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1. MEASURES

1.1. Let E be a set. A o-algebra € is a set of subsets of E satisfying, for all A € €
and all sequences (A, :n € N) in &,

hee& A°€é€, U,A,cé.

The pair (E, €) is called a measurable space. Given (E, &), each A € € is called a
measurable set.

It will be convenient, especially in setting up the basic theory, to have names for
some other sorts of sets of subsets A of E, more general than o-algebras. Say that
A is a m-system if, for all A, B € A,

heA, ANBeA.

Say that A is a d-system if, for all A, B € A with A C B and all increasing sequences
(A, :neN)in A,

EcA, B\AcA, UA, €A
Say that A is a ring if, for all A, B € A,

feA, B\AcA, AUBEeA.
Say that A is an algebra if, for all A, B € A,

PeA A°c A, AUBEA.

Note that A is a g-algebra if and only if A is both a 7-system and a d-system. In
the case E = R, the set of intervals of the form (a, b for a < b is a 7m-system J. The
set of finite unions of disjoint elements of J is a ring but not an algebra.

1.2.  The set of all subsets P(FE) is obviously a o-algebra. The intersection of any
collection of o-algebras is also a o-algebra. Thus for any set of subsets A, the inter-
section of all the o-algebras containing A is itself a o-algebra, called the o-algebra
generated by A and denoted o(A). If E is a topological space, we can do this to the
set of open sets J. The o-algebra o(7T) so obtained is called the Borel o-algebra of
E and is denoted B(FE). The Borel g-algebra of R is denoted simply by B.

1.3. Let A be a ring of subsets of E. A set function is any function p: A — [0, 0]
with u(@) = 0. Let p be a set function. Say that u is increasing if, for all A,B € A
with A C B,
p(A) < u(B).

Say that u is additive if, for all disjoint sets A, B € A,

W(AU B) = u(A) + u(B).
Say that p is countably additive if, for all sequences of disjoint sets (4, : n € N) in
A with U, A, € A,

w(UnAy) = Z 1(Az).
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Say that u is countably subadditive if, for all sequences (A, : n € N) in A with
U, A, € A,

ﬂ(UnAn) < Z N(An)-

On a ring A, any additive set function is increasing.

1.4. Let (E, ) be a measurable space. A countably additive set function p: & —
[0,00] is called a measure. The triple (E, €&, ) is then called a measure space. If
u(E) = 1 then p is a probability measure and (E, &, ) is a probability space. The
notation (2, F,P) is often used to denote a probability space. If u(E) < oo, then u
is a finite measure. If there exist sets E, € €,n € N, with u(E,) < oo for all n and
UnE, = E, then p is a o-finite measure. If E is a topological space and if & = B(E),
then p is a Borel measure on F; if moreover pu(K) < oo for all compact sets K, then
u is a Radon measure.

1.5. Discrete measure theory. Let E be countable set and let € = P(E). A mass
function is any function m : E — [0,00]. If p is a measure on (E, &), then, by
countable additivity,

p(A) =Y ul{z}), ACE.
TEA
So there is a one-to-one correspondence between measures and mass fuIlCtiOIlS, given

by
m(z) = p({z}), w(A) =Y m(z).

€A

This sort of measure space provides a ‘toy’ version of the general theory, where each
of the results we prove for general measure spaces reduces to some straightforward
fact about the convergence of series. This is all one needs to do elementary discrete
probability and discrete-time Markov chains, so these topics are usually introduced
without discussing measure theory. Moreover measures associated with mass func-
tions are essentially the only examples one can define explicitly: we turn now to the
construction of more general measures.

1.6. Construction and characterization of measures. Most g-algebras are so
large that one cannot define measures directly. Instead one specifies the values to
be taken on some smaller set of subsets, which generates the o-algebra. This gives
rise to two problems: first to know that there is a measure extending the given set
function, second to know that there is not more than one. The first problem, which is
one of construction, is dealt with by the following result. The proof is given towards
the end of this section — however, once we have constructed our measures, the details
of their construction prove to be largely irrelevant.
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Theorem 1.6.1 (Carathéodory’s extension theorem). Let A be a ring of subsets of
E and let p: A — [0,00| be a countably additive set function. Then p extends to a
measure on the o-algebra generated by A.

The key to the second problem, that of uniqueness, is provided by the following
result. The proof is a piece of abstract nonsense, given at the end of this section.

Lemma 1.6.2 (Dyunkin’s w-system lemma). Let A be a m-system. Then any d-system
containing A contains also the o-algebra generated by A.

Theorem 1.6.3 (Uniqueness of extension). Let A be a w-system of subsets of E and
let € be the o-algebra generated by A. Suppose that
p1: € —[0,00], po:€ —[0,00]

are measures with py(E) = po(E) < co. If py = pg on A, then py = pg on €.
Proof. Consider D = {A € € : u1(A) = ua(A)}. By hypothesis, E € D; for A,B € €
with A C B, we have

p(A) + m(B\A) = m(B) < oo,  pa(A) + p2(B\ A) = pa(B) < 00
so, if A, B € D, then also B\ A € D;if A, € D,n € N, with 4, T A, then

pi(A) = lim 11 (Ap) = lim pi(Ap) = po(A)

so A € D. Thus D is a d-system containing the w-system A, so D = € by Dynkin’s
lemma. ]

Theorems 1.6.1 and 1.6.3 provide general tools for the construction and characteri-
zation of measures. We now apply them in a specific context.

Theorem 1.6.4. There exists a unique Borel measure i on R such that, for all
a,b e R with a < b,

p((a,b]) =b—a.
The measure p is called Lebesgue measure on R.

Proof. (Ezistence.) Consider the ring A of finite unions of disjoint intervals of the
form

A = (al,bl] y-.--u (an, bn]
and define for A € A

p(A) =Y (b — ).
i=1
Note that the presentation of A is not unique, as (a,b] U (b,¢] = (a,c] whenever
a < b < c. Nevertheless, it is easy to check that p is well-defined and additive.
We aim to show that p is countably additive on A, which then proves existence by
Carathéodory’s extension theorem.



6 J. R. NORRIS

By additivity, it suffices to show that, if A € A and if (4, : n € N) is an increasing
sequence in A with A, T A, then u(A,) — p(A). Set B, = A\ A, then B, € A and
B, | 0. By additivity again, it suffices to show that u(B,) — 0. Suppose, in fact,
that for some € > 0, we have u(B,) > 2¢ for all n. For each n we can find C,, € A
with C,, C B, and u(B, \ C,) < &2 Then

Bu\ (C1N---NCp)) < p((BI\C U+ U (B, \Cp)) <Y 2 " =&
neN
Since u(B,) > 2¢, we must have p(C;N---NC,) >¢e,80 CiN---NC, # 0, and so
K,=Cn--nNnC, # 0. Now (K, : n € N) is a sequence of bounded non-empty
closed sets in R, so ) # N, K,, C N, B,, which is a contradiction.
(Uniqueness.) Let u be a measure on B with u((a,b)) = b—a for all @ < b. Fix n
and consider

pin(A) = p((n,n +1] N A).
Then p, is a probability measure on B so, by Theorem 1.6.3, u,, is uniquely deter-
mined by its values on the 7-system J generating B. Since

= Zﬂn(A):

it follows that p is also uniquely determined. O

Proof of Carathéodory’s extension theorem. For any B C E, define the outer measure
= inf Z (A

where the infimum is taken over all sequences (A, : n € N) in A such that B C U, 4,
and is taken to be oo if there is no such sequence. Note that p* is increasing and
p*(@) = 0. Let us say that A C F is pu*-measurable if, for all B C E,

p'(B) = p*(BNA)+ p* (BN AY).

Write M for the set of all pu*-measurable sets. We shall show that M is a o-algebra
containing A and that p* is a measure on M, extending p. This will prove the
theorem.

Step 1. We show that p* is countably subadditive. Suppose that B C U,B,. If
p*(B,) < oo for all n, then, given ¢ > 0, there exist sequences (A, : m € N) in A,
with

Then

SO
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Hence, in any case,

p(B) <> p(Bn).

Step 1I. We show that p* extends p. Since A is a ring and p is countably additive,
p is countably subadditive. Hence, for A € A and any sequence (4, : n € N) in A
with A C U, A,

p(4) < 3 (A,
On taking the infimum over all such sequences, we see that u(A) < p*(A). On the

other hand, it is obvious that p*(A) < p(A) for A € A.
Step III. We show that M contains A. Let A € A and B C E. We have to show that

p(B) = p*(BNA)+ p* (BN A°).
By subadditivity of p*, it is enough to show that
w'(B) > p* (BN A)+ p*(Bn AS).

If u*(B) = oo, this is trivial, so let us assume that p*(B) < oo. Then, given ¢ > 0,
we can find a sequence (A, : n € N) in A such that

BCUpAn, p'(B)+e> ) u(An).

Then
BNACU,(A,NA), BNA®°CU,(A4,Nn A%
SO

p(BNA)+p (BNA) <Y p(AnnA)+ Y p(A,N A =" u(A,) < p*(B) +e.

Since € > 0 was arbitrary, we are done.
Step IV. We show that M is an algebra. Clearly E € M and A° € A whenever A € A.
Suppose that A;, Ay € M and B C E. Then

pr(B) = p* (BN Ay + p(BN A
=p* (BN A NAy) 4+ p (BN A NAS) + p* (BN AS)
=p(BNAINA)+p (BN (A1 NA)NA)+ p* (BN (AN AN AS)
=p (BN (A1 NAy))+p" (BN (4N Ay)°).

Hence A; N Ay € M.

