ko\ Ky

Kitin

—

&

K 9K,

Figure 4: The local growth property and the Loewner transform.

Proposition 7.1. Let (K;)i=o be an increasing family of compact H-hulls having the local
growth property. Then K, = K, for allt. Moreover, the map t — hcap(Ky) is continuous
and strictly increasing on [0,00). Moreover, for all t > 0 there is a unique & € R such
that & € Kyyyn for all h > 0, and the process (&)i=0 is continuous.

Proof. Set K14 = gk, (Kt \ K). For all t > 0 and h > 0, we have
heap(Ky4p,) = heap(Ky) + heap(Ky ).

Now hecap(K; 1) < heap(Ky yp) < rad(Kysys)? Hence, by the local growth property,
t +— heap(K}) is continuous and hecap(K;y) = 0, so Ky = 0 and so K;; = K;. On the
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other hand K,y # 0 so heap(Kyi4n) > 0 and so t — heap(K}) is strictly increasing on
[0, 00).

For fixed ¢ > 0, the sets Ki;, are compact and decreasing in A > 0 so, using the
local growth property, they have a unique common element & € R. For ¢t > 0 and h > 0,
choose z € Kyjon \ Kyyp and set w = gg,(2) and v’ = gg,,,(2). Then w € K49, and
w' e Kt+h,t+2h7 with v’ = 9K+ vin ('w) Hence

& — w| < 2rad(Kypon),  [Sevn — 0| < 21ad(Kppneron),  |w—w'| < 3rad(Kyein)
where we used (11) for the last inequality. Hence
|Eein — &| < 2rad(Kigniqon) + 3rad(Kiirn) + 2rad(Kepn) — 0
as h — 0, uniformly on compacts in . O

The process (& )0 is called the Loewner transform of (Ki);=o. We shall see in the next
two subsections that the family of compact H-hulls (K}):~ can be reconstructed from its
Loewner transform.

We shall sometimes be presented with a family of compact H-hulls parametrized not
by [0, 00) but by [0,7") for some T" € (0,00). The preceding definitions and results transfer
immediately to this case. The following result is left as an exercise.

Proposition 7.2. Let T, T" € (0,00| and let 7 : [0,7") — [0,T") be a homeomorphism. Let
(Kt)iepo,r) be an increasing family of compact H-hulls having the local growth property and
having Loewner transform (& )wcpr). Set Ki = Ky and & = &). Then (K})icp1v) is an
increasing family of compact H-hulls having the local growth property and having Loewner
transform (&)iejo,r)-

By Proposition 7.1, the map ¢t — hcap(K;)/2 is a homeomorphism on [0,7"). On choos-
ing 7 as the inverse homeomorphism we obtain a family (K7);cp,7v) such that hcap(K7}) = 2t
for all t. We say in this case that (K})cjo,r) is parametrized by half-plane capacity. The 2
is standard in the literature and is present because of a relation with the radial Loewner
theory, which we will not discuss.

7.2 Loewner’s differential equation

We now come to Loewner’s crucial observation: the local growth property implies that the
mapping-out functions satisfy a differential equation.

Proposition 7.3. Let (K})i>0 be an increasing family of compact H-hulls, satisfying the
local growth property and parametrized by half-plane capacity, and let (& )i=o be its Loewner
transform. Set gy = gk, and ((z) =inf{t > 0: 2z € K;}. Then, for all z € H, the function
(g:(2) : t €10,((2))) is differentiable, and satisfies Loewner’s differential equation
2
1(2) = ————. 16
gt( ) gt(z> _ gt ( )

Moreover, if ((z) < oo, then gi(z) — & — 0 as t — ((2).
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Proof. Let 0 < s <t < ((2) and set z = g;(z). Note that hcap(K;) + hcap(K;)

hecap(Ky), so heap(K ) = 2(t — s). Also, gk, ,(2s) = 2% and K ; C & + 2rad(K,;)D. We
apply Propositions 5.3 and 5.4 to the compact H-hull K, to obtain

|2t — 25| < 6rad(Ks4) (17)
and, provided |zg — &| > 4rad(K4),

2(t — s) o AC rad (K, )(t — s)
Zs_gs N ’23_65‘2 ‘
We use (17) and the local growth property to see that (z; : ¢ € [0,((2))) is continuous. Then
t — |z — &]| is positive and continuous on [0,((z)), and so is locally uniformly positive.
Then (18) and the local growth property show that (z; : ¢ € [0,((2))) is differentiable with
Z = 2/(z — &). Finally, if ((z) < oo, then for s < ((z) < t we have z € K; \ K, so

25 € Ky, 80 |25 — &| < 2rad(K,,), and so by the local growth property |z, — & — 0 as
s — ((2). O

(18)

A7

7.3 Understanding the Loewner transform

This section is for orientation and aims to develop understanding of how the geometry of
a curve (7)o is reflected in the Loewner transform (&;);>¢ of the hulls (K})io given by
K; =~v((0,t]). Anticipating Section 8.1, where we shall see that the transform determines
the hulls, this also sheds some light on how a given choice of transform affects the geometry
of any resulting curve. Fix a € (0,7/2) and take v(t) = r(t)e®, where r(t) is chosen so
that hcap(K;) = 2t. Note that the scaling map z — Az takes H; to Hyz;, so the mapping-
out functions g; = gx, satisfy gaz;(2) = Agi(z/A). Hence, by Loewner’s equation, we have
Exzp = A&y, 50 & = o/, where ¢, = &;. The value of ¢, is known, but we shall be content
to see that ¢, > 0. To see this, fix 7 so that rad(K;) = 1 and note that, given € > 0, we
can find b > 1 such that ¢.(b) < b+ ¢ and g,(—b) > —b — . Write §~ for the interval of
0H, from —b to v, and 6" for the interval of § H, from ~, to b. Then, for y > 1

Piy(Bri,) € ) = Py (Brog,) € 67).

This is left as an exercise. Now multiply by 7y and let y — oo. By Proposition 5.1, we
deduce that
gT(’YT) - g‘r(_b) > gT(b) - gT(’Yt)'

Now g.(7,) = & = /T, 80 2¢o/T = 2& > g-(b) + g-(—b) = 2e. Since € > 0 was
arbitrary, this implies that ¢, > 0. But we cannot have ¢, = 0, since this corresponds to
the case a = m/2. In fact, ¢, is decreasing in o with ¢, — 00 as @ — 0. Note the infinite
initial velocity required for the Loewner transform needed to achieve a “turn to the right”
with greater angle of turn for greater c,. For a “turn to the left”, we take & = —coV/1.
The term “driving function” is sometimes used for the Loewner transform, which may be
thought as referring not only to the fact that it drives Loewner’s differential equation (16),
but also to the fact that it is, literally, a function which indicates how to “turn the wheel”.
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8 Chordal Loewner theory II

Loewner’s differential equation offers the prospect that we might recover the family of
compact H-hulls (K;);>o from its Loewner transform (&;);>¢ by solving the equation, indeed
that we might construct such a family (K)o starting from any continuous real-valued
function (& )i=0. We now show this is true.

8.1 Inversion of the Loewner transform

Fix a continuous real-valued function (&;);>0, which we call the driving function. Define
fort >0 and z € C\ {&}
2 2(z-&)
=&  |2=&*
Note that b(t,.) is holomorphic on C\ {&:} and, for |z — &/, |2" — &| > 1/n,

b(t,z) =

|b(t, z) — b(t,2")| < 2n?|z — 2/|.

The following proposition is then a straightforward application of general properties of dif-
ferential equations. For reasons that will become clear later, while we are mainly interested
in solving the differential equation in the upper half-plane, it is convenient to solve it in
the entire complex plane.

Proposition 8.1. For all z € C\ {&}, there is a unique ((z) € (0,00] and a unique
continuous map t — g,(z) : [0,{(2))) = C such that, for allt € [0,((z)), we have g,(z) # &
and
t 2
g1(2) z—i—/o @) _fsds (19)
and such that |g:(z) — &| — 0 as t — ((z) whenever ((z) < oo. Set ((&) = 0 and define
Cy={2€C:((2) >t}. Then, for allt >0, Cy is open, and g, : Cy — C is holomorphic.

The process (g:(z) : t € [0,((2))) is the mazimal solution starting from z, and ((z) is
its lifetime. Define

Ki={zeH:((2)<t}, H={zcH:((z)>t}=H\K,.

Fix z € Hand s < t < ((2), set ys = Img,(z) and 6 = infeey |25 — &|. Then 6 > 0 and
Us = —2y,/0% s0 y; = e 2%y, > 0. Hence ¢,(H,) C H. Although we have defined the
functions ¢ and g; on C and C} respectively, it s convenient to agree from now on that
C and g; refer to the restrictions of these functions to H and H,, except where we make
explicit reference to a larger domain. The family of maps (g;):>o is then called the Loewner
flow (in H) with driving function (& )0

Proposition 8.2. The family of sets (K)o i an increasing family of compact H-hulls
having the local growth property. Moreover hcap(K;) = 2t and gk, = g for all t. Moreover
the driving function (&§)i=o is the Loewner transform of (K})i=o-
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Proof. For t > 0 and w € H, we have Im(b(t,w)) < 0, so Loewner’s differential equation
has a unique solution (ws : s € [0,¢]) in H with given terminal value w; = w. Then
C(wp) >t and ¢g:(wp) = w and wy is the unique point in H with these properties. Hence
g; + H, — H is a bijection. We know that ¢; is holomorphic by Proposition 8.1, so ¢; is a
conformal isomorphism. In particular H; is simply connected.

We next obtain some basic estimates for the Loewner flow. Fix 7" > 0 and set r =
sup,<r & — €| V VT. Fix R > 4r and take z € H with |z — &| > R. Define

T=inf{t € [0,{(2)) : |g:(2) — z| =r} AT.
Then 7 < ((z) and, for all t < 7,

1:(2) = &l = |(ge(2) —2) + (2 — &) + (&0 — &) > R—2r

and
B t 2 . t Z — 95(2) + 65
(o) =x= [ gt )= ——2 [
S0
2t t 4 2 t
|9:(2) — 2] < oo S 2(g1(2) — 2) — 2t] < %'

If 7 < T, then the first estimate implies that |g,(2) — z| < 7/r < T'/r < r, a contradiction.
Hence 7 = T and then ((z) > T so z € Hr. Since we may choose R = 4r, this implies

|z — &o| < 4r for all z € Ky (20)

so Kr is bounded and hence is a compact H-hull. On the other hand, by considering the
limit R — oo in the second estimate, and then letting 7' — oo, we see that z(g,(z)—z) — 2t
as |z| — oo, for all t > 0. In particular g;(z) — z — 0 as |z| = o0, S0 g = gk, and then
heap(K;) = 2t for all t.

It remains to prove the local growth property and identify the Loewner transform. Fix
s> 0. Define for t > 0

& = St H, = Gs(Hots), K, =H \ Hi, Gy = geri o g,

We can differentiate in ¢ to see that (g;)i~o is the Loewner flow driven by (&)i0, Hy is the
domain of §;, and K; = g5(Ks4t \ Ks) = K 51+ The estimate (20) applies to give

|z —&| < 4 < sup &, — &l V \/1_5) for all z € K 444 (21)
s<uLs+t
Hence (K})i>o has the local growth property and has Loewner transform (&)=o. O
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8.2 The Loewner flow on R characterizes K; NR (%)

By Proposition 4.3, for all ¢ > 0, the map ¢; : H; — H extends to a reflection-invariant
conformal isomorphism g; on the reflected domain H;. We now show that this is exactly
the extended Loewner flow ¢; from Proposition 8.1. Later analysis of properties of SLE
relies on this property, while the fact that requires proof has sometimes been overlooked.
For z € C, define
C(z)=inf{t >0:2 ¢ H/}.

Proposition 8.3. We have (* = ¢ on C. Moreover, Hf = C; and g; = g on Cy for all
t>0.

Proof. By taking complex conjugates in (19) and using uniqueness we see that ((z) = ((z)
on C and ¢,(2) = ¢(z) for all z € C and all ¢t € [0,{(z)). In particular C; is invariant
under conjugation for all ¢, and ¢; : C; — C is a holomorphic extension by reflection of its
restriction to H; for all £. Hence C; C H} and g, is the restriction of g/ to C} for all ¢.

It remains to show for ¢ > 0 and x € HY = H; N R that ((z) > t. Note first that, for
z € Hy and r < s < t, we have

197(2) — g:(2)] < 3rad(K..) (22)
and this estimate extends to HY by continuity. We will show further that for z € HY
inf |g;(2) — & > 0.

This then allows us to pass to the limit z — x with z € H; in (19), to see that (g% (x) : s < t)
satisfies (19), so ((z) > t.

Now, for z € HY and s < t, we have g*(z) # &. To see this, note that x € H? so g* is
conformal at z, and there is a sequence (w,) in K, such that g*(w,) — &; then g*(x) = &
would imply w,, — x, which is impossible. The function s — |g¥(x) —&,| is thus continuous
on [0,t] and positive on [0,%). It remains to show that it is also positive at t.

Write I for the interval of HY containing . Then g;([) is an open interval containing
g;(x). Consider the intervals

Js = mre[s,t}g:(j)a s <t.

For s sufficiently close to ¢, by (22), J, contains a neighbourhood of g¢;(x). Hence, if
gi(z) = &, then for some s < ¢, we would have & € Jg, so & = gi(y) for some y € HY,
which we have shown is impossible. O]

An immediate corollary is the following characterization of the set of limit points of K;
in R in terms of the lifetime ¢ of the Loewner flow on R.

Proposition 8.4. For all x € R and allt > 0, we have

v €K, ifandonlyif ((z)<t. (23)
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8.3 Loewner—Kufarev theorem

Write K for the set of all compact H-hulls. Fix a metric d of uniform convergence on
compacts for C'(H, H). We make K into a metric space using the Carathéodory metric

dic(K1, K) = d(gl_{ivg[_(i)'

Write £ for the set of increasing families of compact H-hulls (K;);>o having the local
growth property and such that hcap(K;) = 2t for all t. Then £ C C([0,00),K). We fix on
C([0,00), K) a metric of uniform convergence on compact time intervals.