Step V. We show that M is a o-algebra and that p* is a measure on M. We already
know that M is an algebra, so it suffices to show that, for any sequence of disjoint
sets (A, :n € N) in M, for A = U, A, we have

AeM, wi(A) =Y i (Ad).
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So, take any B C E, then
p(B) = p* (BN Ap) + p* (BN AT)
= ' (BN Ay) + p (BN Ay) + p (BN AS N A
:...:i,u,*(BﬂAi)—f—M*(BﬂA({ﬁ"'mAz,)'
=1

Note that p*(BNn AfN---NAS) > p*(Bn A°) for all n. Hence, on letting n — oo
and using countable subadditivity, we get

p(B) > Y p(BNA,)+p*(BNAY) > p*(BNA)+ p' (BN A°).
n=1

The reverse inequality holds by subadditivity, so we have equality. Hence A € M
and, setting B = A, we get

O

Proof of Dynkin’s w-system lemma. Denote by D the intersection of all d-systems
containing A. Then D is itself a d-system. We shall show that D is also a 7-system
and hence a o-algebra, thus proving the lemma. Consider

D'={BeD:BnAeDforall Aec A}.

Then A C D’ because A is a m-system. Let us check that D’ is a d-system: clearly
E € D'; next, suppose By, By € D' with B; C Bs, then for A € A we have

because D is a d-system, so By \ By € D'; finally, if B, € D',n € N, and B, T B,
then for A € A we have

B,NATBNA
so BNAe€Dand BeD'. Hence D =7D'.

Now consider
D"={BeD:BnAeDforall Aec D}.

Then A C D" because D = D'. We can check that D" is a d-system, just as we did
for D'. Hence D" = D which shows that D is a w-system as promised. O
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1.7. Independence. A probability space (2, F,P) provides a model for an experi-
ment whose outcome is subject to chance, according to the following interpretation:

e () is the set of possible outcomes
e JF is the set of observable sets of outcomes, or events
e P(A) is the probability of the event A.

Relative to measure theory, probability theory is enriched by the significance attached
to the notion of independence. Let I be a countable set. Say that events A;,7 € I,
are independent if, for all finite subsets J C I,

P(MicsAi) = [ [ P(4)-
ied
Say that o-algebras A; C F,1 € I, are independent if A;,i € I, are independent

whenever A; € A; for all 7. Here is a useful way to establish the independence of two
o-algebras.

Theorem 1.7.1. Let A, and Ay be m-systems contained in F and suppose that
P(A; N Ay) = P(A;)P(A,)
whenever A; € Ay and Ay € Ay. Then o(Ay) and o(Ay) are independent.
Proof. Fix A, € A, and define for A € F
uw(A)=P(A; N A), v(A)=P(A)PA).

Then p and v are measures which agree on the m-system Ay, with u(Q2) = v(Q) =
P(A;) < oo. So, by uniqueness of extension, for all A; € o(A,),

P(A; N Ay) = u(As) = v(Ag) = P(A1)P(Ay).
Now fix Ay € 0(A;) and repeat the argument with
p(A) =P(ANA), V(A)=P(A)P(A4,)
to show that, for all 4; € o(A,),
P(A; N Ay) = P(A;))P(A,).
U

1.8. Borel-Cantelli lemmas. Given events A,,n € N, we may ask for the proba-
bility that infinitely many occur. Set
limsup 4, = Ny Upsp A,  liminf A, = U, N>y A
Then
P(A, i.0.) = P(limsup 4,), P(A4, ev.) =P(liminf A4,).
Here ‘i.0.” stands for ‘infinitely often’ and ‘ev.” for ‘eventually.’

Lemma 1.8.1 (First Borel-Cantelli lemma). If Y P(A,) < oo, then P(A, i.0.) =
0.
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Proof. As n — oo we have

P(Ap 1.0.) < P(Upsndm) < Y P(Ay) — 0.

m>n

0
We note that this argument is valid whether or not P is a probability measure.

Lemma 1.8.2 (Second Borel-Cantelli lemma). Assume that A,,n € N, are inde-
pendent events. If Y P(A,) = oo, then P(A, i.0.) =1.

Proof. We use the inequality 1 —a < e™“. Set a, = P(A,). Then, for all n we have

P(nzndS,) = [ (1= an) < exp{= Y an} =0.

m>n m>n

Hence P(4, i.0.) =1 —P(U, Nim>n AS,) = 1. N
2. MEASURABLE FUNCTIONS AND RANDOM VARIABLES

2.1. Let (E,&) and (G, 9) be measurable spaces. A function f : E — G is measur-
able if f71(A) € & whenever A € G. Here f~!(A) denotes the inverse image of A by
f

YA ={zcE: f(x) € A}

Usually G = R or G = [—00, 00|, in which case G is always taken to be the Borel
o-algebra. If F is a topological space and €& = B(FE), then a measurable function on
FE is called a Borel function.

The inverse image preserves set operations:

FHUA) = Uif T (A, (A9 = FH(A)-
Hence, for any function f : E — G, {f '(4): A € G} is a o-algebra on E and
{A: f7'(A) € &} is a o-algebra on G. In particular, if § = o(A) and f~'(A4) € &
whenever A € A, then {A: f~'(A) € €} is a o-algebra containing A and hence G, so
f is measurable.

In the case G = R, the Borel o-algebra is generated by intervals of the form
(—o0,y],y € R, so, to show that f : E — R is measurable, it suffices to show that
{r e E: f(z) <y} €& forall y.

If E is any topological space and f : F — R is continuous, then f~!(U) is open in
E and hence measurable, whenever U is open in R; the open sets U generate B, so
any continuous function is measurable.

Note that the indicator function of any measurable set is a measurable function.
Also, the composition of measurable functions is measurable.

Given any family of functions f; : £ — G,i € I, we can make them all measurable
by taking

E=o(ff'(A):Ae€§,iel).
Then € is the o-algebra generated by (f; i € I).
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Proposition 2.1.1. Let f, : E — R, n € N, be measurable functions. Then so are
fi+ fa, f1fa and each of the following:

inf f,, supf,, liminff,, limsup f,.
n n n n

Theorem 2.1.2 (Monotone class theorem). Let (E, E) be a measurable space and let
A be a m-system generating €. Let 'V be a vector space of bounded functions f : E — R
such that:

(i) 1€eVandly €V forall A e A;

(ii) of fo €V for allm and f is bounded with 0 < f, 1 f, then f € V.

Then V contains every bounded E-measurable function.
Proof. Consider D = {A € £ : 14 € V}. Then D is a d-system containing A, so
D = E. Since V is a vector space, it thus contains all finite linear combinations of
indicator functions of measurable sets. Hence, for f > 0, E-measurable and bounded,
the functions f, = 27"[2"f],n € N, belong to V and 0 < f, T f, hence f € V.

Finally, any bounded &£-measurable function is the difference of two non-negative
such functions, hence in V. O

2.2. Image measures. Let (F, &) and (G, G) be measurable spaces and let u be a
measure on €. Then any measurable function f : £ — G induces an image measure

v=ypo f!onG, given by
v(A) = u(f~'(A)).

We shall construct some new measures from Lebesgue measure in this way.

Lemma 2.2.1. Let g : R — R be a right-continuous increasing function. Set I =
(9(—0),g(0)) and define f: I — R by

f(z) =inf{y: z < g(y)}.
Then f is left-continuous and increasing, and

flz) <y ifand onlyif =< g(y).

Proof. The set {y: x < g(y)} is decreasing in z. It is closed by our assumptions on
g. Hence f is increasing and g(f(z)) > z. Also

flg(y)) =inf{y": g(y) < 9(4)} <.
Now f(z) < y implies g(f(z)) < g(y), so z < ¢(y). Similarly, z < g(y) implies

f(z) <y, so the two conditions are equivalent. In particular, it follows that {z € I :
f(z) <y} is closed, so f is left-continuous. O]

Theorem 2.2.2. Let g : R — R be right-continuous and increasing. Then there
exists a unique Radon measure dg on R such that, for all a,b € R with a < b,

dg((a,b]) = g(b) — g(a).

Moreover, we obtain in this way all Radon measures on R.
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The measure dg is called the Lebesque-Stieltjes measure associated with g.

Proof. (Ezistence.) Set I = (g(—00),g(00)). Let u denote Lebesgue measure on
I and let f : I — R be the left-continuous increasing function constructed in the
lemma. Then f is Borel measurable and the induced measure v = po f~' on R
satisfies

v((a,0]) = p({z : f(z) > a and f(z) <b}) = u((g(a), g(b)]) = 9(b) — g(a).

(Uniqueness.) The argument used for uniqueness of Lebesgue measure applies.
Finally, if v is any Radon measure on R, we can define g : R — R, right-continuous
and increasing, by
_Jv(0,y]), ify >0,
=", o

Then v((a,b]) = g(b) — g(a) whenever a < b, so v = dg by uniqueness. O

2.3. Random variables. Let (2, F,P) be a probability space and let (E, ) be a
measurable space. A measurable function X : Q2 — F is called a random variable in
E. Tt has the interpretation of a quantity, or state, determined by chance. Where no
space F is mentioned, it is assumed that X takes values in R. The image measure
pux = PoX 1iscalled the law or distribution of X. For real-valued random variables,
px is uniquely determined by its values on the m-system of intervals (—oo, z|,z € R,
given by
Fx(z) = px((—00,2]) = P(X < ).
The function Fly is called the distribution function of X.
Note that F' = F'x is increasing and right-continuous, with
lim F(z)=0, lim F(z)=1.

Let us call any function F' : R — [0,1] satisfying these conditions a distribution
function.