Theorem 8.5. There is a bi-adapted homeomorphism L : C([0,00),R) — L given by
L((&)iz0) = (Ki)iz0, Ky ={z€H:((z) <t}
where ((z) is the lifetime of the mazimal solution to Loewner’s differential equation
2=2/(z — &)
starting from z. Moreover,
K,NR={reR:{(z) <t}

where ((x) is the lifetime of the maximal solution to &, = 2/(xy — &) starting from x.
Moreover (&)i=o0 is then the Loewner transform of (K)o, given by

{ft} = ms>tm> Kis = .gKt(Ks \ Kt) (24)
where gg, is the mapping-out function for K.

We call L the Loewner map. The proof that L and its inverse are continuous and
adapted is left as an exercise. The rest of the theorem recapitulates the results of the
preceding two sections.
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9 Schramm-—Loewner evolutions

We review the arguments which led Schramm to use a Brownian motion as the driving
function in Loewner’s theory. Then we state the fundamental result of Rohde and Schramm
that associates to the resulting family of compact H-hulls a unique continuous path.

9.1 Schramm’s observation

We say that a random variable (K;)>o in £ is a Schramm-—Loewner evolution” if its Loewner
transform is a Brownian motion of some diffusivity £ € [0,00). We will refer to such a
random family of compact H-hulls as an SLE(k). The Loewner—Kufarev theorem allows
us to construct SLE(k) as K; = {z € H : {(z) < t}, where where ((z) is the lifetime of the
maximal solution to Loewner’s differential equation

Z=2/(2 — &)

starting from z, and where (& );>¢ is a Brownian motion of diffusivity .

Schramm’s revolutionary observation was that these processes offered the unique possi-
ble scaling limits for a range of lattice-based planar random systems at criticality, such as
loop-erased random walk, Ising model, percolation and self-avoiding walk. Such limits had
been conjectured but without a candidate for the limit object. Any scaling limit is scale
invariant. In fact it was widely conjectured that there would be limit objects, associated
to some class of planar domains, with a stronger property of invariance under conformal
maps. Moreover, the local determination of certain paths in the lattice models suggested
a form of ‘domain Markov property’.

There is a natural scaling map on £. For A € (0,00) and (K)o € £, define K} =
MK y-2,. Recall that hcap(AK;) = A2 hcap(K;). We have rescaled time so that (K});so € L.
We say that a random variable (K;);so in £ is scale invariant if (K});>o has the same
distribution as (K)o for all A € (0, 00).

There is also a natural time-shift map on £. For s € [0,00) and (K})i0 € L, define
K = gr.(Ksyi \ Kg) — &. Then (Kt(s))t>0 € L. We say that a random variable (K3):>o
in £ has the domain Markov property it (Kt(s))@o has the same distribution as (K;);>¢ and
is independent of F; = o (&, : r < s) for all s € [0, 00).

Theorem 9.1. Let (K})i>0 be a random variable in L. Then (K)o is an SLE if and only
if (K)o is scale invariant and has the domain Markov property.

Proof. Write (& )¢>0 for the Loewner transform of (K;);>o and note that (& )0 is contin-
wous. For A € (0,00) and s € [0,00), define & = A2, and £ = &, — &. Then
(K})i>0 has Loewner transform (&)= and (K)o has Loewner transform (£)eo.
Hence (K;)i>o has the domain Markov property if and only if (& );>0 has stationary in-
dependent increments. Also (K})io is scale invariant if and only if the law of (&) is

"In Schramm’s papers, SLE stood for stochastic Loewner evolution. As usual, our default assumption
is that Brownian motion starts at 0.
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invariant under Brownian scaling. By the Lévy—Khinchin Theorem® , (& )s0 has both these
properties if and only if it is a Brownian motion of some diffusivity x € [0, 00), that is to
say, if and only if (K})i>o is an SLE. O

9.2 Rohde—Schramm theorem

A continuous path (7)o in H is said to generate an increasing family of compact H-
hulls (K)o if Hy = H\ K; is the unbounded component of H \ 7[0,¢] for all ¢, where
7[0,t] = {vs : s € [0,t]}. Rohde and Schramm proved the following fundamental and hard
result, except for the case kK = 8, which was then added by Lawler, Schramm and Werner.
We refer to the original papers [4, 5] for the proof.

Theorem 9.2. Let (K;)i=0 be an SLE(k) for some k € [0,00). Write (gt)i=0 and (& )i=o for
the associated Loewner flow and transform. The map g;* : H — H, extends continuously to
H for all t >0, almost surely. Moreover, if we set v, = g; *(&), then (7)o is continuous
and generates (K)o, almost surely.

We call (74)i=0 an SLE(k) path, or simply an SLE(x), allowing the notation to signal
that we mean the path rather than the hulls.

9.3 SLE in a two-pointed domain

By a two-pointed domain we mean a triple D = (D, 2y, z), Where D is a proper simply
connected planar domain and z; and z., are distinct points in the Martin boundary §D.
Write D for the set of all two-pointed domains. By a conformal isomorphism of two-pointed
domains (D, 2, 200) — (D', 2}, 2.), we mean a conformal isomorphism ¢ : D — D’ such
that ¢(z9) = 2 and ¢(z) = 2.,. We call any conformal isomorphism o : D — (H, 0, 00)
a scale for D. By Corollary 1.6, such a scale o exists for all D € D. Moreover, for all
A € (0,00), the map z — Ao(z) is also a scale for D and, by Corollary 1.5, these are all
the scales for D.

Fix D = (D, 2p,25) € D and a scale o for D. We call a subset K C D a D-hull if
D\ K is a simply connected neighbourhood of z,, in D. Write (D) for the set of all
D-hulls. Note that IC(H, 0, o) is simply the set IC of compact H-hulls. The Carathéodory
topology on K is scale invariant. For each choice of scale o, the map K — o(K) is
a bijection (D) — K. We use this bijection to define the Carathéodory topology on
KC(D), which is then independent of the choice of scale. Similarly, we extend to increasing
families of D-hulls the notion of the local growth property. Write £(D, o) for the set
of increasing families (K;);>o of D-hulls having the local growth property and such that
heap(o(K;)) = 2t for all . The set £ defined in Section 8.3 corresponds to the case
D = (H,0,00) and o(z) = z, to which we default unless D € D and a scale ¢ on D are
explicitly mentioned. We use on L£(D, o) the topology of uniform convergence on compact
time intervals.

8From the Lévy-Khinchin representation, the only continuous Lévy processes are scaled Brownian
motions with constant drift, and the scaling invariance forces the drift to vanish.
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For k € [0, 00), we say that a random variable (K});>o in £(D, o) is an SLE(k) in D of
scale o if the Loewner transform (&)¢0 of(0(K}))i>0 is a Brownian motion of diffusivity k.
We will write in this context D; = D\ K; and g; = go(x,) 00 and F; = 0(& : s <t). The
following result is a straightforward translation of the scaling property of SLE. The proof
is left as an exercise.

Proposition 9.3 (Conformal invariance of SLE). Let ¢ : D — D’ be a conformal isomor-
phism of two-pointed domains. Fix scales o for D and o' for D' and set A = o' ogpoo™t €
(0,00). Let (K)o be an SLE(k) in D of scale 0. Set K| = ¢(Ky-2;). Then (K)o is an
SLE(k) in D" of scale o'.

In particular we see that any property of an SLE(x) which is invariant under linear
change of time-scale is also insensitive to the choice of scale ¢. The domain Markov
property can be put in a more striking form in the present context. The proof is again left
as an exercise. You will need to use the strong Markov property of Brownian motion.
Proposition 9.4 (Domain Markov property of SLE). Let (K;);>0 be an SLE(k) in (D, zo, Zo0)
of scale o and let T be a finite stopping time. Set K, = Kry\ Kr. Define op : Dy — H
by or(2) = gr(z) — &r, and define zp € §Dr by zr = g;l(fT). Then (Dr, 27,25) € D
and or is a scale for (Dr, 27, 2s). Moreover, conditional on Fr, (Kt)t20 is an SLE(k) in
(Dr, 21, 200) 0f scale or.
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10 Bessel flow and hitting probabilities for SLE

We begin an analysis of the properties of SLE. This is achieved not directly but by es-
tablishing first some properties of the associated Loewner flow — an approach which will
recur below. Our goal in this section is to determine for which parameter values the SLE
path hits the boundary of its domain and, when it does, to calculate some associated
probabilities.

10.1 Bessel flow

Consider the Loewner flow (g:(z) : t € [0,{(x)),x € R\ {0}) on R associated to SLE(k).
Recall that the Loewner transform (&;);>¢ is a Brownian motion of diffusivity . Recall
also that, for each z € R\ {0}, for all ¢ € [0,((x)), we have g,(z) # & and

! 2
o=+ | et

with g;(x) — & — 0 as t — ((z) whenever ((x) < co. Set

_ &

N7 7(x) = C(2v/k)

and for t € [0, 7(x)) set
Xt<$) — gt(x\/g) - gt‘
VE
Then (By):o is a standard Brownian motion starting from 0. Moreover, for all x € R\ {0}
and ¢t € [0,7(z)), we have X;(z) # 0 and

a

Xs()

X(z) =z + Bi + / g (25)

with X;(z) — 0 as t — 7(z) whenever 7(z) < oco. This is the Bessel flow of parameter a
driven by (B})i=o-

We note two simple properties. First, by considering uniqueness of solutions in reversed
time, we obtain the following monotonicity property: for z,y € (0, 00) with z < y, we have

7(z) < 7(y) and Xy (z) < Xi(y) for all ¢ < 7(x). Second, there is a scaling property. Fix
A € (0,00) and set

B, = ABy—2, 7(z)=X1(\"'2), Xi(z)=AIX)2(\x).

Then (B,);so is a Brownian motion. Moreover the family of processes (Xy(x) : t €
[0,7(z)),z € R\ {0}) is the Bessel flow of parameter a driven by (B;);>0, and hence
has the same distribution as (X;(z) : t € [0,7(z)),z € R\ {0}).
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Proposition 10.1. Let x,y € (0,00) with x <y. Then

(a) for a € (0,1/4], we have
P(r(z) < 7(y) < o0) = 1;

(b) fora € (1/4,1/2), we have

P(r(z) <o0) =1, P(r(z) < (y)) = ¢ (y - )

where ¢ is given by

0 du
o) [ i o) =1 (26)

(c) fora € [1/2,00), we have
P(7(x) < 00) =0

and moreover, for a € (1/2,00), we have Xi(x) — 00 as t — 0o almost surely.

Proof. Fix x > 0 and write X; = X;(z) and 7 = 7(z). For r € (0,00) define a stopping
time

T(r)=inf{t € [0,7) : X; =r}.
Fix r, R € (0,00) and assume that 0 < r < x < R. Write S = T(r) AT(R). Note that
T(r) <7on {r < oo} Also, X; > B;+ z for all t < 7, so T(R) < oo almost surely on
{T = co}. In particular, S < co almost surely.

Assume for now that a # 1/2. Set M, = X} 2* for t < 7. Note that M* is uniformly
bounded. By Ito’s formula

dM; = (1 —2a)X;2*dX, — a(l — 2a)X; > 'dt = (1 — 2a)X; **dB,.
Hence M? is a bounded martingale and by optional stopping
o' = My = E(Ms) = r'""P(Xg = r) + R*P(Xs = R). (27)

Note that as r | 0 we have {Xg = R} 1 {T(R) < 7} and so P(Xs = R) — P(T(R) < 7).
Similarly, P(Xg = r) — P(T(r) < c0) as R — 0. For a € (0,1/2), we can let 7 — 0 in
(27) to obtain

P(T(R) < 7) = (z/R)' .

Then, letting R — oo, we deduce that P(71 = oo) = 0. For a € (1/2,00), we consider
the limit » — 0. Then (27) forces P(Xg = r) — 0, so P(T(R) < 7) = 1 for all R and
hence P(7 = o0) = 1. Now M is positive and, as a continuous local martingale, M is
also a time-change of Brownian motion. Hence M, = X/ ?* must converge almost surely
as t — oo, and the total quadratic variation [M]w = (2a — 1)? [;° X;**dt must be finite
almost surely. This forces X; — oo as t — oo almost surely.
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In the case a = 1/2, we instead set M; = log X; and argue as above to obtain
logz = P(Xg =r)logr + P(Xs = R)log R.

The same argument as for a € (1/2,00) can then be used to see that P(17 = 00) = 1.
Assume from now on that a € (0,1/2). It remains to show for 0 < 2 < y that

1, if a < 1/4

P(r <ry)) = {gb(%), if a > 1/4.

Define for 6 € [0, 1]

! du
x(0) = /9 u2a(1 — )2’

Note that y is continuous on [0, 1] as a map into [0, o], with x(0) < oo for a € (1/4,1/2)
and x(0) = oo for a € (0,1/4]. Note also that x is C? on (0,1), with

o2 (25 1 ) e —o.

Fix y > x and write Y; = X;(y). For t < 7, define R; = Y, — X}, 6, = R;/Y; and N; = x(6;).
By Ito’s formula

2
1-2
iR, —  Oudt d@t:(et)( ¢ ¢ )dt—@dBt

XY, Y, 0, 1—0, Y,

SO

1 ! B
dNt — X'(é’t)d@t + §X”<9t>d9td0t — —%
t

Hence (N; : t < 7) is a local martingale. Now N is non-negative and is a time-change
of Brownian motion, so N; must converge to some limit as ¢ — 7. Since Yy is strictly
decreasing, it follows that ; converges to some limit 0, as t — 7.

If 7 < 7(y), then 6, =1 so N, = 0. On the other hand we claim that if 7 = 7(y) then
0, = 0 almost surely. Indeed, note that we necessarily have [N], < co almost surely, and

t .1 202
X'(05)°0;
[N]t:/o —(YZ ds.

S

) ds

T T(2"2)
Ax) = ﬁdt, A, (x) = / —dt, n>1
0 A

If 6, > 0 then it follows that

Consider the random variables



By the strong Markov property (of the driving Brownian motion), the random variables
(An(x) : n € N) are independent. By the scaling property, they all have the same distribu-
tion. Hence, since A;(z) > 0 almost surely, we must have A(z) =) A,(z) = co almost
surely. We conclude that if 7 = 7, then 0, = 0.

In the case a € (0,1/4], 7 = 7, would thus imply that N, = x(6;) - cc ast 1 7, a
contradiction, so P(7 < 7(y)) = 1. On the other hand, for a € (1/4,1/2), the process N™
is a bounded martingale so by optional stopping

Y=Y N, = = T=1(y)).
x(y )—%—Ew»—nmm ()

[
A variation of the calculation for P(7(x) < 7(y)) allows us to compute P(7(z) < 7(—y)).

Proposition 10.2. Let x,y € (0,00). Then for a € (0,1/2) we have

P(r(e) < () = v (1)
where Y is given by

0 du
w0 [t v =1 (23)

Proof. Note that 9 is continuous and increasing on [0, 1] with ¢(0) = 0 and ¢(1) = 1. Also
¥ is C% on (0,1) with
1 1
" s - / _
¢(9)+2a(9 1_9>1/)(9) 0.

Write X; = Xi(z) and Y; = =X (—y) and set T' = 7(x) AT(—y). Fort < T set Ry = X;+Y,
and 0, = Y;/R,. Define a process QQ = (Q;)i=0 by setting Q; = ¥(0rn). Then Q is

continuous and uniformly bounded. Note that 67 = 1 if 7(z) < 7(—y) and 07y = 0 if
T(—y) < 7(z), and that Q7 = 0. By 1to’s formula, for ¢t < T,

aR; a (1 1 dB;
dR, = —2dt, db, = — (= — —— | dt — ==
= sy R? <9t 1— et) I

SO
1 "(6,)dB
10 = /00, + S0 (080, =~
t

Hence @ is a bounded martingale. By optional stopping

P(r(z) < 7(~y)) = P(0r = 1) = E(Qr) = Qo = ¢(6) = ¥ (x i y> :
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10.2 Hitting probabilities for SLE(x) on the real line

We translate the results for the Bessel flow back in terms of the path v of an SLE(k).
Proposition 10.3. Let v be an SLE(k). Then
(a) for k € (0,4], we have ¥][0,00) NR = {0} almost surely;

(b) for k € (4,8) and all z,y € (0,00), v hits both [x,00) and (—oo, —y| almost surely,
and

P(vy hits [x,x +y)) = ¢ <

where ¢ and ¢ are given by (26) and (28) respectively;

) . P(y hits [z, 00) before (—o0, —y]) = ¢< y )

T+ r+y

(c) for k € [8,00), we have R C [0, 00) almost surely.

Proof. Fix z,y € (0,00) and t > 0. If 4[0,¢] N [z,00) = () then by compactness there is a
neighbourhood of [z, 00) in H disjoint from [0, ¢] which is then contained in Hy, so x &€ K;,
and so ((z) > t by Proposition 8.4. On the other hand, if v, € [z, 00) for some s € [0, ],
then v, € K; so ((x) < ((7s) < t, also by Proposition 8.4. Hence

{300, 4] bt [, 00)} = {C(2) < £}, { hits [r,2+ )} = {C(@) < (@ + )}
Recall that ((x) = 7(x/+/k), where 7 is the lifetime of the Bessel flow of parameter a = 2/x.
Thus

{7 hits [z,00)} = {7(z/Vk) < oo}, {yhits [z,z+y)} = {r(z/Vk) <7((z +y)/VK)}
and similarly
{7 hits [z, 00) before (—oo, —y|} = {7(2/Vk) < 7(—y/VK)}.
Hence, from Proposition 10.1 we deduce:
(a) if k € (0,4] then a € [1/2,00), so P(y hits [z,00)) = 0;

(b) if kK € (4,8) then a € (1/4,1/2), so

P(y hits [z,00)) =1, P(y hits [z, +y)) = ¢ (:c—yky)

and

P(~ hits [z, 00) before (—oo, —y|) = ¢ (x _?T_ y) ;

(c) if k € [8,00) then a € (0,1/4), so P(y hits [z, z +y)) = 1.
Hence, in case (a),

P(~ hits R\ {0}) = nh_)rrolo P(+ hits (=00, —1/n]U[1/n,00)) =0

and, in case (c), we see that, almost surely, for all rationals z,y € (0,00), we have v, €
[z, x 4+ y) for some ¢ > 0. Since 7 is continuous, this implies that [0,00) C [0, c0) almost
surely, and then R C ~[0, c0) almost surely by symmetry. O
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11 Phases of SLE

Recall that one can scale a standard Brownian motion, either in time or space, to obtain
a Brownian motion of any diffusivity. Thus “all Brownian motions look the same”. In
contrast, as the parameter « is varied, SLE(x) runs through three phases where it exhibits
markedly different behaviour. The following results are proved in [4]. We will present
proofs below for some of the easier cases.

Theorem 11.1. Let (V)10 be an SLE. Then || — 0o as t — oo, almost surely.
Theorem 11.2. Let (v4)i=0 be an SLE(k). Then
(a) for k €[0,4], (V)0 is a simple path almost surely;

(b) for k € (4,8), U0 K; = H almost surely, but for each given z € H\ {0}, (7:)=0 does
not hit z almost surely;

(¢) for k € [8,00), ¥[0,00) = H almost surely.

The behaviour in case (b) is called swallowing, while in (¢) we see that (v;);>0 is a
space-filling curve. We already saw in Proposition 10.3 that R C +[0,00) almost surely
when k € [8,00) but will not prove the stronger statement (c) in these notes.

11.1 Simple phase

Proposition 11.3. Let (7)o be an SLE(k), with k € (0,4]. Then (V)0 is a simple
path almost surely.

Proof. Recall the notation K iy = gs(Ksvs \ K) and Kt(s) = K, 51+ — &. By the domain

Markov property, (Kt(s)>t>0 is an SLE(k). By the Rohde-Schramm theorem, almost surely,

for all rational s > 0 and all ¢ > 0, g;(im extends continuously to H and g;é SH(Z) —

%(s) + & as z — &gy with 2z € H. By Proposition 10.3, since x < 4, almost surely, for all
such s and ¢, 7\* € {0} UH. By Rohde-Schramm again
Y= Jim 70l L () = 07t (17 + €).

Z_>§S+t 7ZEH

Since hcap(K;) = 2t for all ¢ > 0, almost surely, there is no non-degenerate interval on
which (7¢)=0 is constant. Let r,r" > 0 with r < /. Since (74)t=0 is continuous, there exists
a rational s € (r,7’) such that v, # ~,.. Taket =1 —s. If %(S) = 0, then v = 7,. If
%(s) € H, then ~,» € H; C H,. In any case v.» # 7. ]

Lemma 11.4. Let (V)0 be a simple path in H U {0} starting from 0. Write (&)i0
and (gi)i=o for the Loewner transform and flow associated to (v(0,t])i=0, as usual. Fix
re(0,1), set T =1inf{t > 0: |y, — 1| = r} and suppose that T < co. Then

|g7'(1) - §T| <
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Proof. Write v, = a + ib and consider the line segments I = (a,a + b] and J = [a A 1, 1].
Now g, extends continuously to R\ {0} and to ., with g,(v;) = & So the image g-(IUJ) is
a continuous path in H joining &, and [g,(1), 00). So, by conformal invariance of Brownian
motion,

Py (i) (Bra) € [&r, 9-(1)]) < Py, (i) (Brang. (1)) € 9-(1 U J))
= Piy(Br@n € TUJ) < Piy(Brayy € 17U J)

where I denotes the right side of I. Note that g;(a + ib) = a and g;(a+) = a + b, and
gr(1) = a+r when a < 1, so Leb(g;(I" U J)) < r. Recall that g,(iy) — iy — 0 as y — oc.
Then, by Proposition 5.1, on multiplying by 7y and letting y — oo, we obtain the desired
estimate. ]

Proposition 11.5. Let v be an SLE(k), with k € (0,4). Then |y| — oo ast — oo, almost
surely.

Proof. By Proposition 10.1, we know that inf,;>¢(g:(1) — &) > 0 almost surely. So, by
the lemma, we must have, inf;>o |y — 1| > 0 almost surely. We know that g; extends
continuously to R\ {0} and that v, € H. Set a* = lim,9gi(£x). Then a= < & =

g1(m) < a’. Set r¥ =inf,;> |’Yt(1) + & — a®| and set

N*¥={z€ H,:|gi(2) —a*| <r*}, N=N U~(0,1JUNT.

Then 7, € N for all t > 0. By scaling and the Markov property, r* > 0 almost surely.

Since [0, 1] U~(0,1] and [—1,0] U~(0, 1] are simple paths, N is a neighbourhood of 0 in H.
Then liminf; , || is almost surely positive, and hence infinite, by scaling. ]

11.2 Swallowing phase

Proposition 11.6. Let (7)o be an SLE(k), with k € (4,8). Then (V)0 is not a simple
curve, nor a space-filling curve, almost surely.

Proof. By Lemma 10.1, for any x > 0,
P(~ hits [z, 00)) =1,

and

P(y hits [z, 4]) = B(C(x) < C(4)) = ¢ (%) € (0,1).

Hence v(z) € (z,00) almost surely. Moreover, for y > x, we have {v.,) < y} = {¢(y) >
C(x)} and {v@ = y} = {¢(y) = ((z)} and both events have positive probability. In
particular, we see that v hits any given interval in R of positive length with positive
probability. Now if Sy is the set of all limit points of ¢g;(0K; NH), then S; is an interval of
positive length containing ;. Thus we can find a subinterval I C S} such that d(&, 1) > 0.
Then by the above observation g;(y(1,00)) NI is nonempty with positive probability. On
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the other hand, some topological considerations show that 0K; NH C ~[0, 1], so 7 has
double points with positive probability and hence almost surely by a zero-one argument
(see below).

On the other hand, on {7¢) > y}, there is a neighbourhood of [z,y| in H which does
not meet v and dist([x,y], Hez)) > 0. In particular, 7 is not space-filling, with positive
probability, and then almost surely.

Here is an elaboration of the zero-one argument for double points. Define, for ¢ > 0,
Ay = {7s = s for some distinct s,s" € [0,¢]}. Then the sets A; are non-decreasing in ¢
and all have the same probability, p say, by scaling. But then p = P(N,A4;) and N;A; € Fou,
where Foy = M=o 0 (&s : s < t). But, by Blumenthal’s zero-one law, Fy contains only null
sets and their complements. Hence p € {0, 1}. O

Proposition 11.7. Let (7)o be an SLE(k), with k € (4,8). Then dist(0, H;) — o0, in
particular |y;| — 00, as t — oo, almost surely.

Proof. The set S of limit points of gc1y(2) as z — 0, z € H is a compact (possibly empty)
subset of (—00,&¢1)). Pick y < infS. With positive probability, dist(.S, gc(1)(He(y))) > 0,
so dist(0, He(yy) > 0, so P(dist(0, H;) > 0) = 6 for some ¢ > 0 and § > 0. This extends to
all ¢ by scaling, with the same . So P(dist(0, H;) > 0 for all ¢ > 0) = ¢ and then 6 =1 by
a zero-one argument. Finally dist(0, H,) is non-decreasing and, for all r < oo, as t — oo,

P(dist (0, H;) < ) = P(dist(0, Hy) < 7/Vt) = 0.
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12 Conformal transformations of Loewner evolutions

A conformal isomorphism ¢ of initial domains in H takes one family of compact H-hulls
(K)o to another (¢(Ky))i<r, defined up to the time 7" when (K});>o leaves the initial
domain. We show that the local growth property is preserved under such a transformation,
and obtain formulae for the half-plane capacity and Loewner transform of (¢(K;))i<r.

12.1 Initial domains

By an initial domain (in H) we mean a set NUI where N C H is a simply connected domain
and I C R is an open interval, such that N is a neighbourhood of I in H. Thus I C N°
in the notation of Section 4.2. An isomorphism of initial domains is a homeomorphism
¢ : NUI — NUI which restricts to a conformal Jisomorphism N — N. By Proposition 4.1,
if | #R # I, then, given points z € I and Z € I, there is a unique such isomorphism Wlth
¢(x) = &, which then extends to a reflection-invariant conformal isomorphism ¢* : N}

N 7. In this section, we suppose given an isomorphism of initial domains ¢ : NUI — N Uf
and a compact H-hull K with K C N UI. Write I = (z~,27). Define

K=o(K), H=H\K, N¢=ge(N\K), Ix=(gls)gk(z")).

Note that H is not the image of H = H \ K under ¢, nor is I the image of I under gj.
Nevertheless, we now show that H is simply connected and Ny is a neighbourhood of I
in H. You are advised to sketch an example as you follow the results in this section. The
proofs could be skipped in a first reading.

Proposition 12.1. The set K isa compact H-hull with [:( C NUI and the set Ng U I
1s an nitial domain.

Proof (x). Since ¢* is a homeomorphism and K C NUI, we have K = ¢*(K) C NU I
Since K is compact, this also shows that K is bounded.

Pick € I and consider the conformal isomorphism ¢ : D — Nj such that ¢(0) = «
and ¢’(0) > 0. Fix r € (0,1) and for # € [0, 7] define p(6) = 1(re?). Then p = (p(d) : 6 €
(0,7)) is a simple curve in N and p(0), p(w) € I. We can and do choose r so that p(f) € H*
for all @ € [0,7]. Then ¢(p) and gx(p) are simple curves in H which each disconnect H
in two components. Write Dy for the bounded component of H \ gx(p) and D; for the
unbounded component of H \ ¢(p). Then D; U ¢(p) is simply connected and D; C H.
On the other hand Dy U gk (p) is also simply connected and ¢ o gj' is a homeomorphism
Do U gk (p) — H\ Dy. Hence H = ¢(g5* (Do) U ¢(p) U Dy is simply connected.

Finally, given y~,y* € I\ K with y~ < y* we can choose r so that p(0) > y* and
p(m) < y~. Then Dy is a neighbourhood of (g5 (y~), g5 (y1)) in H. But Dy C Ng. Hence
Ny is a neighbourhood of Ik in H. [l

Define N and I analogously to Ni and Ix and define ¢ : Ng — N by

$K = g 0 Pogx -
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Proposition 12.2. The map ¢k extends to an isomorphism N Ul — NKUJZK of initial
domains.