Set Q = (0,1] and F = B((0, 1]). Let P denote the restriction of Lebesgue measure
to F. Then (2, F,P) is a probability space. Let F' be any distribution function.
Define X : 2 — R by

X(w)=inf{z:w < F(x)}.
Then, by Lemma 2.2.1, X is a random variable and X (w) < z if and only if w < F(z).
So
Fx(z) = P(X <) =P((0, F(2)]) = F(z).

Thus every distribution function is the distribution function of a random variable.
We say that random variables X,,,n € N, are independent if the o-algebras o(X,,)
are independent. For real valued random variables, this is equivalent to the condition
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for all z1,...,z, € Rand all n. A sequence of random variables (X, : n > 0) is often
regarded as a process evolving in time. The o-algebra generated by Xo,..., X,

?n:U(X(),...,Xn)

contains those events depending (measurably) on Xj,..., X,, and represents what is
known about the process by time n.

2.4. Rademacher functions. We continue with the particular choice of probabil-
ity space (€2, F,P) made in the preceding section. Provided that we forbid infinite
sequences of 0’s, each w € () has a unique binary expansion

w = 0.wwows . ...
Define random variables X,, : Q@ — {0,1} by X,,(w) = w,. Then
Xi=lgy XN=layg+ley X=len+leytleatlcy

These are called the Rademacher functions. The random variables X;, X,,... are
independent and Bernoulli, that is to say

P(X =0)=PX =1)=1/2.
The strong law of large numbers (proved in §10) applies here to show that

Xy 4 .-
P( 1+ +Xn_>1):1_
n 2

This is called Borel’s normal number theorem: almost every point in (0,1] is normal,
that is, has ‘equal’ proportions of 0’s and 1’s in its binary erpansion.

We now show how to construct not just one but an infinite sequence of indepen-
dent random variables X7, X5, ..., on 2 = (0, 1], having given distribution functions
F\,F,,.... Choose a bijection m : N> — N and set Yin = Xink,n), where Xy, is the
mth Rademacher function. Set

Y, = i 27FY} .
k=1

Then Y7,Y5,... are independent and, for all n,
P(i27* <V, < (i +1)27F) = 27"
so P(Y,, < z) =z for all z € (0,1]. Set
Gn(y) = inf{z : y < Fy(2)}

then, by Lemma 2.2.1, G, is Borel and G, (y) < z if and only if y < F,,(z). So, if we
set X,, = G,,(Y,), then Xi, Xy, ... are independent random variables on €2 and

P(X, < ) = B(Ga(Ya) < ) = B(Y; < Fu()) = Fu(a).
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2.5. Tail events. Let (X, : n € N) be a sequence of random variables. Define
(.T”:O'(XH_I_I,XH_}_Q,...), T: ﬂnTn.
Then T is a o-algebra, called the tail o-algebra of (X, : n € N). It contains the

events which depend only on the limiting behaviour of the sequence.

Theorem 2.5.1 (Kolmogorov’s zero-one law). Suppose that (X, : n € N) is a se-
quence of independent random variables. Then the tail o-algebra T of (X, : n € N)
contains only events of probability 0 or 1. Moreover, any T-measurable random vari-
able is almost surely constant.

Proof. Set F,, = o(X1,...,X,). Then F, is generated by the m-system of events
A={X1 <zy,...,. X, <z}
whereas T, is generated by the m-system of events
B={Xi1 <Zpi1,- o, Xotk < Tnsk}, keN

We have P(A N B) = P(A)P(B) for all such A and B, by independence. Hence &,
and 7, are independent, by Theorem 1.7.1. It follows that F, and T are independent.
Now U,JF, is a m-system which generates the o-algebra F,, = 0(X,, : n € N). So by
Theorem 1.7.1 again, F, and T are independent. But T C F. So,if A € T,

P(A) = P(AN A) = P(A)P(A)

so P(A) € {0,1}.
Finally, if Y is any T-measurable random variable, then Fy-(y) = P(Y < y) takes
values in {0,1}, so P(Y =c¢) = 1, where ¢ = inf{y : Fy(y) = 1}. O

2.6. Convergence in measure and convergence almost everywhere.

Let (E, &, ) be a measure space. A set A € & is sometimes defined by a prop-
erty shared by its elements. If u(A°) = 0, then we say that property holds almost
everywhere (or a.e.). The alternative almost surely (or a.s.) is often used in a prob-
abilistic context. Thus, for a sequence of measurable functions (f, : n € N), we say
fn converges to f a.e. to mean that

w({o: fule) £ F@)}) =0,
If, on the other hand, we have that
p{|fn— fl >€}) — 0, foralle >0,
then we say f, converges to f in measure or, in a probabilistic context, in probability.

Theorem 2.6.1. Let (f, : n € N) be a sequence of measurable functions.

(a) Assume that u(F) < oo. If fn — 0 a.e. then f, — 0 in measure.
(b) If fn — 0 in measure then f, — 0 a.e. for some subsequence (ny).
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Proof. (a) Suppose f, — 0 a.e.. For each £ > 0,
p(lful <€) 2 p(Omznf{lfml <e}) T p(lfal <€ ev.) > u(fa — 0) = p(E).

Hence u(|fn| > €) — 0 and f, — 0 in measure. (b) Suppose f, — 0 in measure, then
we can find a subsequence (n;) such that

S il > 1/E) < 0.

So, by the first Borel-Cantelli lemma,
p(| fr,] > 1/ki0.) =0

so fn, — 0 a.e.. U

3. INTEGRATION

3.1. Definition and basic properties. Let (F, &, 1) be a measure space. We shall
define, where possible, for a measurable function f : E — [—o00, 00|, the integral of
f, to be denoted

u(f) = /E fdp = /E F(2)u(dz).

For a random variable X on a probability space (Q2,F,P), the integral is usually
called instead the ezpectation of X and written E(X).
A simple function is one of the form

f= Z axla,
k=1

where 0 < a; < oo and Ay, € € for all k£, and where m € N. For simple functions f,
we define

u(f) = Z api(Ag),

where we adopt the conventions 0c0.0 = 0.0o0 = 0. Although the representation of f
is not unique, it is straightforward to check that pu(f) is well defined and, for simple
functions f, g and constants o, 3 > 0, we have

(a) plaf + Bg) = an(f) + Bulg),
(b) f <g implies u(f) < p(yg),
(¢c) f=0ae. ifandonlyif pu(f)=0.

In particular, for simple functions f, we have
u(f) = sup{u(g) : g simple, g < f}.

We define the integral p(f) of a non-negative measurable function f by

p(f) = sup{u(g) : g simple, g < f}.
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We have seen that this is consistent with our definition for simple functions. Note
that, for all non-negative measurable functions f, g with f < g, we have u(f) < u(g).
For any measurable function f, we set

fr=fvo, f-=(=f)Vvo.

Then f = ft—f~and |f| = fT4 f~. If u(|f]) < oo, then we say that f is integrable
and define

p(f) = p(f) = nlf).
Note that [u(f)| < wp(]f]) for all integrable functions f. Note also that the integral

p(f) remains well defined, though possibly taking the value co, under the weaker
condition that u(f~) < oco. For A € €, we write

#A(f|A)=/Afd#

where 14 denotes the restriction of u to A. It is easy to check that, whenever the

integrals are defined,
/fdu=/f1,4du-
A E

Here is the key result for the theory of integration.

Theorem 3.1.1 (Monotone convergence). Let (f, : n € N) be a sequence of non-
negative measurable functions. Then

fa T f implies  p(fa) T u(f)-

Proof. Casel: f, =14,,f =14.

The result is a simple consequence of countable additivity.
Case 2: f, simple, f = 14.

Fix e >0 and set A, = {f, >1—¢}. Then 4, T A and

SO

(1= )l An) < i) < p(A).
But p(A,) T 1(A) by Case 1 and € > 0 was arbitrary, so the result follows.

Case 3: f, simple, f simple.
We can write f in the form

f= Z axla,
k=1

with a; > 0 for all £ and the sets A; disjoint. Then f,, T f implies
ayTagfn T 1a,
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so, by Case 2,

p(fn) =Y n(lagfa) T axp(Ar) = p(f).

Case 4: f, simple, f > 0 measurable.
Let g be simple with ¢ < f. Then f, T f implies f, A g T g so, by Case 3, given
g > 0, for n sufficiently large

p(fn) = 1(fu N g) = plg) —e.
Since € > 0 and g were arbitrary, the result follows.
Case b5: f, > 0 measurable, f > 0 measurable.
Set
gn = (27"[2"fu]) A0
then g, is simple and ¢, < f, < f, so

p(gn) < p(fn) < u(f)-
But f, T f forces gn T f, so p(ga) T u(f), by Case 4. O
Theorem 3.1.2. For all non-negative measurable functions f,g and all constants

Oé,/BZO,

(a) plaf + Bg) = au(f) + Bulg),
(b) f<g implies p(f) < u(g),
(¢) f=0a.e. ifandonlyif p(f)=0.

Proof. Define simple functions f,, g, by
fa=@2 2" ) An, g.=(2"[2"g]) An.
Then f, T f and g, T g, s0 af,+ B9, T af + Bg. Hence, by monotone convergence,

p(fa) T(f),  1lgn) Tulg),  wlafn+ Bgn) T ulaf + Bg).

We know that u(af, + Bgn) = au(fn) + Bu(gn), so we obtain (a) on letting n — oo.
As we noted above, (b) is obvious from the definition of the integral. If f = 0 a.e.,
then f, = 0 a.e., for all n, so u(f,) = 0 and p(f) = 0. On the other hand, if u(f) =0,
then u(f,) =0 for all n, so f, =0 a.e. and f =0 a.e.. O

Theorem 3.1.3. For all integrable functions f,q and all constants o, 8 € R,

(a) ulaf + Bg) = au(f) + Bulg),
(b) f<g implies p(f) < p(g),
(¢) f=0a.e implies pu(f)=0.