Proof (x). Write I~ and I for the leftmost and rightmost component intervals of the open
set I\ K C R. Set J* = g5 (I*) and J = J~UJ*. Define similarly J* and J starting from
I and K. Then J C Iy and I \ J is a compact subset of Ix. A similar statement holds for
J and I. Define ¢ : (Ng)s — (Ng )% by ¢ = g% 0 ¢* o (gi)~". Then ¢ is a holomorphic

extension of ¢ which takes J~ to j* and JT to J*. Since Ny is a neighbourhood of Ik
in H, we have Ix C Nk by Proposition 4.1, and similarly l: C ]\7 . Write <§K for the

extension of ¢x as a homeomorphism Nk — N . Then (;SK =1 on J, so we must have
¢K(IK) = IK, and so ¢ extends to a homeomorphlsm NgUlg — N U [ as required. [

Recall from Proposition 6.3 the scaling property hcap(rK) = r? hcap(K). This makes
it plausible, for a conformal isomorphism ¢ of some initial domain N U I and for a small
hull K near £ € I, that ¢/(£)? hcap(K) is a good approximation for hcap(¢(K)). We now
prove such an estimate, in a normalized form.

Proposition 12.3. There is an absolute constant C' < oo with the following property. Let
¢: NUI — NUI be an isomorphism of initial domains. Assume that 0 € I and ¢(0) =
and ¢'(0) = 1. Let K C N be a compact H-hull. Suppose that for some ) <r < e < R < o0
we have

KU¢(K)CrD, (eD)NHC NUN C RD.
Then

heap(¢(K))

2
— <
1—-CrR/e” < heap(K)

<1+ CrRr/&.

Proof (). It will suffice to prove the upper bound. The lower bound then follows by
interchanging the roles of N U I and N U I. Recall the formula (14), valid for K C DD,

2sin 6

heap(K) :/ Eeio (Im Brm)) do.
0

Fix a > 1. Since K C rD, we can apply this to ¢ 'K for o € [r,ar| and use the scale
invariance of Brownian motion to obtain

T 20 sin 6
o heap(K) :/ Eyeio (Im Br(gy) 75 5.
0
Next, integrate over o to obtain
2 1) 21
% heap(K) = / E.(Im Br) ——— A(dz), (29)
S(r,ar) @

where A(dz) denotes area measure and S(r, ar) is the half-annulus {z € H : r < |2| < ar}.
Set 9 = ¢~1. By conformal invariance of Brownian motion,

Ew(Im By y) = By (Im ¢(Brmy)).-
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Apply the identity (29) to ¢(K), replacing r by p > r and taking o« = 2 to obtain

2Imw

A(dw)

QImgb( )

3 2
P heap(p(K)) = / Ey(w)(Im ¢(Br(m)))
S(p:2p)

2
[ Eme(Br)
Y(S(p:2p))

where we made the change of variable z = ¢ (w) for the second equality.

We apply Cauchy’s integral formula to ¢* and ©* to see that, for |z| < 1/2, we have
|¢"(2)] < 8R and [¢"(z)] < 8R. Then, by Taylor’s theorem, using ¢(0) = (0) = 0,
¢'(0) =9'(0) = 1 and the fact that ¢ is real on I, we obtain for |z| < 1/2

¢/ () A(dz) (30)

[@'(2)] S 1+8R[z[, Ime(z) < (1+16]z[R)Imz,  [oh(2) — 2| < 4R]z["

Assume that 48R < 1 and take oo = 2(1 +48rR) then o < 4. Note that r < 2r — 4R(27“)
Set p = inf{s > r : r = s — 4Rs*}. Then p < 2r < 1/4. Hence, for z € S(p,2p), w
have [¢(2)] = p —4Rp* = r and |Y(2)] < 2p + 16Rp* = 2r + 24Rp* < ar < 4r < 1/2 so
»(S(p,2p)) € S(r,ar). A comparison of (29) and (30) then yields

heap(¢(K)) < (1 + 16rR)(1 + 64rR)(1 + 32rR)*(1 4 192r R) heap(K)
which in turns yields the claimed estimate for a suitable choice of the constant C'. ]

More generally, for any isomorphism of initial domains ¢ : NUI — N U, any € € I,
and any compact H-hull K C N, the preceding estimate can be applied to the map

(2) = ¢' () H(p(z + &) — #(€)) to obtain the estimate
(1= CrR/e*)¢'(€)* heap(K) < heap(p(K)) < (1 + CrR/e*)¢/(€)* heap(K) (31)
where C' = C'max{¢/(£)%, ¢/ (€)%}, whenever K C £ + D and ¢(K ) C (&) +rD and
£+ (ED)NHC NUICE+RD, ¢+ (eD)NHC NUI C ¢(€) + RD.

The details are left as an exercise.

12.2 Loewner evolution and isomorphisms of initial domains

Let (K})¢=0 be an increasing family of compact H-hulls with the local growth property.
Write (£;);0 for the Loewner transform of (K;);o. Let NUI and NUT be initial domains,
with & € I and let ¢ : NUI — NUI be an isomorphism. Set T = inf{t > 0: K, £ NUI}.
For ¢t < T, we consider the compact H-hull K, = ¢(K;) and other associated objects, as in
the preceding section, writing now

9t = 9Ky, gt:g[gt, ¢t:¢Kt:§to¢ogt_l7 gt:¢t<5t)

and ~ B
Nt:NK“ It:]K“ Nt:Nf(“ t — f(t.
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Proposition 12.4. The increasing family of compact H-hulls (f(t)KT has the local growth
property and has Loewner transform (&)i<r.

Proof (x). Fixty € [0,T). Let ¢ be as in the proof of Proposition 12.1 and choose r € (0, 1)
so that Ky, C ¢ (rD). It will suffice to prove the proposition with N U I replaced by
Y (rD N H), which is the bounded component of H \ {(re?) : § € [0,7]}, and with ¢
replaced by its restriction to ¢ (rD N H). Hence we may assume without loss that N U I
is the the bounded component of H \ p, for some simple curve p = (p(f) : 6 € [0, 7]) with
p(0),p(m) € R and p(f) € H for all § € (0,7), and that ¢ extends to a homeomorphism

N — N.
For t <ty and z,2 € N\ K;, we have
19¢(2) = 9:(2)] < 1ge(2) — 2 + [z = 2| + | — gu(2")] < 6rad(K) + 2rad(N) < 8rad(N).
Hence, using a similar estimate for N and reflection symmetry, we have?
N: C&+RD, Ny Cé +RD. (32)
where R = 8 max{rad(N),rad(N)} < co. The maps
(t,0) = |g; (0(0)) = &I, (t,0) = |5 (6(p(9))) — &

are continuous and positive on [0, o] x [0, 7], hence are bounded below, by € > 0 say. Then,
for all t < ty, we have . )
&+eDC NS, &+eDC N (33)

Since ¢; : N} — Nt* is a conformal isomorphism, it follows by Cauchy’s integral formula
that

|6,(2)| < 2R/e, z€ &+ (¢/2)DNH. (34)
Now, for all r € (0,¢/2], we can find h > 0 such that, for all ¢ < ¢y, we have
Kipn C&+rD (35)
and then, setting p = 2R /¢,
Rt,tJrh = ¢e(Kyipqn) C & + prD. (36)
Hence (K;)i<t, has the local growth property and has Loewner transform (&)<, . O

Proposition 12.5. For allt € [0,T), we have'®

heap(F2) = [ dL(6Pdbean(E<) (37)

90nly one of the two inclusions in (32) and one of those in (33) are used in this proof. We shall need
all of them for the proof of Proposition 12.5.

10A shorter proof of this formula is possible using Proposition 6.5 to compare hcap(f(t’prh) and
heap(¢, (&) Ky.i+1), provided rad(K; 4,)%?/ heap(K; ) — 0 as h — 0 uniformly on compacts in t.
The estimate (21) shows this condition holds provided (&;);>¢ is Hélder of exponent greater than 2/5,
so this covers the case of SLE. We have given the longer argument to avoid any spurious condition and
because it is also more elementary, in that it does not rely on Beurling’s estimate, used for Proposition
6.5.

20



Proof (x). Fix ty € [0,T) and follow the same reduction as in Proposition 12.4, introducing
constants R, ¢ and p = 2R/e. For t < ty, from (34), we see that |¢}(&)| < p. On the
other hand, by considering the inverse map 1 : N} — N}, we obtain similarly |¢(&)| =
[W0i(&)]™" > 1/p. Given § € (0,1], choose r > 0 so that CrRp* < £26. There exists an
h > 0 such that, for all ¢t < t,

Kipin €&+ rD.

Then, using the estimates (32), (33), (35) and (36), for s € (0, h), we can apply the estimate
(31) to the isomorphism ¢; : Ny U I; — N; U I; and the compact H-hull K, to obtain

(1= 0) ¢,(&)* heap(Kyips) < heap(Kyiys) < (14 6) ¢4(&)* heap (K p)-

Now, for all n € N, setting s = ty/n, we have

hecap(Ky,) thap s, (4+1)s)-

For n > ty/h, we can apply the bounds just obtained with ¢ = js and sum over j to obtain

[y
[y

n—

(1=0) p_ (&) heap(K s j41)) < heap(Ky,) < (1+6) Y ¢5.(€5) heap(Kjs j1)s)-
j

n—

<.
Il

o
I\

o

Let n — oo and then § — 0 to obtain the claimed identity. ]

Proposition 12.6. The set S = {(t,z) : t € [0,T),z € N; UL} is open in [0,00) x H. The
function (t,z) — ¢(z) on S is differentiable in t for all z, with derivative given by

] _ 2¢2(£t>2 — (2 2 p
¢t(z)_ ¢t(z)_¢t(5t) ¢t( )Z_ft’ ENtUIt\{gt} (38)
and ‘
¢t(ft) = _3¢g(5t)- (39)

Moreover, ét 1s holomorphic on Ny U I, with deriwative given by

oo OGP o) o))
) =2 (G e g g FENUINE) @
and
e = 3 2 S, (41)

Proof. By Propositions 8.5 and 12.2, when reparametrized by hcap, (g:)¢<r satisfies Loewner’s
equation driven by (&;);<7. So, by Proposition 12.5, we obtain

() = 261(6)°/(Ge(2) = &), = € H,.
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Set f, = g; ' and differentiate the equation f;(g,(2)) = z in ¢ to obtain

fi(z) = =2f{(2)/( = &), z€H.

For z € N, we have ¢,(z) = g:(¢(fi(2))). By the chain rule, for ¢t € [0,T) and z € N, we
see that ¢ (z) is differentiable in ¢, with derivative given by (38), which is then holomorphic
in z with derivative given by (40). Note that the functions on the right hand sides of (38)
and (40) are continuous in z € N;U I\ {&:}. It is straightforward to check using ’'Hopital’s
rule that they extend continuously to & with the values given in (39) and (41). Then for
z € I, and z € Ny, the functions ¢,(z) and ¢,(z) and ¢,(z) converge as z — x locally
uniformly for s near . The result follows by standard arguments. ]
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13 SLE(6), locality and percolation

13.1 Locality

SLE(6) has a special invariance property called locality which can be understood informally
as meaning that, in its general formulation as a measure on chords in (D, 29, 1), it does
not know what domain it is in beyond the fact that, each time it hits the boundary 6D, it
turns towards its endpoint z1, as it must do in order to satisfy the non-crossing property.
By Smirnov’s theorem SLE(6) is the scaling limit of critical site percolation on the planar
hexagonal lattice. Thus, if the upper half-plane is tiled with yellow and blue hexagons,
with the colours at each site independent and equally likely, and if we place blue hexagons
along the positive real axis and yellow ones along the negative real axis, then the unique
blue/yellow interface joining 0 and oo converges weakly to an SLE(6) in the limit of small
lattice spacing. The lattice model has its own obvious locality property, so the fact that
locality implies k = 6 for SLE was an early clue towards Smirnov’s result.

Theorem 13.1. Let ¢ : NUI — N UT be an isomorphism of initial domains with 0 € I
and 0 = ¢(0) € I. Let (V)0 be an SLE(6). Set

T=inf{t>0:v¢gNUI}, T=if{t>0:v¢NUI}.
Then (¢(Ve) i<t in its canonical reparametrization has the same distribution as (V).

Proof. Write (Ki)i=o for the family of compact H-hulls generated by (7:)i=0 and write
(&)iso for its Loewner transform, which is a Brownian motion of diffusivity 6. For ¢t < T,
set K, = ¢(K,;) and ¢, = gz, © ¢ o (9k,)"'. By Propositions 12.2 and 12.5, (Ky)eer is
a family of compact H-hulls having the local growth property, whose Loewner transform
(&)ier and half-plane capacity are given by

. 5 t
& = (&), heap(kKy) = 2/0 B.(&)?ds.

The set Sy = {(t,z) : t € [0,T),z € Ig,} is open in [0,00) X R and & € Ik, for all
t < T. By Proposition 12.6, the adapted random map (t,z) + ¢¢(z) : So — R is C"* with
61(&) = =307 (&) for all t < T. By the generalized It6 formula, we have

- . 1
d& = ¢u(&)dt + ¢y (&) dE, + 5¢2’(€t)d5td£t-

Since d§;d§; = 6dt, the finite variation terms cancel and we see that (ft)KT is a continuous
local martingale with quadratic variation [¢]; = 3hcap(/K};). The canonical reparametriza-
tion (K (s))s<s of (Ky)i<r and its Loewner transform (7,),<g are given by

heap(K, (o) = 2s, heap(Kr) =25, 1, = 57(8).

Now (by optional stopping) (7s)s<s is a continuous local martingale (in its own filtration)
and its quadratic variation is given by [n], = [¢]() = 6s. Hence, by Lévy’s characterization,
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(1s)s<s extends'' to a Brownian motion (1s)s=o of diffusivity 6. Write 4 for the SLE(6)
driven by (ns)s>0, then ¢(v-5)) = ¥s for s < S and S = inf{s > 0: 5, € N UI}. Hence
(A(Vr(s)))s<s and (7s),.¢ have the same distribution as required. O

By an initial domain N U I in a two-pointed domain (D, zg,21) we mean a simply
connected subdomain N C D along with an interval I of 6D\ {z;} containing z, such that
N is a neighbourhood of I in D. Note that, if we choose a conformal isomorphism ¢ from
(D, z0,21) to (H,0,00), then ¢(N) U ¢(I) is an initial domain in (H, 0, 00), which is just
an initial domain in H in the sense of Section 12.1 such that 0 € I,. We can now give a
precise version of the informal account of locality which began this section.

Theorem 13.2. Let v be an SLE(6) in (D, 20,21) and let 7 be an SLE(6) in (D, 29, %1).
Suppose that (D, zo, z1) and (D, zy, 21) share an initial domain NyU Iy. Then the stopping

times B
T=inf{t>0:9%&NUILy}, T=inf{t >0:5 & NyUIy}.

are parametrization-invariant and the chords ()<t and (3;),.¢ have the same distribu-
tion.

Proof. Choose conformal isomorphisms ¢ of (D, zg, z1) to (H, 0, c0) and ¢ of (D, 29, 1) to
(H, 0, 00). Consider the initial domains N U I = ¢(Ny) U é(Ip) and N UT = ¢(Ny) U o(Ip).
Then ¢ = ¢ o ¢! gives an isomorphism N U I — N U I. By conformal invariance, ¢(v)
and ¢(7) are both SLE(6) in (H, 0, 00). So the claimed identity in distribution follows from
Theorem 13.1. W

13.2 SLE(6) in a triangle

While physicists investigated critical percolation using nonrigorous methods, Cardy es-
tablished a formula for the limiting crossing probabilities of a rectan gle. Carleson ob-
served that this formula became considerably simpler on a triangle. The corresponding
formula can be stated as a theorem directly for SLE(6). In turn, since Smirnov proved
that Cardy’s formula holds in the limit for critical percolation, this provides another of
identifying SLE(6) as the uniqu e possible limit for the scaling limit of cluster interface
exploration process in critical percolation.

Let A be the equilateral triangle with vertices a =0, b =1, ¢ = €™/,

Theorem 13.3. Let v be SLE(6) in (A,0,1), where A denotes the triangle with vertices
0,1,e™/3. Then the point X at which ~ hits the edge [1,e™/%] is uniformly distributed.

Proof. The Schwarz-Christoffel transformation (H, 0, 1,00) — (A, 0, 1,e™/3) is given by

f(Z) = C/O w2/3(1 — w)g/?,’ C = F(1/3)2.

1'We know that 7' < oo almost surely, so we can do this here without extending the probability space,
using (&74¢ — &7)e>o0-
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Consider the map z — ¢(z) = 1/(1—=2). This is a conformal automorphism which cyclically
permutes 0, 1, 00. The map z + g(z) = 14+¢e*™/32 is a conformal automorphism of A which
cyclically permutes a, b, c. Thus

by uniqueness of the Riemann map. Thus, composing by ¢ ~!(z) = (2 — 1)/2, we deduce

f2) =1+ B f((2 —1)/2)

for all z € H. This identity extends by continuity when z — =z € H.
Let « € [0,1] and choose y so that f(y/(1 + y)) = x. Then, by conformal invariance
and Proposition 10.3,

P(X € [1,1+ ze*™/3)) = P(SLE(6) in (H, 0, 00) hits [1,1 +y]) = ¢ (ﬁ) =z

Thus X is uniform on [1, e"™/3]. O

13.3 Smirnov’s theorem

We now discuss Smirnov’s proof of Cardy’s formula for percolation on the triangular lat-
tice. Consider the lattice of edge length §. Sites of the lattice are coloured black or white
independently with probability 1/2. Take any Jordan domain D with three distinct bound-

ary points a(1), a(r),a(r?), ordered positively, where 7 = ¢*™/% = —1 4 \/TEZ Write ® for
the unique conformal isomorphism from D to the triangle A with corresponding boundary
points 1,7,7% For z € D and a € {1,7,7%}, write Q,(2) for the event that z is sepa-
rated from the boundary segment a(7ra)a(m2a) by a simple black path from a(a)a(ra) to
a(t?a)a(a). Set Hy(2) = H(2) = P(Qu(2)). By a black path we mean any path in the
lattice which visits only black points. The functions H,(z) are constant in the interior of
lattice triangles with discontinuities at the edges. Let f, denote the unique affine function

on A with f,(a) =1 and f.(Ta) = fo(7?a) = 0, and set h, = f, 0 ®.
Theorem 13.4 (Smirnov). For a = 1,7,72, HS converges uniformly on D to h, as § — 0.

It follows, in particular, by taking z € 0D, that the asymptotic crossing probabilities for
this percolation model are indeed conformally invariant and are given by Cardy’s formula.
Before sketching the proof, we will describe a variant of the Cauchy—Riemann equations
and of conjugate harmonic functions, associated with the angle 27 /3. For a = 1,7, 7%, and
f analytic, set
fo = Re(f/a).

Then f, is harmonic and we can recover f by
i
V3
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Also, for any n € C, the directional derivatives satisfy

Vahole) = 4 Leotte (L) = e (F21) — v, 10,

Oe o o

These are the 27 /3-Cauchy—Riemann equations, and (f1, fr, fr2) is the harmonic triple of
f.

Conversely, if we are given C' functions f, f-, f2 such that, for a € {1, 7,72}, for all
n,
Vifa(2) = Vo fra(2),
then f, defined by »
)
g —|— B
f fl \/§
is holomorphic and f, = Re(f/a) for all a.

(f'r - fT2)7

Sketch proof of Theorem 13.4. For z the centre of a lattice triangle in D and 7 a vector
from z to one of the three neighbouring triangle centres, for o € {1,7,72}, the events
Q= Qu(z+n)\ Qal2) and Q = Q,o(z + ) \ Qra(2) have the same probability. To see
this, label the vertices of the triangle at z by X,Y, Z, where X is opposite to n and we
move anticlockwise around the triangle. Note that () is the event that there exist disjoint
black paths from Y to a(a7?)a(a) and from Z to a(a)a(ra) and also a white path from
X to a(ar)a(ar?). On the other hand, Q is a similar event but where the path from Y
must be white, and that from X must be black. To see that P(Q) = P(Q), explore the
lattice from a(«) just as far as is needed to find suitable black paths (for @) from Y and
Z. Supposing this done, the conditional probability of the required white path from X is
the same as if we required it to be black (and disjoint from the other paths). Hence @) and
@ both have the same probability as the event of three disjoint black paths to the required
boundary segments.
Set P,(z,n) = P(Q). We have shown that

P.(z,n) = Pro(z, 7). (42)

This is a discrete version of the 27 /3-Cauchy—Riemann equations for the triple (Hy, H,, H,2).
The rest of the proof is analytic. We accept here without proof the following results
Lemma 13.5 (Holder estimate). There are constants € > 0 and C' < oo, depending only
on (D,a(1),a(r),a(r?)), such that

|Ho(2) — Ho(2)] < C(|lz — 2| AD)°.

Also, Hy(a(a)) = 1 as § — 0.

The proof uses a a classical method for regularity estimates in percolation due to Russo,
Seymour and Welsh.
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Lemma 13.6. For any equilateral triangular contour I', of side length (, interpolating
netghbouring centres of lattice triangles, define the discrete contour integral

é
/F H(z)dz=06Y H(z)+06r Y H(z)+67° Y H(z),

z€A1 z€A, 2€A 2

where A, is the set of centres along the side parallel to . (Make some convention at the
corners.) Then

5 5
1
/ Ho(2)dz =+ / Hoo(2)dz + O((5°).
r T Jr
The proof is an elementary, if complicated, resummation argument, using the identity
Ha(z + 77) - Ha(z) - Poz('zan) - Pa(Z + 1, _T]>

and, from the preceding lemma, the estimate P,(z,7n) < C6° for some stray terms.
The Holder estimate implies that every sequence 9,, | 0 contains a subsequence 4, such

that Hg"’“ converges uniformly on D for all «, and any such subsequential limits, h, say,
must have boundary values h,(a(a)) = 1 and h,(2) = 0 on a(at)a(ar?). Moreover, by
Lemma 13.6, we must have

for all I', so h is holomorphic by Morera’s theorem, and h, = Re(h/a) is harmonic for all
a. Hence we obtain
Viha = Vighea.

(This can be considered as the limiting form of the key observation on the discrete model
(42), but the limit has not been justified directly.) This relation implies that the directional
derivatives of hy; on a(7?)a(1) and a(7)a(1) at an angle 7 to the tangent are zero. Thus
we have a (conformally-invariant) Dirichlet-Neumann problem for h;. In the case D = A,
the affine function f; is obviously a solution, and moreover it is the only solution. Hence
the functions HY, H?, H’, each have exactly one uniform limit point as § — 0, given by
hi, hr, h.2 respectively, as required. O]
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14 SLE(8/3) and restriction

14.1 Brownian excursion in the upper half-plane

Let z = x + iy € H. Let (X;)=0 be a Brownian motion in R, starting from z. Let
(Wy)t=0 be a Brownian motion in R?, starting from (y,0,0), and independent of (X;);o.
Set Ry = |Wy|. Then (R;)i0 is a Bessel process of dimension 3 starting from y. Set
E; = X;+tR;. The process (E; : t > 0) is called a Brownian excursion in H starting from
z. Whilst this process is of interest in its own right, we introduce it here primarily as a
means to study SLE(8/3), in particular using the following formula for the derivative of
the mapping-out function. For a compact H-hull A with 0 ¢ A, we write ¢4 for the shifted
mapping-out function, given by

pa(2) = ga(2) — ga(0).

Proposition 14.1. Let A be a compact H-hull with 0 ¢ A. Let (E})i=o be a Brownian
excursion in H starting from 0. Then

Po((E;)i=0 does not hit A) = ¢/4(0).

Proof. Let (Z;);>0 be a complex Brownian motion starting from z = z + iy € H\ A. Let
(Et)i=0 be a Brownian excursion in H, also starting from z. Write Z; = X; + iY;. Define
forr >0

T.=inf{t>0:Y,=r}, Ta=inf{t>0:2, €A}, S, =inf{t>0:ImE, =r}.

Fix r > y and set M; = y 'Yy ar.ne- Then (M;)sso is a bounded non-negative martingale
with M, = 1 and with final value Y7 A1, = (7/y)1¢1,>7,3. Define a new probability measure
P by

dP/dP = Yy, nr, .
Then P(T, > T;) = 1. Under P, the processes (X;)i=o and (Y;);> remain independent and
(X¢t)i=0 is a Brownian motion. Consider the process (B;):>o given by

dB; = dY, — M; "dM;dY; = dY; — lyer, Y, 'dt, By = 0.

Under P, by Girsanov’s theorem, (By)i=0 is a local martingale and hence, having the same
quadratic variation as (Y;);>0, is a Brownian motion, by Lévy’s characterization. The
stochastic differential equation

dY, = dB, + Y, 'dt, Yy=y

has a unique strong solution (ﬁ)t}(}. Then Y, = ﬁ for t < T,. By the Yamada—Watanabe
theorem (V;);50 under P has the same law as (Im(Fy))sso under P. So (X;41Y;);>0 under P
has the same law as (B, )0 under P. Hence (Z,)i<r, under P has the same law as (FE);<s,
under P. Set

pr(2) = P,((E})i<s, does not hit A).
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Then
pr(2) = P.((Z1)i<r, does not hit A) = E.(y " Yyar lir,szy) = (r/y)P.(T, < To A Ta).
Now ga(z) — z = 0 as |z| — oo so, for r sufficiently large,
|[Imga(z) — 7| <1 whenever Im(z)=r
and hence, by conformal invariance of Brownian motion,

Imga(z)
r+1

So

ImgA(z)‘

=Poue) (L1 < To) SPAT < To ATa) S Pyue) (T <To) = ——

P.((E;)i=0 does not hit A) = lim p,.(z) = Imga(z)/y.
T—00

Note that Imga(2)/y — ¢’4(0) > 0 as z — 0 in H. Take now z = 0, fix ¢ > 0 with
ANeD = 0, and set
S=inf{t>0:|E|=c),

then |Eg| = ¢ and Im Es > 0 almost surely. Hence, by the strong Markov property of
(E¢)t=0 and bounded convergence, as € — 0,

Po((E;)¢=0 does not hit A) = E(Im ga(Es)/Im(Es)) — ¢'4(0) = ¢/4(0).

14.2 Restriction property of SLE(8/3)

We begin with a result for SLE(8/3) which is closely analogous to the result just proved
for the Brownian excursion.

Proposition 14.2. Let A be a compact H-hull with 0 ¢ A. Let (7)o be an SLE(8/3).
Then o
P((7¢)i=0 does not hit A) = gb’A(Q)5/8.

Proof. Set K; = {vs : s € (0,t]} and T = inf{t > 0 : 14 € A}. The Loewner transform
(&)i0 of (K})i=0 is a Brownian motion of diffusivity & = 8/3. For t < T, set K; = ¢4(K;)
and ¢; = gg, 0 pa0 (gr,)”". Then ¢, : H\ gk, (A) — H is a conformal isomorphism and
&1(2) — 24 9a(0) — 0 as |z] = o0, so ¢ is a shift of the mapping-out function for gg,(A).
Set ¥ = ¢,(&). Theset Sy = {(t,x) :t € [0,T),x € Ik, } is open in [0,00) x R and & € I,
for all t < T. By Proposition 12.6, the adapted random map (¢,z) — ¢j(x) : Sy — R is

C"? and
14
2 ¢i(&)

4@ - So1(E)
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for all ¢t < T. By the generalized Ito formula, we have

A%y = §)(&)dt + ¢ () d& + Cbm(ft)dftdﬁt-
Since d&;d&; = kdt, this simplifies to give

05, — o6 de, + L2 E)

2 ¢i(&)
Fix a € (0,1] and set M; = X¢. By Ito’s formula,

dt.