Proof. We note that pu(—f) = —u(f). For @ > 0, we have
plof) = plaf™) = plaf ") = ap(f7) — an(f~) = ap(f).
Ifh=f+gthenht+f~+g =h"+fT+g",so0
p(h) + p(f7) + ulg™) = p(h™) + u(f7) + nlg™)
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and so pu(h) = pu(f)+p(g)- That proves (a). If f < g then p(g)—p(f) = p(g—f) 2 0,
by (a). Finally, if f = 0 a.e., then f* =0 a.e., so u(f*) =0 and so u(f) = 0. O

Note that in Theorem 3.1.3(c) we lose the reverse implication. The following result
is sometimes useful:

Proposition 3.1.4. Let A be a w-system containing E and generating €. Then, for
any wntegrable function f,

w(fla) =0 forall Ac A implies f=0 a.e..
Here are some minor variants on the monotone convergence theorem.

Proposition 3.1.5. Let (f, : n € N) be a sequence of measurable functions, with
fn >0 a.e.. Then

fal fae = p(fa) T u(f)

Thus the pointwise hypotheses of non-negativity and monotone convergence can
be relaxed to hold almost everywhere.

Proposition 3.1.6. Let (g, : n € N) be a sequnce of non-negative measurable func-

tions. Then
> ilga) = n (Z gn> -
n=1 n=1

This reformulation of monotone convergence makes it clear that it is the coun-
terpart for the integration of functions of the countable additivity property of the
measure on sets.

3.2. Integrals and limits. In the monotone convergence theorem, the hypothesis
that the given sequence of functions is increasing is essential. In this section we
obtain some results on the integrals of limits of functions without such a hypothesis.

Lemma 3.2.1 (Fatou’s lemma). Let (f, : n € N) be a sequence of non-negative
measurable functions. Then

p(liminf f,,) < liminf u(f,).
Proof. For k > n, we have
Jnf fm < Ji
SO

p(inf fn) < Inf p(fy) < liminf p(fy).

But, as n — oo,

iI;f fm T sup <i2f fm) = liminf f,
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s0, by monotone convergence,
u(inf fr) T p(liminf f,).
m>n
O

Theorem 3.2.2 (Dominated convergence). Let (f, : n € N) be a sequence of inte-
grable functions with f, — f pointwise as n — oo. Suppose that, for some integrable
function g

[fal < g, for alln.
Then f is integrable and u(f,) — p(f) as n — oco.

Proof. The limit f is measurable and | f| < g, so u(| f|) < u(g) < 0o, so f is integrable.
We have 0 < g+ f,, — g £ f so certainly liminf(g £ f,) = ¢ = f. By Fatou’s lemma,

1(g) + p(f) = pliminf(g + f,)) < liminf u(g + fn) = p(g) + liminf u(f,),

u(g) — u(f) = p(liminf(g — f,)) < liminf u(g — fn) = p(g) — limsup u(fn).
Since u(g) < oo, we can deduce that

pu(f) < liminf p(f,) <limsup p(fn) < p(f).

This proves that u(f,) — p(f) as n — oo. O

Theorem 3.2.3 (Differentiation under the integral sign). Let U C R be open and
suppose that f : U x E — R satisfies:
(i) = +— f(t,x) is integrable for all t,
(ii) t — f(t,z) is differentiable for all ,
(iii) for some integrable function g, for allx € E and all t € U,
a

o (t,z)| < g(x).

Then x +— (0f/0t)(t,x) is integrable for all t, the function F : U — R, defined by

F(t) = /E £(t, D)l de),

15 differentiable and
oy [ 2

EF(t) = | % (t,z)pu(dx).

Proof. Take any sequence h, — 0 and set

_ fl+hn,x)— f(t,z) Of
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Then g,(x) — 0 for all z € E and, by the mean value theorem, |g,| < 2¢ for all n.
In particular, z — (0f/0t)(t,z) is measurable for all ¢ and hence integrable, since
[(0f/ot)(t,z)| < g(x) for all x. Then, by dominated convergence,

F(t+ h;;)L - F@) : 68_];(15, z)p(dr) = / gu(@)(dz) — 0.

E

O

3.3. Integration and differentiation. In this section we show that Lebesgue in-
tegration acts as an inverse to differentiation. For Lebesgue measure p on R, we
write

b
p(flay) = f(:n)dx:/ f(z)dx.
(a,b] a

Theorem 3.3.1 (Fundamental theorem of calculus).

(i) Let f :[a,b] — R be a continuous function and set

Fu(t) = / ).

Then F, is differentiable on [a,b], with F! = f.
(ii) Let F : [a,b] — R be differentiable with continuous derivative f. Then

/ F(@)dz = F(b) — Fl(a).

Proof. Fix t € [a,b). Given ¢ > 0, there exists 6 > 0 such that |f(z) — f(t)| < ¢
whenever |z —t| < 4. So, for 0 < h < 6,

‘Fa(wh})L—Fa(t)_f(t)‘:%/t (f(z) - f(b))dz

t+h t+h
<o H@-rou <y [

Hence F, is differentiable on the right at ¢t with derivative f(¢). Similarly, for all ¢ €
(a,b], F, is differentiable on the left at ¢ with derivative f(¢). Finally, (F—F,)'(t) =0
for all t € (a,b) so, by the mean value theorem,

F) - F(o) = Fulb) - Fula) = [ f(@)da.
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3.4. Product measure and Fubini’s theorem. Let (E;, &1, 1) and (Esy, g, p2)
be finite measure spaces. Then

A= {Al X Ay A; € 81,142 S 82}
is a m-system of subsets of ' = E; x 5. Define the product o-algebra € = €, ® €9 =
o(A).
Lemma 3.4.1. Let f : E — R be E-measurable. Then, for all x1 € Ey, the function

xy — f(x1,29) : By — R is Ey-measurable.

Proof. Denote by 'V the set of bounded £-measurable functions for which the conclu-
sion holds. Then V is a vector space, containing the indicator function 14 of every
set A € A. Moreover, if f, € V for all n and if f is bounded with 0 < f,, T f, then
also f € V. So, by the monotone class theorem, V contains all bounded £-measurable
functions. The rest is easy. O

Lemma 3.4.2. For all bounded E-measurable functions f, the function
zy = fi(r) = f(z1, m2)p2(dzy) - By — R
Es
18 bounded and &i-measurable.

Proof. Apply the monotone class theorem, as in the preceding lemma. Note that
finiteness of p; and s is essential to the argument. O

Theorem 3.4.3 (Product measure). There ezists a unique measure j = py @ f1g 0N
€ such that

(A1 x Az) = p1 (A1) pa(Az)
forall Ay € & and A,y € &,.

Proof. Uniqueness holds because A is a w-system generating €. For existence, by the
lemmas, we can define

u= [ (f | Laan ) ) ()

and use monotone convergence to see that u is countably additive. O

Proposition 3.4.4. Let &= Eo®E1 and L = o @ p1. For a function f on Ey X Eg,
write f for the function on Ey x E; given by f(xa,21) = f(x1,22). Then f is E-
measurable if and only if f is E-measurable and, for f measurable and non-negative,

ilf) = u(f)-
Theorem 3.4.5 (Fubini’s theorem).
(a) Let f be E-measurable and non-negative. Then

un = [ ( A Faon paldes) ) (i),
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(b) Let f be p-integrable. Then
(i) xo — f(x1,x2) is pg-integrable for pq-almost all xq,
(i) 21 = [p, f(@1, 22)pa(dz2) is pi-integrable
and the formula for u(f) in (a) holds.

Note that the iterated integral in (a) is well defined, for all bounded or non-negative
measurable functions f, by Lemmas 3.4.1 and 3.4.2. Note also that, in combination
wih Proposition 3.4.4, Fubini’s theorem allows us to interchange the order of integra-
tion in multiple integrals,whenever the integrand is non-negative or p-integrable.

Proof. Denote by V the set of all bounded €-measurable functions f for which the
formula holds. Then V contains the indicator function of every €-measurable set
so, by the monotone class theorem, V contains all bounded €-measurable functions.
Hence, for all E-measurable functions f, we have

ur) = [ ( i oo ax)ua(dn) ) i)

where f, = (—n)V f An.

For f non-negative, we can pass to the limit as n — oo by monotone convergence
to extend the formula to f. That proves (a).

If f is p-integrable, then, by (a)

[ (] s mlmtann ) mam) = s < oo

Hence we obtain (i) and (ii). Then, by dominated convergence, we can pass to the
limit as n — oo in the formula for u(f,) to obtain the desired formula for pu(f). O

The existence of product measure and Fubini’s theorem extend easily to o-finite
measure spaces. The operation of taking the product of two measure spaces is as-
sociative, by a m-system uniqueness argument. So we can, by induction, take the
product of a finite number, without specifying the order. The measure obtained by
taking the n-fold product of Lebesgue measure on R is called Lebesque measure on
R™. The corresponding integral is written

f(z)dx.
R”

Proposition 3.4.6. Let (E,&, 1) be a o-finite measure space and let f be a non-
negative measurable function on E. Then

u(f) = / Ul = Ndx.
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3.5. Transformations of integrals.

Proposition 3.5.1. Let (E, €&, u) and (G, G, v) be measure spaces. Suppose that v =
po f=1 for some measurable function f : E — G. Then v(g) = u(go f), for all
non-negative measurable functions g on G.