1
dM; = aX01dY, + §a(a — )20 72d%,dY, = aM,dY;,

where

dxy 1 7 (&)
dY; = i + 5(& 1)

P (&) ((&)”
37 kdt = 5, —=2d& + — (1 + (= 1K) 57

We choose aw = 5/8 so the final term vanishes. Then (Y;);<7 and hence also (M;);<r is a
continuous local martingale.
By Proposition 14.1, conditional on v, we have

#1(&) = P, ((Es) >0 does not hit g, (A)). (43)

In particular M, € [0,1] for all t < T, so M, has an almost sure limit, My say, as ¢t T T
and then by optional stopping

E(Mr) = My = ¢/, (0)°/.

We shall show that Mr = 1ir_o almost surely, so P(T = oo) = E(Mr) = ¢/4,(0)*/5, as
required.
Consider first the case where T' = co. We want to show that

lim P, ((Es)s=0 hits gk, (A)) = 0.

t—o00

There exist connected compact H-hulls A~ and A" such that A C A~UA™ and which (74):=0
does not hit. Hence we may reduce to the case where A is connected. By Propositions 6.2
and 6.1, we have

rad(g:(A)) < cap(g:(A)) < cap(A4) < 4rad(A).

Fix x € ANR. By Proposition 10.1, we have |g;(z) — &| — oo as t — oo. Hence, as
t — 00,

Pe,((Es) >0 hits gr, (A)) < Po((Ey)ss0 hits g, (z) — & + 8rD) — 0.

Consider now the case where T' < co. Write Ay for the component of A containing
~vr and assume for now that the boundary of Ay in H may be parametrized as a simple
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smooth curve (5(u) : u € R), with 5(0) = 7. By symmetry it will suffice to consider the
case where Ay is based on (0, 00). Write A§ for the interior of Ay. Then

ltlTI%l ]P)ft((ES)8>O hits 9K, (A())) > PﬁT((ES)S>0 hits 9Kt (A8)>

By Proposition 16.4,

limi%nf Pau)((Bs)sz0 hits (0, T] on the left side) > 1/2.

Hence, by conformal invariance,

limiionf Py, (8(u)((Bs)sz0 hits R to the left of &) > 1/2.

and so, since 1/3 < 1/2,
lim inf arg(gr (5 (u)) — &r) = /3.

Then
Pe, ((Es)s=0 hits gx,. (A7) = Po(S20)

where
Qo = Npen{arg(Es) € (0,7/3) for some s € (0,1/n)}.

Recall the representation E, = X, + i|Wy|, where (Xj)ss0 and (Wy)sso are Brownian
motions in R and R3 respectively. Then, by a scaling argument, Py() > 0 and so
Py(€2p) = 1 by Blumenthal’s zero-one law.

For general A, there is a sequence of compact H-hulls A,, | A such that the boundary
in H of every component of every A, is a simple smooth curve. Then, using Proposition
14.1,

P((7:)1=0 does not hit A,) = P((E;)sso does not hit A,)*®

for all n. On letting n — oo and using Proposition 14.1 again, we obtain the desired result

for A. O

The proposition just proved leads by some general considerations to the following in-
variance property for SLE(8/3), called the restriction property. We defer the proof to the
next section in order to put it in a more general context.

Theorem 14.3. Let A be a compact H-hull with 0 ¢ A. Let (7;)¢=0 be an SLE(8/3). Then,
conditional on the event {(V:)i=0 does not hit A}, the process (¢pa(i))i=o in its canonical
reparametrization is also an SLE(8/3).

Suppose « is a nonnegative integer and A is a compact H-hull such that 0 ¢ ANR. Then
®’,(0)* is the probability that « independent Brownian excursions avoid A, by Proposition
14.1. Hence this is the probability that the hull generated by « independent Brownian
excursions does not intersect A. Thus one way to informally interpret the result of Theorem
14.2 is to say that the SLE(8/3) chord can be thought of as 5/8 of a Brownian excursion.
More precisely, we have the following result as an immediate corollary to Proposition 14.1
and Theorem 14.2:
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Theorem 14.4. The compact hull generated by 8 independent SLE(8/3) chords and the
compact hull generated by 5 independent Brownian excursions have the same distribution.

One of the particularly striking aspects of this result is that the curves themselves
(SLE(8/3) and Brownian excursions) are very different from one another.

14.3 Restriction measures

We shift attention from compact H-hulls to a different class of subsets in H. A filling is
any connected set K in H having 0 and oo as limit points in H and such that H \ K is the
union of two simply connected domains D~ and D* which are neighbourhoods of (—o0, 0)
and (0, 00) in H respectively. Write S for the set of all such fillings. Write N for the set of
simply connected domains which are neighbourhoods of both 0 and oo in H. For D € N,
define Sp = {K € S: K C D}. Set A={Sp: D € N} and write S for the og-algebra on
S generated by A.

A random filling K (that is, an (S, S)-random variable) is said to have the restriction
property if, for any D € N and for A = H\ D, the conditional distribution of the random
filling ¢p4(K) given K C D is equal to the distribution of K. Since A is a m-system
generating S, it is equivalent that these distributions agree on A, thus K has the restriction
property if and only if, for all pairs D, D’ € N with D’ C D, we have

P(K C D) = P(K C D)P(K C ¢4(D')).
The law of K on (S5,S) is then called a restriction measure.

Theorem 14.5. Let (7¢)=0 be an SLE(8/3) and set K = {~; : t € (0,00)}. Then K is a
random filling and K has the restriction property.

Proof. By Propositions 10.3, 11.3 and 11.5, K is a simple path in H with limit points 0
and oo in H. The sets {K C D} for D € N are all measurable. Hence K is a random
filling.

For D' € N with D' C D and for A=H\ D and A’ =H\ D' and B=H\ ¢4(D’), we
have

Pa = PpoPa.
Then, by Proposition 14.2, we have

P(K C D') = ¢/ (0)° = ¢l(0)°°¢, (0)** = P(K C D)P(K C ¢a(D')).
Hence K has the restriction property. O

Given a Brownian excursion (E;):o, consider the set K which is the union of Ky =
{E; : t € (0,00)} and all the bounded components of H \ K. Then K is also a random
filling and, by Proposition 14.1 and the same argument just used, K also has the restriction
property. We have introduced restriction measures in order to consider SLE(8/3) in this
context. Much more is known in general than we have discussed.
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Proof of Theorem 14.3. Write Sy for the set of fillings in H of the form K = {y; : t €
(0,00)}, where (74):>0 is a simple path in H parametrized so that hcap(y(0,t]) = 2t for all
t. It is straightforward to see that Sp is S-measurable and we shall show also that the map

0 : So — C([0,00), H) given by 0(K) = ~ is S-measurable. For (v;);>0 an SLE(8/3) and
K ={y:t€(0,00)}, for A a compact H-hull with 0 ¢ A and D = H \ A, we have

{(7)t=0 does not hit A} = {K C D}

and on this event the canonical reparametrization (7;);>0 of (¢4(7:))i=0 is given by 0(pa(K)).
Then, for B a measurable set in C'([0, 00), H), the set §~!(B) is S-measurable and we obtain

P((3¢)t=0 € Bl{(7)t=0 does not hit A})
— P(6A(K) € 6" (B)|K € D) = P(K € 07 (B) = P((3)0 € B).

We now complete the proof of the theorem by showing the measurability of the map 6.
For n > 0, write L,, for the dyadic lattice 27"{j + ik : j € Z, k € Z*}. For each p € L,
consider the set Q = Q(p) =p+ {x +iy: xz,y € [0,27"]} and write Ny for the countable
set of domains D = H\ A € N where A = A~ U A" and A~ and A™ are disjoint simple
paths which are unions of horizontal and vertical dyadic line segments, and which together
with some boundary interval (D) of () and some interval of R containing 0, form a simple
closed curve in H\ Q. For D € Ng, write K (D) for the hull whose boundary in H consists
of ATUATUI(D). For K € S, set v = 0(K) and define

ro(K) =int{t > 0: % € Q},  ho(K) = heap(y(0, (K]} eq(K) = Yno(ic).

By Proposition 6.5, given t > 0, we have ho(K) < t if and only if K C D for some D € Ng
with hcap(K (D)) < t. Also, given an open boundary interval I of @), we have eg(K) € I
if and only if K C D for some D € Ny with I(D) C I. Hence hg : Sop — [0,00] and
eq : Sy — H are both S-measurable. For each n > 0, choose an enumeration (p,, : m > 0)
of L, so that so that h,, = hqp,,)(K) is non-decreasing in m and set e, = eqp,.)(K).
Note that if A, = Ay then en, = €. Set by, = 2t,. Define a path (6 (K))sso by linear
interpolation of ((,,em) : m > 0). Then 6™ : Sy — C([0,00), H) is measurable for all
n. Now 6,(K) = 6"(K) for all t € T(n) = {t, : m > 0} and, since §(K) is simple,
U,M (n) is dense in [0,00). Hence, by uniform continuity, the paths 6 (K) converge to
0(K) uniformly on compacts, so 6 is also measurable, as required. O
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15 SLE(4) and the Gaussian free field

We define the planar Gaussian free field and review some of its properties. Then we prove
a relation with SLE(4) due to Schramm and Sheffield which suggests that SLE(4) can be
interpreted as a fracture line of this Gaussian process. Since the free field is distribution-
valued, we begin with a quick review of some classical material on function spaces and
distributions.

15.1 Conformal invariance of function spaces

Let D be a domain. A test-function on D is an infinitely differentiable function on D which
is supported on some compact subset of D. The set of all such test-functions is denoted
D(D). The set D(D) is made into a locally convex topological vector space'? in which
convergence is characterized as follows. A sequence f,, — 0 in D(D) if and only if there is
a compact set K C D such that supp f,, C K for all n and f,, and all its derivatives converge
to 0 uniformly on D. A continuous linear map u : D(D) — R is called a distribution'® on
D. Thus, the set of distributions on D is the dual space of D(D). It is denoted by D'(D)
and is given the weak-* topology. Thus u,, — w in D'(D) if and only if u,(p) — u(p) for
all p € D(D). In this context, we think of each p € D(D) as specifying a suitably regular
signed measure on D, given by p(x)dx, and of each u € D'(D) as a generalized function on
D, which can be viewed through its ‘averages’ u(p) with respect to test-functions. We will
freely identify p with the signed measure p(x)dx. Note that, since D(D) is separable, the
Borel o-algebra on D’'(D) is generated by the coordinate functions u — u(p). We specialize
from this point on to the planar case, where we note the following result. The proof, which
is left as an exercise, rests on the fact that ¢ and all its derivatives are bounded on compact
subsets of Dy, and ¢! and all its derivatives are bounded on compact subsets of D.

Proposition 15.1. Let ¢ : Dy — D be a conformal isomorphism of planar domains. The
map f > fo¢t is a linear homeomorphism D(Dy) — D(D).

For p € D(D), the image measure of p(x)dx by ¢~ is given by po(x)dx, where py =
(po@)|d|?. The map p— po is a linear homeomorphism D(D) — D(Dy).

For uy € D'(Dy), consider the distribution u on D given by u(p) = uo(po). We write
formally w = ug o ¢~*. The map ug — u is a linear homeomorphism D'(Dy) — D'(D).

Let D be a proper simply connected domain. The Green function (Gp(z,y) : z,y € D)
was introduced in Section 3.3. Write M for the set of Borel measures p on D having
finite energy

Ep(p) = | Golz,y)u(dr)u(dy).
D
The energy has a conformal invariance property which it inherits from the Green function.
The proof is left as an exercise.

12Gee [6] for more details.
13This conflicts with the usage of distribution to mean the law of a random variable but is standard and
should not cause confusion.
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Proposition 15.2. Let ¢ : Dy — D be a conformal isomorphism of proper simply con-
nected domains and let pg be a Borel measure on Dy. Set = pgo ¢~ t. Then

Ep(p) = Epy (o).

Consider now a bounded domain D and define for f,g € D(D)

(f,9) (D) = %/D<Vf, Vg)dz.

Then (.,.)m1(py is an inner product on D(D). Write ||.|[z1(py for the associated norm.
Choose R € (0,00) so that |z| < R for all z € D. For f € D(D) and for r € [0, R] and
|z| = 1, we have

2

) = / (2 V()| < / IV f(t2) Pt

So, by Fubini’s theorem, we obtain Poincaré’s inequality

2 R ; R
ey = [ VPde= [ [ istre")Pravas < 5 [ V5Pds = Iy,
D 0 0 2 D

Write £2(D) for the Hilbert space of square integrable functions on D, modulo almost
everywhere equality. By Poincaré’s inequality, for D bounded, we can complete D(D)
within £2(D) using ||.|| 2 (p) to obtain a Hilbert space, which is denoted Hg (D). The set of
distributions v € D'(D) such that |v(p)| < C||p||z for all p € D(D) is denoted H'(D).

Proposition 15.3. Let ¢ : Dy — D be a conformal isomorphism of bounded planar
domains. Then the map f v+ fo ¢~ is a Hilbert space isomorphism Hg(Dy) — H} (D).

Proof. Set ¢ = ¢~*. For f € D(Dy), by the Jacobian formula, we have
I o ¥l = [ (VS0 wPdz = [ 1V5Pds =111 oy

Since D(Dy) is dense in H} (D), this isometry property extends to the whole space. [

We will use the following basic fact from partial differential equations. There is a
complete orthonormal system (f, : n € N) in H}(D) and a non-decreasing sequence
(A, : n € N)in (0,00) such that f, € C*(D) and —%Afn = A\ fn for all n. See for
example [3]. Set e, = A fn- Then (e, : n € N) is a complete orthonormal system in
L?(D). To see this we use the fact that D(D) is dense in L?*(D). We defined the heat
kernel pp and the Green function GGp probabilistically in Section 3.3. So we have to work
a little to make the following connection with the spectrum of the Laplacian.
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Proposition 15.4. Let D be a bounded planar domain. For alln € N, x € D andt > 0,
we have

MW%MAWWWW@@—ML%@WMWQ

Proof. The second equality follows from the first by integration. By scaling, it will suffice
to consider the case where D C (0,1)%. Then there exists a Z*-periodic function f which
agrees with f,, on D and vanishes on (0,1]*\ D, with f € L*(T) N H*(T). Set

ﬂmz&quwmﬁ,mmzmm&wﬂmwﬁTw»

s<t
/ x)dr < 00, /

Since p is harmonic in D, it is continuous, so p(xz) = 1 for all z € D. We will show that
also F(z) < oo for all z € D. Set Dy = {y : | — y| < d} and choose § > 0 so that
Dy € D. Now [ is bounded on Dy so it will suffice to show that E,(F (Brp,)) < oo. For
some y € Dy, we have F(y) < oo so E,(F(Br(p,)) < co. But the hitting density from x
on 0Dy is constant and that from y is bounded below. Hence F(z) < oo.