As a special case we get the formula

MMXD=LgQMAM)

for any random variable X in E and any non-negative measurable function g on F.

Proposition 3.5.2. Let (E, &, u) be a measure space and let f be a non-negative
measurable function with p(f) < co. Define v(A) = u(fla),A € €. Then v is a
measure on E and v(g) = p(fg) for all non-negative measurable functions g on E.

A random variable X in R" is said to have a density function f if, for all A € B(R"),

P(X € A) = /A f(z)da.

By Proposition 3.5.2, for a random variable X in R® with density fx,

E9(X) = | g(@)x(w)is

n

Proposition 3.5.3. Let ¢ : [a,b] — R be continuously differentiable and strictly
increasing. Then, for all non-negative measurable functions g on [¢(a), ¢(b)],

#(b) b
[ sy = [ stons@z
¢ a

(a)
It is a simple matter to extend each of the above propositions to all integrable
functions g.

4. NORMS AND INEQUALITIES

4.1. LP-norms. Let (E, &, u) be a measure space. For 1 < p < oo, we denote by
LP = [P(E, &, u) the set of measurable functions f with finite LP-norm:

1/p
1£llp = (/E|f|pd#> < 0.

We denote by L® = L*®(E, &, ) the set of measurable functions f with finite L>°-
norm:

| flloo = inf{A: [f| < Xa.e.}.
Note that || f|l, < ||flle for all 1 < p < co. For 1 < p < oo, we say that f, converges
to fin L? if || fo — fllp — 0.
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4.2. Chebyshev’s inequality. Let f be a non-negative measurable function and
let A > 0. We use the notation {f > A} for the set {x € F : f(z) > A}. Note that

My < f

so on integrating we obtain Chebyshev’s inequality

Au(f > X) < u(f)-

Now let g be any measurable function. We can deduce inequalities for g by choosing
some non-negative measurable function ¢ and applying Chebyshev’s inequality to
f = ¢og. For example, if g € LP and A > 0, then

p(lgl > A) = p(lglP > X)) < A7Pu(|g|P) < .
So we obtain the tail estimate

ullgl = X) = OO\, as A — oc.

4.3. Jensen’s inequality. A function ¢ : R — R is convez if, for all z,y € R and
t€0,1],

c(tz + (1 —t)y) < te(z) + (1 —t)e(y).
Lemma 4.3.1. Let ¢ : R — R be convexr and let m € R. Then there exist a,b € R
such ¢(x) > ax + b for all x, with equality at = m.

Proof. By convexity, for z < m < y we have

c(m) — e(z) _ cly) = c(m)
m—-x ~  y—-m

So, fixing m, there exists a € R such that, for all z < m and all y > m
clm) = e(z) _ _ ely) = cm)

m-—zx y—m
Then ¢(x) > a(z — m) + c¢(m), for all z € R. O

Theorem 4.3.2 (Jensen’s inequality). Let X be an integrable random variable and
let c: R — R be conver. Then E(c(X)) is well defined and

E(c(X)) = c(E(X)).

Proof. Set m = E(X) and choose a,b € R as in the lemma. Then ¢(X) > aX +b. In
particular E(c(X) ™) < |a|E(| X]) + |b] < 00, so E(¢(X)) is well defined. Moreover

E(c(X)) > aE(X) +b=am + b= c(m) = ¢(E(X)).
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We deduce from Jensen’s inequality the monotonicity of ILP-norms with respect to a

probability measure. Let 1 < p < g < 0o. Set ¢(x) = |x|7/?, then c is convex. So, for
any X € L?(P),

1X 1, = (BIX )P = (c(E|X 7)Y < (Be(|X ) = (EX|9)" = || X[,
In particular, LP(P) O LI(P).

4.4. Holder’s inequality and Minkowski’s inequality. Let (E, &, 1) be a mea-
sure space. For p,q € [1, 00|, we say that p and ¢ are conjugate indices if

1 1
S+ =1.
P q

Theorem 4.4.1 (Hélder’s inequality). Let p,q € (1,00) be conjugate indices. Then,
for all measurable functions f and g, we have

p(lfgl) < M1 llpllgllo-

Proof. The cases where ||f|[, = 0 or || f||l, = oo are trivial so we can exclude them.
Then, by multiplying f by an appropriate constant, we are reduced to the case where
I f|l, = 1. So we can define a probability measure P on € by

P = [ 17Pdn
A
For measurable functions X > 0, we have
E(X) = p(X[fP), E(X) <E(X?)Y
Note that g(p — 1) = p. Then we have

uta =n (Fo1rr) =2 ( 12

gl Y y
. ( ‘f‘q(p—1)> = u(lg1) " = £l gllq-

O

Theorem 4.4.2 (Minkowski’s inequality). For p € [1,00) and measurable functions
f and g, we have

1+ glly < [171lp + llgllp-

Proof. The case p = 1 is easy. The cases where ||f|[, = oo or ||g||, = co are trivial,
so we can assume that both norms are finite. Then, since |f + g|P < 2P(|f|P + |g|?),
we have

pf +g7) < 2% f17) + p(lgl)} < oo
The case where || f + g||, = 0 is trivial, so let us assume ||f + g|[, > 0. Observe that

IS+ glP g = p(lf + g|P )9 = p(| f + glP)' =7
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So, by Holder’s inequality,
u(|f+g®) < u(|FILf+ 9P )+ wllgllf +glP )
< (I 1lp + Mgl + glP g
The result follows on dividing both sides by |||f + g[P~!|,. O

Minkowski’s inequality shows that LP-norms are continuous: if f,, — f in L?, then

1£llp = fn = Fllp < W fullp < 1Fllp + [1fn = Fllp
50 || fally = 11 lp-

5. COMPLETENESS OF [ AND ORTHOGONAL PROJECTION

5.1. LP as a Banach space. Let V be a vector space. A map v+ |jv]|: V — [0,00)
is a norm if

(1) |lu+v|| < ||ul| +||v|| for all u,v € V,

(ii) ||av|| = |a|||v|| for all v € V and « € R,
(iii) ||v|| = 0 implies v = 0.
We note that, for any norm, if ||v, — v|| — 0 then ||v,|| — ||v]|-

A symmetric bilinear map (u,v) +— (u,v) : V xV — R is an inner product
if (v,v) > 0, with equality only if v = 0. For any inner product, (.,.), the map
v — 4/(v,v) is a norm, by the Cauchy—Schwarz inequality.

Minkowski’s inequality shows that each LP space is a vector space and that the
LP-norms satisfy condition (i) above. Condition (ii) also holds. Condition (iii) fails,
because ||f||, = 0 does not imply that f = 0, only that f = 0 a.e.. However, it is
possible to make the LP-norms into true norms by quotienting out by the subspace of
measurable functions vanishing a.e.. This quotient will be denoted LP. Note that,
for f € L*, we have ||f]|2 = (f, f), where (.,.) is the symmetric bilinear form on L?
given by

(f,9)= /Efgdu-

Thus £2 is an inner product space. The notion of convergence in L? defined in §4.1
is the usual notion of convergence in a normed space.

A normed vector space V is complete if every Cauchy sequence in V' converges,
that is to say, given any sequence (v, : n € N) in V such that ||v, — v,| — 0 as
n, m — oo, there exists v € V such that ||v, —v|| — 0 as n — co. A complete normed
vector space is called a Banach space. A complete inner product space is called a
Hilbert space. Such spaces have many useful properties, which makes the following
result important.

Theorem 5.1.1 (Completeness of LP). Let p € [1,00]. Let (f, : n € N) be a se-
quence in LP such that

fo — frllp = 0 asn,m — oco.
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Then there exists f € LP such that

|fo — fllp =0 asn — oo.

Proof. The case p = oo is left as an exercise. We assume from now on that p < oo.
Choose a subsequence (ng) such that

o0
S = Z ||fnk+1 - f”k”p < 0.
k=1

By Minkowski’s inequality, for any K € N,

K
I s = Fulllp < S

k=1
By monotone convergence this bound holds also for K = oo, so

o
Z |fnk+1 - f’nk‘ < o0 a.e.
k=1

Hence, by completeness of R, f,,, converges a.e.. We define
_ Jlim f, (x) if the limit exists,
1) { 0 otherwise.
Given € > 0, we can find N so that n > N implies
w(| fo — fmlf) <e, forall m >n,

in particular u(|f, — fn,|?) < € for all sufficiently large k. Hence, by Fatou’s lemma,
forn > N,

llfo = 717) = plimint |, — i P) < Viminf (1o — o, ) < <
Hence f € L? and, since ¢ > 0 was arbitrary, ||f, — f|l, — 0. O

Corollary 5.1.2. We have
(a) LP is a Banach space, for all 1 < p < oo,
(b) L% is a Hilbert space.

5.2. L? as a Hilbert space. We shall apply some general Hilbert space arguments
to L%. First, we note Pythagoras’ rule

If +gll3 = IF115+ 2(f, 9) + llgll3

and the parallelogram law

1f +gllz + 11f = gllz = 201112 + lg1I2)-

If (f,g) = 0, then we say that f and g are orthogonal. For any subset V C L?, we
define
Vt={feL?:(f,v)=0forallveV}.
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A subset V C L? is closed if, for every sequence (f, : » € N) in V, with f, — f in
L?, we have f = v a.e., for some v € V.

Theorem 5.2.1 (Orthogonal projection). Let V be a closed subspace of L?. Then
each f € L* has a decomposition f = v + u, with v € V and w € V*+. Moreover,
If —vlla < |If = gll2 for all g € V', with equality only if g = v a.e..

The function v is called (a version of ) the orthogonal projection of f on V.

Proof. Choose a sequence g, € V such that

1f = gnllz = d(f,V) = inf{[[f — gl[2: g € V}.
By the parallelogram law,

12(f = (g + 9m)/2)II + 19 — gmllz = 2(lf = gallz + 1f = gmll3)-

But |2(f —(gn+9m)/2)||3 > 4d(f, V)?, so we must have ||g,—gm|l2 — 0 as n,m — oo.
By completeness, ||g, — gl — 0, for some g € L?>. By closure, g = v a.e., for some
v € V. Hence

I = vlla = tim 1 = gull: = d(£ V).
Now, for any h € V and t € R, we have
d(f,V)* <|If = (v +th)llz = d(f, V)" = 2t(f — v, b) + £*|[]]3.
So we must have (f —v,h) = 0. Hence u = f — v € V1, as required. O
5.3. Variance, covariance and conditional expectation. In this section we look

at some L? notions relevant to probability. For X,Y € L?*(P), with means my =
E(X),my =E(Y), we define variance, covariance and correlation by

var(X) = E[(X —mx)?,
cov(X,Y) =E[(X —mx)(Y —my)],
corr(X,Y) = cov(X,Y)/+/var(X) var(Y).
Note that var(X) = 0 if and only if X = mx a.s.. Note also that, if X and Y are

independent, then cov(X,Y) = 0. The converse is generally false. For a random
variable X = (X,...,X,) in R, we define its covariance matriz

var(X) = (cov(X;, X;))?

ij=1°

Proposition 5.3.1. Every covariance matriz is non-negative definite.

Suppose now we are given a countable family of disjoint events (G; : i € I'), whose
union is 2. Set § = o(G; : i € I). Let X be an integrable random variable. The
conditional expectation of X given §G is given by

Y =) E(X|Gi)lg,,
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where we set E(X|G;) = E(X1g,)/P(G;) when P(G;) > 0 and define E(X|G;) in
some arbitrary way when P(G;) = 0. Set V = L?(G,P) and note that Y € V. Then
V is a subspace of L*(F,P), and V is complete and therefore closed.

Proposition 5.3.2. If X € L%, then Y is a version of the orthogonal projection of
X onV.

6. CONVERGENCE IN L!(P)

6.1. Bounded convergence. We begin with a basic, but easy to use, condition for
convergence in L'(P).

Theorem 6.1.1 (Bounded convergence). Let (X, : n € N) be a sequence of random
variables, with X,, — X in probability and |X,| < C for all n, for some constant
C < oo. Then X,, — X in L.

Proof. By Theorem 2.6.1, X is the almost sure limit of a subsequence, so | X| < C
a.s.. For € > 0, there exists N such that n > N implies

P(|X, — X| > £/2) < &/(4C).

Then
E|X, —X| = E(| X, — X |11 x,—x|>e/2) FE(| Xn =X |1 1x,-x|<e/2) < 2C(e/4C)+€/2 = ¢.
O

6.2. Uniform integrability.
Lemma 6.2.1. Let X be an integrable random variable and set

Ix(6) = sup{E(|X|14) : A € F,P(A) < 6}.
Then Ix(6) | 0 as 6 | 0.
Proof. Suppose not. Then, for some & > 0, there exist 4, € F, with P(4,,) < 27"
and E(|X |14, ) > € for all n. By the first Borel-Cantelli lemma, P(4, i.0.) = 0. But
then, by dominated convergence,

e SE(IX 1,5, 4n) = E(IX[1{4, 10}) =0
which is a contradiction. 0

Let X be a family of random variables. For 1 < p < oo, we say that X is bounded
wn LP if
sup || X|, < oo.
Xex
Let us define
Ix(6) = sup{E(|X|14) : X € X, A € F,P(A) < 6}.
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Obviously, X is bounded in L' if and only if Iy (1) < co. We say that X is uniformly
integrable or UI if X is bounded in L' and

Ix(6) 1 0, asé | 0.
Note that, by Holder’s inequality, for conjugate indices p,q € (1, ),
E(|X[1a) < [|1X]|,(P(A)"7.

Hence, if X is bounded in L?, for some p € (1,00), then X is UI. The sequence
Xy = nlg,1/n) is bounded in L' for Lebesgue measure on (0,1], but not uniformly
integrable.

Lemma 6.2.1 shows that any single integrable random variable is uniformly inte-
grable. This extends easily to any finite collection of integrable random variables.
Moreover, for any integrable random variable Y, the set

X ={X : X arandom variable, | X| < Y}
is uniformly integrable, because
E(|X[14) <E(Y1,), forall A.

The following result provides an alternative characterization of uniform integrabil-
ity.

Proposition 6.2.2. Let X be a family of random variables. Then X is Ul if and
only if
sup{E(| X[l x>x): X € X} =0, as K — oo.

Here is the definitive result on L'-convergence of random variables.

Theorem 6.2.3. Let X,,,n € N, and X be random wvariables. The following are
equivalent:

(a) X, € L' for alln, X € L' and X,, — X in L*,
(b) {X, :n €N} is Ul and X,, — X in probability.

Proof. Suppose (a) holds. By Chebyshev’s inequality, for € > 0,
P(|X, - X|>¢)<e'E(X, - X|)—0

so X, — X in probability. Moreover, given € > 0, there exists N such that E(|X,, —
X|) < e/2 whenever n > N. Then we can find 6 > 0 so that P(A) < § implies

E(|X[14) <e/2, E(|Xp|la)<e, n=1,...,N.
Then, for n > N and P(A) < 6,
E(|Xn|14) < E(|X, — X|) + E(|X[14) <e.
Hence {X,, : n € N} is UL. We have shown that (a) implies (b).
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Suppose, on the other hand, that (b) holds. Then there is a subsequence (ny) such
that X,,, — X a.s.. So, by Fatou’s lemma, E(|X|) < liminfy E(|X,,|) < co. Now,
given € > 0, there exists K < oo such that, for all n,

E(IX, 1, 2x) < /3, E(X[1x26) < /3.

Consider the uniformly bounded sequence XX = (—=K)V X, A K and set XX =
(-K)V X AK. Then XX — XX in probability, so, by bounded convergence, there
exists N such that, for all n > N,

EXE - X¥| <¢/3.
But then, for all n > N,
ElX, — X| <E(| Xyl x,5x) + EXE — XK+ E(|X |1 x5x) <&
Since € > 0 was arbitrary, we have shown that (b) implies (a). O

7. CHARACTERISTIC FUNCTIONS

7.1. Definitions. For a finite Borel measure p on R”, we define the Fourier trans-
form

a(u) =/ ey (dx), u e R

Here, (.,.) denotes the usual inner product on R*. For a random variable X in R”,
we define the characteristic function

bx(u) = B@®™), ue R

Thus ¢x = jix, where pux is the law of X.
A random variable X in R” is standard Gaussian if

1 )
P(X € A) = 120, A€ B.
(X € A) /A e e, A

Let us compute the characteristic function of a standard Gaussian random variable
X in R. We have

. 1 2 2
uz -z /2d —u /2[
(ZS u) = e (& T =€
x) /R ez

where

1 o
I = e~ (@) /2 g0
/R V2T

The integral I can be evaluated by considering the integral of the analytic func-
tion e #*/2 around the rectangular contour with corners R, R — iu, —R — iu, —R:
by Cauchy’s theorem, the integral round the contour vanishes, as do, in the limit
R — o0, the contributions from the vertical sides of the rectangle. We deduce that

1 2
I= [ ——e*/24p =1.
/R\/QW
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Hence ¢y (u) = e /2.

7.2. Uniqueness and inversion. Our aim in this section is to show that a finite
Borel measure is determined uniquely by its Fourier transform and to obtain, where
possible an inversion formula by which to compute the measure from its transform.
To this end, we define, for ¢ > 0 and z,y € R”, the heat kernel

1

—ly—=|?/2t
(2mt)n/? ¢ '

p(t’ "'E’ y) =
We note from the preceding section the identity

) 1 2
_ uw —u /Zd
= e € Uu.
/R V2T

By setting w = (z — %)/v/t and making a simple change of variable, we deduce, for
n=1,

p(t,z,y) = ;/ei“we_“%ﬂe‘i“ydu.
T Jr

Hence we obtain, for n > 1,

1 ; .
p(t, Z, y) = (27T)n / eZ(U,E)e*‘u|2t/2671(u,y)du.

Theorem 7.2.1. Let X be a random variable in R*. The law pux of X is uniquely
determined by its characteristic function ¢x. Moreover, if ¢x is integrable, then X
has a density function fx(x), given by

1

fX(x) (27’(’)

Proof. Let Y be a standard Gaussian random variable in R”, independent of X, and
let f be a bounded Borel function on R*. Then, for ¢ > 0, by a change of variable
y' =y — x/+/t andFubini’s theorem,

E(f(X +VtY)) = / | fa Vi) @n) e dypg (de)

/n /n (t,z, y) f(y)dypx(dz)
1 gy —[ul?t/2 —i(u,y) )
/Rn (/ . (2m)m / et et e M dupx (dw) ) f(y)dy
dx

1 —|u —i{u
R?’L ]Rn
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By this formula, ¢x determines E(f(X++/¢Y)). For any bounded continuous function

f, we have
E(f(X + V1Y) — E(f(X))

ast | 0, so ¢x determines E(f(X)). Hence ¢x determines .
If ¢x is integrable and if f is continuous with compact support, then

|éx (u)]f(y)| € L' (du ® dy).

So, by dominated convergence, as t | 0,

/Rn ((271071 - ¢X(U)€u|2t/26i(u’y>du> f(y)dy
— /Rn ( 1 qﬁx(u)e_i(“’y)du) f(y)dy.