Define

Then, by Lemma 16.3,

M, = e f,(B)1y<rpy, t=0.

By Ito’s formula, (M, : t < T'(D)) is a continuous local martingale. We have shown further
that M, — 0 as t — T(D) and E,(sup,, |M]?) < oo for all ¢ > 0. Hence (M) is a
continuous martingale. The desired equality then follows by optional stopping:

fn(x) = E(B(MO) = ELU(Mt/\T(D)) = eAnt]Ew (fn(Bt>1{t<T(D)}) = e)mt /DPD(ta I7y)fn(y)dy

For all £ > 0 and z,y € D, by the Markov property, we have

pD(t,x,y)—/DpD(t/Q,x,z)p(t/Z,z,y)dz

Since pp is symmetric and pp(t, z, 1) < oo, we see that pp(t/2,xz,.) € L*(D). By Propo-
sition 15.4,

/D p(t, 2, y)en(y)dy = e e, (2)

so, by Parseval’s identity,
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In particular, we deduce that

/ pp(t,z,x)dx = Ze"\”t
D

n

and so, by Fubini, for a > 0,

/ /ta_lpp(t,l',l')dl'dt:Z/ t"“_le’\"tdt:F(a)Z)\;a.
o Jp —Jo -

We note that the left side of this identity is increasing in the domain D. For D = (0, 7)?
the eigenfunctions (f,, : n € N) are given explicitly, after normalization and reordering, by
sinmasinny for x,y € (0,7) and n,m € N. Hence, for any domain D C (0,7)? and all

a > 1, we have
Z)\;a < Z (m? +n*)"* < 0.
n m,neN
Proposition 15.5. Let D be a bounded planar domain. Let i € Mp and let f € HY(D).

Then f is integrable with respect to p and the map f +— p(f) is a continuous linear
functional on H}(D) of norm Ep(u)/?.

Proof. The iden We have

Ep(u) = /D S Fula) fulg)alde)uldy) = 3 p(fa)?

xD

Then, for f =" a,f, € Hj(D), by Cauchy-Schwarz,

1/2 1/2
u(f)zZanu<fn><<Zai> (Zu(fn)2> = [| £ 1|z () Ep (1)

n n

15.2 Gaussian free field

Let D be a Greenian planar domain. A random variable I" in D’(D) is said to be a Gaussian
free field in D with zero boundary values if I'(p) is a Gaussian random variable with mean
zero and variance Ep(p) for all p € D(D). In the case where D is simply connected,
recall from Section 1.3 the notion of the Martin boundary 6. Then, given a bounded
measurable function f on §D, we say that a random variable I' in D'(D) is a Gaussian
free field on D with boundary value f if I' = I'yg 4+ u for some Gaussian free field I'y on D
with zero boundary values, where u is the harmonic extension of f in D. Thus I'(p) is a
Gaussian random variable of mean

Ho(f.p) = / F(9)ho(x, dy)p(x)de

dDxD

and variance Ep(p) for all p € D(D). Note that I' cannot simply be evaluated at a given
point in the boundary, nor anywhere where else for that matter.
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Theorem 15.6. Let D be a bounded planar domain. There exists a unique Borel probability
measure on D'(D) which is the law of a Gaussian free field on D with zero boundary values.

Proof. Let (X,, : n € N) be a sequence of independent standard Gaussian random variables.
Set S =3, A, 2X?2 and define Qy = {S < co}. Then E(S) =3 A% < o0, so P(Q) = 1.
Fix p € D(D) and set a, = [, fopdz. Then

Z)\i a= Z<P7 fnﬁfl(D) = ”p”?“{l(D) < 00, Zai =Ep(p)

n

and ||p||g1(py = 0 as p = 0 in D(D). Define
L(p) = 1g, Zaan.

By Cauchy—Schwarz, the series converges absolutely on €y with
IT(p)| < \/§||P||H1(D)7

so'= (I'(p) : p € D(D)) is a random variable in D'(D). The series converges also in L?,
so I'(p) is Gaussian, of mean zero and variance Ep(p). Hence I' is a Gaussian free field on
D with zero boundary values, as required.

On the other hand, for any Gaussian free field I' on D with zero boundary values
and for any p = (p1,...,px) € D(D)*, the characteristic function ¢ of the the random
variable I'(p) = ('(p1),...,(px)) in R* is given by ¢(a) = exp{—Ep(p)/2}, where p =
aipr + -+ agpr, € D(D) and o = (ay,...,q). This determines uniquely the law of
['(p) on R*. Since the Borel o-algebra on D'(D) is generated by the coordinate functions
u — u(p), this further determines uniquely the law of I' on D’(D). O

The Gaussian free field inherits from the energy and harmonic measure a property of
conformal invariance. The proof is left as an exercise.

Proposition 15.7. Let ¢ : D — D’ be a conformal isomorphism of Greenian domains.
Suppose that T is a Gaussian free field on D with zero boundary values. Then T o¢~! is a
Gaussian free field on D' with zero boundary values.

Suppose now that D is simply connected, and that I' is a Gaussian free field on D with
boundary value f. Then T o¢~! is a Gaussian free field on D' with boundary value fo¢p=!.

As a corollary of this result and the Riemann mapping theorem, we see that the conclu-
sion of Theorem 15.6 remains valid under the hypothesis that D is the image of a bounded
domain under a conformal isomorphism, in particular whenever D is contained in a proper
simply connected domain.

We will prove two useful extension properties of Gaussian free fields. First, they can be
evaluated through less regular averages, in particular with respect to any measure of finite
energy. Write £? for the Hilbert space of all square-integrable random variables modulo
almost sure equality. Write G, for the closed subspace in £2 of zero-mean Gaussian random
variables.
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Proposition 15.8. Let D be a bounded planar domain and let T' be a Gaussian free field on
D with zero boundary values. There is a unique Hilbert space isometry I' : H=YD) — Gy
such that T'(p) = [[(p)] for all p € D(D).

Proof. Note that [['(p)] € Gy for all p € D(D). Consider the space of test-functions D(D)
as a subspace of H'(D) and note that Ep(p) = ||pl|7;-1(py- Then D(D) is dense in H~1(D)

and the map p — [['(p)] : D(D) — Gy is an isometry, which therefore extends uniquely to
an isometry I': H~1(D) — Gy. O

Note that, while we can regard I'(u) as a random variable for any u € H~'(D), by
a choice of representative, there is no guarantee of a regular version of these random
variables as u varies, in contrast to the family (I'(p) : p € D(D)) which we know belongs
to D/(D) almost surely. Note also that, for D bounded and for v € H~'(D), we have
w="> Mau(fy)fn in H (D), where (f, : n € N) and (\, : n € N) are as in Section 15.1.
Hence, by Doob’s L? martingale convergence theorem,

D(u) = u(fa)Yn as.

n

where (Y, : n € N) is the sequence of independent standard Gaussian random variables
given by Y, = A\,I'(f,). In particular, if ' is constructed as in the proof of Theorem 15.6,
then Y,, = X, for all n almost surely.

Second, the free field may be regarded as a distribution on a larger domain.

Proposition 15.9. Let D be a subdomain of a proper simply connected domain D*. Let I’
be a Gaussian free field on D with zero boundary values. Then I' extends uniquely almost
surely to a random variable T in D'(D*) such that T'(p) is a Gaussian random variable of
mean zero and variance Ep(p) for all p € D(D*).

Proof. By the Riemann mapping theorem and conformal invariance, we reduce to the
case where D* = . We make a variation of the proof of Theorem 15.6. Write f, for
the extension of f, to D which vanishes identically on D\ D. Then (f, : n € N) is an
orthonormal system in H{ (D). For p € H}(D), set p, = [}, fupdax = [}, fupdz. Then

Anpn = (P, fn>H1(JD))a Z)\ipi < ||P||12L11(1D>)= Zpi = &p(p).

n

Set Qo = {>_, A\,2Y;? < oo} and define

f(ﬂ) = 190 Z PnYn.

The same argument used in the proof of Theorem 15.6 now shows that T' = (['(p) : p €
D'(D)) is a random variable in D'(D) with the required properties. For any other such

random variable, I'* say, we have I'*(p) = I'(plp) = I'(p) almost surely for all p € D'(D),
so I'" = IT" almost surely on D’(ID) by continuity. O
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The Gaussian free field has the following Markov property.

Proposition 15.10. Let D be a subdomain of a proper simply connected domain D*. Let
[ be a Gaussian free field on D*. Then I'* has an almost surely unique decomposition
I'* =T +® as a sum of independent random variables in D'(D*) such that ® is harmonic
on D and T restricts to a Gaussian free field on D with zero boundary values.

Proof. We reduce to the case where I'* has zero boundary values by subtracting if necessary
the harmonic extension of its boundary values in D*. We proceed as in the proof of
Proposition 15.9, with D* = D, but with Y,, replaced by Y * = f‘*(—%Afn). Thus we define
a random variable I" in D’(DD) by

= Z pYy

and T restricts to a Gaussian free field on D with zero boundary values. Set ¢ =TI' — I
For 2 € D(D), we have p = 3" Aupnfn in Hy(D), so Ap =3 AuppAf, in H-1(D). Also
fD Ap ) fudx = A\, p, by integration by parts. Hence, almost surely,

D(=3Ap) =Y upaYy =T (—3Ap).

Then, by continuity, ®(Ap) = 0 for all p € D(D) almost surely, so ® is harmonic in D.
Finally, for p* € D(D), we have p* = Af for some f € Hj(D) and then f = py + h with
f € H}(D) and h € H}(D) with Ah = 0 on D. Then ®(p*) = f*(Ah) and E(T*(Ah)Y) =

4(h, fn) g1y = 0 for all n. The Gaussian random variables ® and I" are then orthogonal
and thus 1ndependent. O]

15.3 Angle martingales for SLE(4)

We study a family of martingales for SLE(4) and their relation to the Green function.
Then by integrating with respect to a test-function we obtain a splitting identity for the
characteristic function of a certain Gaussian free field in H.

Define sy on 0H by so(+z) = £1 for x € (0,00) and s4(0) = sg(00) = 0. Write oq for
the harmonic extension of sy in H. Then

oo(2) = /m so(@)hu(z, dz) = 1 — (2/7) arg(z), =€ H.

Let v be an SLE(4). Write (g:(2) : z € H,t < ((2)) and (& ):>0 for the associated Loewner
flow and Loewner tranform and set H; = {z € H:t < ((z)}. Define s;(z) = so(g:(z) — &)
for x € 0 H;. The harmonic extension o; of s; in H; is then given by o,(2) = 0¢(g:(2) — &)-

Proposition 15.11. For all z € H, the process (ov(z) : t < ((2)) is a continuous local
martingale and ((z) = oo almost surely. Moreover, for all w € H \ {z}, the process
(or(z)or(w) + (4/7) G, (z,w) : t < ((2) A {(w)) is also a continuous local martingale.
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Proof. Write Z; = gi(z) — & and W, = g;(w) — &. From Loewner’s equation, we have
dZ; = (2/Z;)dt — d&; for t < ((z). Then, by It6’s formula,

dz,  d[Z), dft K\ dt
dlogZ =7 =5 ==+ ( 2) Z?

Since k = 4, this shows that the real and imaginary parts of (logZ; : t < ((z)) are
continuous local martingales. Now Z; — 0 as t — ((z) when ((z) < oo, so log|Z;| =
Relog Z; — —oo. This is impossible for a continuous local martingale, so ((z) = oo
almost surely. Also o,(z) =1 — (2/m)Imlog Z;, so (04(z) : t < ((2)) is a continuous local

martingale, with
2
doy(z) = — Im (Zt> d&;.

Then, for t < ((z) A ((w),

d(oy(2)o(w)) = AN, + E I'm (th) m (%) dt

for a continuous local martingale (N; : t < ((2) A ((w)). On the other hand, by conformal
invariance of the Green function, for ¢ < {(z) A ((w),

1. | Z,—W,
GHt<Z7w) = GH(gt<Z)7gt(w)) = _10 ZZ VVz :
Now d(Zt — Wt) = 2<Zt — Wt)dt/(ZtWt>, SO
2dt - 2dt
l0g(Zi — Wy) = =2 dlog(Z, — W) = —=
dlog(Z; — W) A dlog(Zy — Wh) 7
S0
dGp,(z,w) = dRe (—log( >)
2 1
—Re 2 (= — ) )a= ——1 I dt.
’ <7th (Wt Wt)) " (Zt) . (Wt)
Hence d(o¢(2)oi(w)) + (4/7)dGy, (2, w) = dN; and the result follows. O

Proposition 15.12. Set A = \/7/4. Write D~ and D™ for the left and right components
of H\ v*. Then, for all p € D(H), we have

oo {tst0) - 0} 8 (s {i0) - 220 ey {0 - 200
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Proof. Fix p € D(H) and set

M, = /H\V* Aoy (2)p(z)dz.

For z € H\ v*, the map t — o(2) is continuous on [0, c0) and |oy(z)| < 1 so, by dominated
convergence, t — M, is continuous on [0, 00), almost surely. We know that v, — oo as
t — oo almost surely, so o, — 41 on D*, and so

M; — Mp(DT) — Xp(D7).

By Fubini’s theorem, the trace 7* = {z € H : ((2) < oo} has zero planar Lebesgue measure
almost surely. Also, Gy, — Gp= on D¥ x D* and Gy, — 0 on D* x DT almost surely, so

En,(p) = Ep-(p) + Ep+(p).