(2m)" Jgn

Hence X has the claimed density function. O
7.3. Characteristic functions and independence.
Theorem 7.3.1. Let X = (Xq,...,X,) be a random wvariable in R*. Then the
following are equivalent:

(a) Xi,...,X, are independent,

(b) px = px, ® -+ @ px,,

(¢) E(I1, fe(Xk)) = 11, E(fx (X)), for all bounded Borel functions fi,..., fn,

(d) ox(u) =TI ox,(uk), for all uw = (uy,...,u,) € R".
Proof. If (a) holds, then

px (Ar x - An) = T ] i (Ar)
k

for all Borel sets Ay, ..., A,, so (b) holds, since this formula characterizes the product

measure.

If (b) holds, then, for fi,..., f, bounded Borel,

B0 = [ T =TT [ foous.de) = [T (X0),

so (c) holds. Statement (d) is a special case of (c). Suppose, finally, that (d) holds
and take independent random variables Xi,..., X, with pug, = px, for all k. We

know that (a) implies (d), so
¢z (w) =[] 65, (ur) = [ | bx. (i) = px(u)

SO i = px by uniqueness of characteristic functions. Hence (a) holds.
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8. (GAUSSIAN RANDOM VARIABLES

8.1. Gaussian random variables in R. A random variable X in R is Gaussian if,
for some p € R and some o2 € (0,00), X has density function

1 —(Tr— o
fx(a) = e 1

We also admit as Gaussian any random variable X with X = p a.s., this degenerate
case corresponding to taking o? = 0. We write X ~ N(u,0?).

Proposition 8.1.1. Suppose X ~ N(p,0?) and a,b € R. Then
(a) E(X) = p,

(b) var(X) = o7,
(c) aX—i—bNN(a,u—i-b a’a?),
(d) ( )_6wu u 02/2

2

8.2. Gaussian random variables in R". A random variable X in R" is Gaussian if
(u, X) is Gaussian, for all w € R*. An example of such a random variable is provided
by X = (X1,...,X,), where Xy,..., X, are independent N(0,1) random variables.
To see this, we note that

EeiwX) — ]EH eluRXe — 6—\“|2/2

so (u, X) is N(0, |u|?) for all u € R".

Theorem 8.2.1. Let X be a Gaussian random variable in R™. Then

(a) AX + b is Gaussian, for all n X n matrices A and all b € R,
(b) X € L? and its distribution is determined by its mean p and its covariance

matrix Z
(€) ¢x(u) = eflwm—wxu/2,
(d) if X is mvertzble then X has a density function on R™, given by
1 -1
T) = —— T — i, T — 2},
fx (@) o) exp{—(z — p, X7 (z — p))/2}

(e) if X =(Y,Z), withY in R™ and Z in RP, then
cov(Y,Z) =0 implies Y,Z independent.
Proof. For uw € R*, we have
(u, AX +b) = (ATu, X) + (u, b)

so (u, AX + b) is Gaussian, by Proposition 8.1.1. This proves (a).
Each component Xj is Gaussian, so X € L. Set y = E(X) and ¥ = var(X). For
u € R" we have E({u,Y)) = (u, p) and

var((u, X)) = cov({u, X), (u, X)) = (u, Lu).
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Since (u, X) is Gaussian, by Proposition 8.1.1, we must have (u, X) ~ N({u, u), (u, ou))
and
dx(u) = EelX) = gilwm)—(wIu)/2,

This is (c) and (b) follows by uniqueness of characteristic functions.

Let Y,...,Y, be independent N(0,1) random variables. Then YV = (V7,...,Y},)
has density

1 2
fr(y) = T exp{—|y["/2}.

Set X = D12V + 4, then~)~( is Gaussian, with ]E(X') = pu and Var(j() =350 X ~ X.
If ¥ is invertible, then X and hence X has the density claimed in (d), by a linear
change of variables in R”.
Finally, if X = (Y, Z) with cov(Y, Z) = 0, then, for v € R™ and w € R?,
<(Ua w)v Z(U, w)) = <’l), ZY”) + <w: EZQU),
where ¥y = var(Y) and ¥, = var(Z). The joint characteristic function ¢y, then
splits as a product
¢YZ(7), ’UJ) — ei(v,py)—('U,Eyv)/2€i(w,uz)—(w,Zzw)/2

so Y and Z are independent by Theorem 7.3.1. 0

9. ERGODIC THEORY

9.1. Measure-preserving transformations. Let (E, &, u) be a o-finite measure
space. A measurable function f : £ — FE' is called a measure-preserving transforma-
tion if
w07 (A)) = u(A), forall AcE.

A set A € € is invariant if 671(A) = A. A measurable function f is invariant if
f = fof. The class of all invariant sets forms a o-algebra, which we denote by &y.
Then f is invariant if and only if f is Ep-measurable. We say that 6 is ergodic if &,
contains only sets of measure zero and their complements.

Here are two simple examples of measure preserving transformations.

(i) Translation map on the torus. Take E = (0,1)" with Lebesgue measure and

addition modulo 1 in each coordinate. For a € E set

Ou(z1,...,2,) = (x1 + 01y .., Ty + Qp).-
(ii) Bakers’ map. Take E = (0, 1] with Lebesgue measure. Set
0(z) = 2z — [2x].

Proposition 9.1.1. If f is integrable and 6 is measure-preserving, then f o @ is

integrable and
/fd,uz/fo&du.
E E
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Proposition 9.1.2. If 0 is ergodic and f is invariant, then f = c a.e., for some
constant c.

9.2. Bernoulli shifts. Let m be a probability measure on R. In §2.4, we constructed
a probability space (€2, F,P) on which there exists a sequence of independent random
variables (Y, : n € N), all having distribution m. Consider now the infinite product
space

E=R"={z=(z,:n€N):z, €Rforalln}
and the o-algebra € on E generated by the coordinate maps X,(z) = z,
E=0(X,:n€eN).
Note that € is also generated by the m-system
A= {H A, : A, € Bforall n, A, =R for sufficiently large n}.
neN
Define Y : Q@ — E by Y(w) = (Y,(w) : n € N). Then Y is measurable and the
image measure = P o Y~! satisfies, for A =[], .y An € A,
u(4) = [T m(4,).
neN

By uniqueness of extension, p is the unique measure on € having this property.
Note that, under the probability measure u, the coordinate maps (X, : n € N) are
themselves a sequence of independent random variables with law m. The probability
space (E, &, n) is called the canonical model for such sequences. Define the shift
map 0 : E — E by

H(xl,xz, .. ) = (Iz, T3, ... )
Theorem 9.2.1. The shift map is an ergodic measure-preserving transformation.

Proof. The details of showing that 6 is measurable and measure-preserving are left
as an exercise. To see that € is ergodic, we recall the definition of the tail o-algebras

Tpn=0Xn:m>n+1), T=n,T,

For A =], .y An € A we have

neN
07" (A) = {Xpix € Ag for all k} € T,.

Since T, is a o-algebra, it follows that §~"(A) € T,, for all A € €, so €y C T. Hence
0 is ergodic by Kolmogorov’s zero-one law. O



PROBABILITY AND MEASURE 37

9.3. Birkhoff’s and von Neumann’s ergodic theorems. Throughout this sec-
tion, (E, &, p) will denote a o-finite measure space, on which is given a measure-
preserving transformation #. We fix an integrable function f, set Sy = 0 and, for
n>1,

Sn=Sn(f)=f+fob+ -+ fof""

Lemma 9.3.1 (Maximal ergodic lemma). Let S* = sup,, S,. Then

/ fdp > 0.
{S*>0}

Proof. Set S} = maxo<m<n Sm and A, = {S; > 0}. Then, form=1,...,n,
Sm=f+Sm 100 f+S5;08.
On A, we have S} = maxX;<m<n Sm, SO
Sy < f+S5,086.

On A¢ we have
Sr=0<Sro06.
So, integrating and adding, we obtain

/S;d,ug/ fd,tL-l—/S:oHd,u.
B An E

/S:LOOd,uz/S:du<oo
E B

fdu > 0.

But S; is integrable, so

which forces

An
As n — oo, A, T {S* > 0} so, by dominated convergence,

/ fdp > 0.
{S*>0}

Theorem 9.3.2 (Birkhoff’s almost everywhere ergodic theorem). There exists an in-
variant function f, with p(|f]) < p(|f]), such that S,/n — f a.e. as n — occ.

O

Proof. The functions lim inf,, (S, /n) and lim sup,,(S,/n) are invariant. Therefore, for
a < b, so is the following set

D = D(a,b) = {liminf(S,/n) < a < b < limsup(S,/n)}.
We shall show that (D) = 0. First, by invariance, we can restrict everything to D
and thereby reduce to the case D = E. Note that either b > 0 or a < 0. We can
interchange the two cases by replacing f by —f. Let us assume then that b > 0.
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Let B € € with p(B) < oo, then g = f — blp is integrable and, for each x € D, for
some 7,

Sn(g)(z) > Sp(f)(x) — nb > 0.
Hence S*(g) > 0 everywhere and, by the maximal ergodic lemma,

0< [ (F=bn)du= [ fdu=bu(B)

Since p is o-finite, we can let B T D to obtain

bu(D) < /D fap.

In particular, we see that p(D) < oo. A similar argument applied to —f and —a,
this time with B = D, shows that

(—a)u(D) < / (~f)dp.

D
Hence

bu(D) < / fdp < ap(D).
D
Since a < b and the integral is finite, this forces u(D) = 0. Set
A = {liminf(S, /n) < limsup(S,/n)}

then A is invariant. Also, A = Ugpeqa<sD(a,b), so u(A) = 0. On the complement
of A, S, /n converges in [—00, 00], so we can define an invariant function f by

7 _ [1lim,(S,/n) on A€
f= {0 on A.