For all z € H, we have ((z) = oo almost surely. The local martingales identified in
Proposition 15.11 are uniformly bounded and so are true martingales. So, by Fubini’s
theorem, for s <t and A € F,,

BOALY) = [ EQa@) ol = [ E(en(:)La)p(:)ds = B(OLLy).
and
E(M? + Eg,(p /HZ]E (Nop(2)or(w) + G, (z,w))14)p(2) p(w)dzdw
= [ B(0u(2)0.(0) + G () La)p()plw)dzd = (M + En (p)) 1),

Hence (M, : t > 0) and (M?+E&g,(p) : t = 0) are continuous martingales. Thus (M, : ¢ > 0)
has quadratic variation process [M]; = Eu(p) — Em,(p). Set Ey = exp {iM; — En,(p)/2}.
By It6’s formula, (E; : t > 0) is a local martingale, which is moreover bounded. So

E (exp {iM, — Em,(p)/2}) = E(E,) = E(Ey) = exp {iMo — Eu(p)/2} . (44)

On letting ¢ — oo, using bounded convergence, we obtain the claimed identity. ]

15.4 Schramm-—Sheffield theorem

Proposition 15.12 can be interpreted in terms of the characteristic functions of certain
Gaussian free fields, and then implies immediately the following result of Schramm and
Sheffield, which expresses an identity in law for the corresponding fields. The constant A
appearing in the theorem is affected by our choice of normalization for the Green function
so differs by a factor of v/2 from the original paper.
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Figure 5: Coupling between Gaussian free field and SLE(4). Picture courtesy of S. Sheffield.

Theorem 15.13. Let v be an SLE(4) and let D~ and DT be the left and right components
of H\ ~*. Conditional on v, let T~ and T'" be independent Gaussian free fields with zero
boundary values, on D~ and D™ respectively. Write I for their extensions as random

variables in D'(H). Set A = \/7/4 and define
L= T+ Ap+)— (" +Alp-)

Then T is a Gaussian free field on H with boundary values —\ and \ on the left and right
half-lines respectively.

Before giving the proof, here is a motivating argument, which is not rigorous. ‘Suppose
we can find a simple chordy = (v : t = 0) in (H, 0, 00), parametrized by half-plane capacity,
along which there is a cliff in I, with value X to the right and —\ to the left. Indeed, suppose
we can find v without looking at the values of I' away from the cliff. Then, by the Markov
property and conformal invariance of the free field, conditional on F; = o(vs : s < t),
G:(T|g,) has the original distribution of T', and so v has the domain Markov property.
Moreover, by conformal invariance of the free field, v is also scale invariant, so v is an
SLE(k) for some k € [0,00). Consider the function ¢(z) = E(I'(2)|F;). Then for fixed
t, ¢; must be the harmonic extension in H; of the boundary values of I' on 0H;. Thus
& = Ao(z). Now (¢(2) : t < ((2)) appears to be a martingale. Hence, as we saw in
the proof of Proposition 15.11, we must have k = 4.” Note that the theorem turns the
construction backwards and does not state that ~ is a measurable function of I'.

Proof of Theorem 15.13. By Proposition 15.12, for all p € D(H),
E(exp{il'(p)}) = exp {iHu(As0, p) — Eu(p)/2}

73



so ['(p) is Gaussian of mean Hp(Asg, p) and variance Eg(p) by uniqueness of characteristic
functions, and so I' is a Gaussian free field on H with boundary value Asg, as required. [

The finite-time identity (44) can be interpreted similarly. Conditional on (s : s < t),
let T'y be a Gaussian free field on H; with boundary value \s; and let T'; be its extension as
a random variable in D'(H). Then T'y is a Gaussian free field on H with boundary value

/\SQ.
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16 Appendix

We prove a result of Beurling which concerns the probability that complex Brownian motion
(Bi)i>0 starting from 0 hits a relatively closed subset A C D before leaving D. It states that
the probability does not increase if we replace A by its radial projection A* = {|z| : z € A}.
For A = [, 1) we can compute the hitting probability exactly. This provides general source
of lower bounds for harmonic measure. We also prove a symmetry estimate, in the case
where A is a simple path, for the probability that Brownian motion hits a given side of A.
Finally, we prove a maximal inequality for H' functions of Brownian motion.

16.1 Beurling’s projection theorem

Write T4 for the hitting time of A given by
Ty=inf{t >0: B, € A}.
Theorem 16.1. Let A be a relatively closed subset of D. Then
Po(Tx < T(D)) < Po(T4 < T(D)).

The proof relies on the following folding inequality'?. Define the folding map ¢ on C
by ¢z +iy) = x +ilyl.

Lemma 16.2. Let A be a relatively closed subset of D. Then
Po(Tyay < T(D)) < Po(Ta < T(D)).

Proof. We exclude the case where 0 € A for which the inequality is clear. Consider the set
p(A) = AU{z: z € A}, symmetrized by reflection. Set Ry = 0 and define, recursively for
k>1,

Sp=1inf{t > Ry, : B € p(A) or B, ¢ D}, Ry =inf{t > Si : By € R}.

Then S;, and Ry are stopping times and Ry_1 < S < R < oo for all k, almost surely.
Set K = inf{k > 1: S, = Ry}, where we take inf () = co as usual. On the event {K =
oo}, we have R,_1 < Sp < R < Tr\p < oo for all k, so the sequences (S; : k > 1) and
(Ry : k > 1) have a common accumulation point 7% < Tg\p. We can write (D\ p(A))NR as
a countable union of disjoint open intervals U, I,,. By a straightforward harmonic measure
estimate, there is a constant C' < oo such that Py(B; € I, for some ¢t < Tp\p) < C Leb(/,)
for all n so, by Borel-Cantelli, almost surely, B visits only finitely many of the intervals I,
before Tr\p. Hence, on {K = oo}, almost surely Br« = limy Bg, = limy Bp, is an endpoint

1Our proof of the folding inequality is new, though based on ideas from an argument of Oksendal.
Whereas Oksendal cuts up the events whose probabilities are to be compared into pieces where symmetry
can be invoked to make the comparison, we obtain the inequality from a global inclusion of events, using
stochastic calculus to obtain the needed symmetry.
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of one of the intervals I,,. But, almost surely, B does not hit any of these endpoints. Hence
K < 0o almost surely.

Set AT = ¢(A) N A and A~ = ¢(A) \ A. Take a sequence of independent random
variables (eg)k>1, independent of B, with P(e, = £1) = 1/2 for all k. Set &, = ik, where
O = £1 according as Bg, € p(A%). Then (£;);>1 has the same distribution as (g )>1 and
is also independent of B. Write B, = X, + i¥; and define new processes B, Y and B by
setting

B, =X, +iY, = X, +ierY,, By=X,+i&Y,, for Ry <t<Ry, k=1,...K

and Et =X+ zf/t = Et = B, for t > Rg. Then we have

t K
th = / (Z 8k1{Rk—1<5<Rk} + 1{5231{}) dY;
0 \k=1

almost surely, where the right hand side is understood as an It integral in the filtration
(Ft)e=0 given by
.tho_(gk,B'k> <t)

Thus Y is a continuous (F)iz0-local martingale with quadratic variation [Y]t = t. Morever
we have [X,Y] = 0. Hence B is a Brownian motion by Lévy’s characterization, Similarly

B is also a Brownian motion (in a different filtration). Note that, with obvious notation,
for all k, ) R } .
T(D)=T(D)=T(D), Sk==5k Ri= Ry

Suppose that B hits ¢(A) before T(D). Note that B cannot hit ¢(A) before S; and, if
it does not hit ¢(A) at Sy, then it cannot do so until Sgyi. Also, if R < T(D), then
Bg, € p(A)NR C ¢(A). Hence the only possible values for Ty are Si,...,Sk and Rg.
Now, if Ty (4) = S, for some k < K, then either BS € At so ng = BSk € A or ng €A™
SO ng = Bsk € A. On the other hand if T¢(A RK, then BRK = BRK € p(A) NR C A.
In all cases B hits A before T(D). Hence {Tyay < T(D)} C {T4 < T(D)} and the folding
inequality follows on taking probabilities. O

Proof of Theorem 16.1. The map ¢ folds C along R and fixes the point ¢. Note that ¢
preserves the class of relatively closed subsets of D. Set ¢y = ¢ and consider for n > 1 the
map ¢, which folds C along exp(2~"7i)R and fixes 1. Set ¢, = ¢, 0---0¢py. For alln > 0,
by the folding inequality and rotation invariance,

Po(Ts,a) < T(D)) < Po(Ta < T(D))

and so by induction
Po(Ty, 4y <T(D)) < Po(Ta < T(D)).

Consider the set
A(n) = {ze" . 2 € A, 0] <277}
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Then A(n) is relatively closed and
A* = A(n)* C{ze” 1z € A*, 0 €10,27"7]} = ¥n(A(n))
S0
Po(Ta- < T(D)) < Po(Ty,(amy) <TD)) < Po(Tam) < T(D)).

On letting n — oo we have Ty(,) T T4 almost surely, so we obtain

By scaling, the same inequality holds when D is replaced by sD for any s € (0,1) and the
result follows on taking the limit s — 1. O]

Theorem 16.3 (Beurling’s estimate). Let A be a relatively closed subset of D and let
e € (0,1). Suppose that A contains a continuous path from the circle {|z| = €} to the
boundary OD. Then

Po(Ta > T(D)) < 2Ve.

Proof. By the intermediate value theorem, we must have [e,1) C A*. Then, by Beurling’s
projection theorem, it will suffice to consider the case where A = [g,1). Consider the
conformal map D\ A — H given by ¢ = ¢4 0 ¢3 0 ¢2 0 ¢, where

¢1(Z)—Z’1—T—i’ gzﬁg(z)—itiz, d3(z) = V22 +1, ¢4(z) = az, a—12\_/_§.

Then ¢(0) = i and the left and right sides of A are mapped to the interval (—a,a). Then,
by conformal invariance of Brownian motion,

2
Po(Ta = T(D)) = Pi(|Bram| > a) = ;COt_l a

and the claimed estimate follows using the bound sinx > 2z /7 for x € [0, 7/2]. O

16.2 A symmetry estimate

The following symmetry estimate was used in the proof of the restriction property for
SLE(8/3).

Proposition 16.4. Let v : R — C be a simple curve, differentiable at 0 with v(0) = 0 and
4(0) # 0. Set A = v((—00,0]) and D =D\ A, and assume that D is simply connected.
Write A* for the left and right sides of AND in §D. Then (using the notation BT(D) from
Section 3.1)

ltif(I)l]P)%(BT(D) € A+) = ltif(l]l]P%(BT(D) € A_) = 1/2.
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Proof. By rotation invariance, it will suffice to consider the case where 4(0) € (0, 00).
For r € (0,1], set 7(r) = inf{t > 0 : |y(—t)] = r}. We deduce from the hypothesis
that D is simply connected that 7(1) < oo and |y(—t)| > 1 for all ¢ > 7(1). Given
e > 0, there exists 79 € (0,1] such that, for all t € (0,7(rg)), we have |arg~y(t)| < €
and |argy(—t) — w| < e. Then there exists r € (0,ry) such that |y(—t)| > r for all
t € [7(r),7(1)). Define A(r) = ~v((—7(r),0]) and D(r) = (rD) \ A(r). Then D(r) is
simply connected. Write A*(r) for the right side of A(r) in dD(r). Then, for ¢ € (0,r),
P%(BT(D) € A+) = P'Yt(BT(D(r)) € A+(T))

and

N | —
2o

lirg(i)nf IP’%(BT(D(T)) € A*(r)) = P,-2(B hits (—o0, 0] from above) =
where we used a scaling argument for the inequality and the fact that arg(B) is a local

martingale for the equality. By symmetry, and since € > 0 was arbitrary, this proves the
result. [

16.3 A Dirichlet space estimate for Brownian motion

Let B be a Brownian motion in R? with By uniformly distributed on (0, 1]%. The projection
W of B on the torus T = R?/Z? is then a Brownian motion in T, which has the property
of reversibility, that is, for all T > 0, if we set W, = Wy_y, then (W;)ocser and (W;)ocier
have the same distribution on C([0,77],T).

Lemma 16.5. Let f € L*(T) N H'(T). Then there exists a continuous random process X
such that, for all t > 0, we have X; = f(W;) almost surely and

< fllz2ery + 5/V2)V fll ey,

2

sup | X|
s<t

Proof. Consider first the case where f € C?(T). Fix T > 0 and write W for the time-
reversal from T as above. By Ito’s formula,

f(Wt)—f(Wo)+Mt+%/ Af(Wy)ds, Mt—/ V f (W) dW,.

0 0

On the other hand, It6’s formula may be applied also to W to give

. R R 1 T—t . . t R R
f(Wt) = f(WT—t) == f(W()) + MT—t + 5/ Af(WS)dS7 Mt = / Vf<WS)dWS
0 0

We subtract the corresponding formula for ¢ = 0 to obtain
R N 1 [t
FOV) = F(Wa) + By = 3t — 5 [ AFOW.)as.
0
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Then, by adding, we obtain the Lyons—Zheng decomposition

1 ~ ~
—(M; + Mrp_y — Mr)

FW) = (W) + 5

and hence the inequality

1 ~ N
sup £V < F(0Wa)| + 5 (sup |5+ sup ] + 3] ).
t<T t<T

t<T

Now

E(f(Wo)? / @) Pdz = (| £ 2

and, by Doob’s L%-inequality, the It6 isometry and Fubini,
T
B (supl04?) < 48(104rP?) = 48 [ 1V OVPat =47 [ 950 Pde =TI B
t< 0 T

The same holds for M. Hence we obtain

< lezery + B/ VVT | fll s oy-

2

sup |f(Wt)|
t<T

We return to the general case, where f € L*(T)NH'(T). There exist functions f, € C*(T)
such that || f, — fll2ery + [ fo — fllmrr < 27" for all n. Set X7* = f,(W;). The estimate
just obtained applies to the functions f,, — f,+1 to show that

2l

Hence, almost surely, and uniformly in ¢ < 7 for all T' > 0, the sequence (X}') is Cauchy,
and hence convergent, with continuous limit (X;);>o say. Now

sup X7~ X7

E(]fu(We) = f(W)l*) = fu = FllZ2m)

sup | f (W3)]
t<T

< | fallzzey+ 5/ V2V fal i em)
2

On letting n — oo, by Fatou’s lemma, we obtain E(|X; — f(W})|?) = 0, so X; = f(W)
almost surely, and we also obtain the desired estimate for || sup,<z | X¢|||2- O
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