Finally, we have p(|f o 0"[) = p(|f), so u(|Sal) < nu(|f[) for all n. Hence, by
Fatou’s lemma,

u(|f)) = p(limint |, /n]) < liminf (]S, /n]) < pu(| ).
O

Theorem 9.3.3 (von Neumann’s L? ergodic theorem). Assume that (E) < co. Let
p € [1,00). Then, for f € LP, S,/n — f in LP.

Proof. We have
1/p
1 o0nl, = ( / \f\poH"d#) — 1£1,.

So, by Minkowski’s inequality,
150 (f)/nllp < 1[£]lp-
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Given ¢ > 0, choose K < oo so that |[f — g||, < €/3, where g = (—K) V f A K.
By Birkhoft’s theorem, S,(g)/n — g a.e.. We have |S,(g)/n| < K for all n so, by
bounded convergence, there exists [NV such that, for n > N,

15n(g9)/n — gllp < &/3.

By Fatou’s lemma,
17 = glly = [ timint[Su(f - g)/nPd
E n

<timia [ [,(f = 9)/nPdn < |1f -
n E
Hence, for n > N,

1S2(£)/m = Fllp < 118a(f = 9)/nllp + 1Su(9)/m = Gllp + 19 = Fllp
<e/3+¢/3+¢/3=c¢.

10. SUMS OF INDEPENDENT RANDOM VARIABLES

10.1. Strong law of large numbers for finite fourth moment. The result we
obtain in this section will be largely superseded in the next. We include it because
its proof is much more elementary than that needed for the definitive version of the
strong law which follows.

Theorem 10.1.1. Let (X, : n € N) be a sequence of independent random variables
such that, for some constants p and M

E(Xn) =p, E(X,)<M for aln.
Set S, = X1+ ---+X,. Then
Sp/m— p a.s., asn — oo.
Proof. Consider Y,, = X,, — . Then
E(Y,}) < 16(M + p*)

and it suffices to show that (Y} +---+Y;,)/n — 0 a.s.. So we are reduced to the case
where = 0.
Note that X,,, X2, X3 are all integrable since X? is. Since u = 0, by independence,

E(X;X}) = B(X; X; X}) = B(X; X; X, X;) =0

for distinct indices 4, j, k, . Hence

E(Sp)=E( Y Xp+6 Y XX7)

1<i<n 1<i<j<n



40 J. R. NORRIS
Now for 7 < 7, by independence and the Cauchy—Schwarz inequality
E(X?X?) = B(X?)E(X2) < E(XH)V2R(X)V2 < M.
So we get, the bound
E(S%) < nM + 3n(n — 1)M < 3n?M.
Thus
E) (Su/n)t <3M Y 1/n* < oo

which implies

Z(Sn/n)4 < oo as.

n

and hence S, /n — p as.. O

10.2. Strong law of large numbers.

Theorem 10.2.1. Let m be a probability measure on R, with

/R|x|m(dx) < o0, /Rmm(dm) —.

Let (E, E, p) be the canonical model for a sequence of independent random variables
with law m. Then

p{z:(z1+--+z,)/n—vasn —oo}) =1

Proof. By Theorem 9.2.1, the shift map # on E is measure-preserving and ergodic.
The coordinate function f = X is integrable and S,,(f) = f+ fof+---+ fof" 1 =
Xi+-++X,. So (X;+--+X,)/n— fae. andin L', for some invariant function
f, by Birkhoff’s theorem. Since 6 is ergodic, f = c a.e., for some constant ¢ and then

c = pu(f) =lim, p(Sp/n) = v. O

Theorem 10.2.2 (Strong law of large numbers). Let (Y, : n € N) be a sequence of

independent, identically distributed, integrable random wvariables with mean v. Set
S, =Y +---+Y,. Then

Sp/n— v a.s., as n — oo.

Proof. In the notation of Theorem 10.2.1, take m to be the law of the random variables
Y,. Then p =PoY ™! where Y : Q — E is given by Y (w) = (Y,(w) : n € N). Hence

P(S,/n —vasn—o0)=p{z: (z1+--+2x,)/n—vasn— oc}) =1
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10.3. Central limit theorem. We will use the following special case of Lévy’s
continuity theorem for characteristic functions. Let X,,n € N, and X be random
variables. Suppose that ¢x,(u) — ¢x(u) for all w and that Fx is continuous. Then
Fx, () — Fx(z) for all x € R.

Theorem 10.3.1 (Central limit theorem). Let (X, : n € N) be a sequence of inde-
pendent, identically distributed, random wvariables with mean 0 and variance 1. Set
Sp,=X1+---+ X,,. Then, for alla < b, asn — oo,

P(S,/v/7 € [a,B]) — / \/LZ_Wery.

Proof. Set ¢(u) = E(e®*1). Since E(X?) < oo, we can differentiate E(e™*1) twice
under the expectation, to show that

¢(0)=1, ¢'(0)=0, ¢"(0)=-1.
Hence, by Taylor’s theorem, as u — 0,
o(u) =1 —u*/2 + o(u?).
So, for the characteristic function ¢, of S,/\/n,
Bn(u) = (M T XV = [ VIXNY = (1 —u? 20+ o(u® /n))".
The complex logarithm satisfies, as z — 0,
log(1+2) =2+ o(|z])
so, for each u € R, as n — oo,
log ¢, (u) = nlog(l — u?/2n + o(u®/n)) = —u?/2 + o(1).

Hence ¢, (u) — e/ for all u. But e **/? is the characteristic function of the N (0, 1)
distribution, so Lévy’s continuity theorem now completes the proof. O

Here is an alternative argument, which does not rely on Lévy’s continuity theorem.
Take a random variable Y ~ N(0,1), independent of the sequence (X, : n € N). Fix
a < b and 6 > 0 and consider the function f which interpolates linearly the points
(—00,0), (a —6,0),(a,1),(b,1),(b+6,0), (c0,0). Note that |f(x+y) — f(z)| < |y|/é
for all z,y. So, given € > 0, for ¢t = (7/2)(6/3)? and any random variable X,

[E(f(X + V1Y) - E(f(X))| <E(Vt[Y|)/6 = ¢/3.
In particular, this inequality holds for X an independent copy of Y, when we have
X +VtY ~1+1tY, so
E(f(V1+1Y)) —E(f(Y)) < /3.

Recall from the proof of the Fourier inversion formula that

B V) V) = [ (5 [ utwte e vau) ft)an
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Now e **2f(y) € L*(du ® dy) and ¢, is bounded, with ¢, (u) — e~/ for all u as
n — 00, so, by dominated convergence, for n sufficiently large,
[E(f((Su/Vn) + V1Y) = E(f(V1+1Y))| < /3
and then
[E(f(Sn/vn)) —E(f(Y))| <e.
Hence E(f(S,/v/n)) — E(f(Y)) as n — oo.  The same argument applies to the
function g, defined like f, but with a, b replaced by a + 6,b — ¢ respectively. Now
g <1y < f,s0
E(g(Sn/vn)) < P(Sn/v/n € [a,8]) < E(f(Sn/v/n)).
On the other hand, as ¢ | 0,

B0 1 [ ey, BUE) L [ ey

so we must have, as n — 0o,

P(S,/v/7 € [a,B]) — / \/%e_yzﬂdy.

EXERCISES

Students should attempt Exercises 1.1-2.7 for their first supervision, then 3.1-3.13,
4.1-7.6 and 8.1-10.2 for later supervisions.

1.1 Show that a m-system which is also a d-system is a o-algebra.
1.2 Show that the following sets of subsets of R all generate the same o-algebra:
(a) {(0’7 b) ra< b}7 (b) {(0’7 b] ca< b}7 (C) {(—OO,b] tbe R}

1.3 Show that a countably additive set function on a ring is both increasing and
countably subadditive.

1.4 Let p be a finite-valued additive set function on a ring A. Show that p is
countably additive if and only if

A, D A1 €A nEN, ﬂAn:Q) = n(A4,) — 0.

1.5 Let (E, &, ) be a measure space. Show that, for any sequence of sets (4, : n € N)
in &,

p(liminf 4,,) < liminf u(A,).
Show that, if u is finite, then also

p(limsup A,) > limsup p(A4,)

and give an example to show this inequality may fail if 4 is not finite.
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1.6 Let (2,F,P) be a probability space and A,,n € N, a sequence of events. Show
that A,,n € N, are independent if and only if the o-algebras they generate

o(An) = {0, An, A7, Q}
are independent.

1.7 Show that, for every Borel set B C R of finite Lebesgue measure and every
€ > 0, there exists a finite union of disjoint intervals A = (ay,b1] U -+ - U (an, by] such
that the Lebesgue measure of AAB (= (AN B)U (AN B°)) is less than ¢.

1.8 Let (F, &, 1) be a measure space. Call a subset N C E null if
N C B for some B € € with u(B) = 0.
Prove that the set of subsets
EF={AUN:A€é& N nul}

is a o-algebra and show that p has a well-defined and countably additive extension
to E# given by

WA U N) = p(A).
We call E# the completion of € with respect to .

2.1 Prove Proposition 2.1.1 and deduce that, for any sequence (f, : n € N) of
measurable functions on (£, £),

{z € E: f,(x) converges as n — oo} € €.
2.2 Let X and Y be two random variables on (2, F,P) and suppose that for all
rz,y €R
PX <2,V <y) =P(X <z)P(Y <y).
Show that X and Y are independent.
2.3 Let X1, X5, ... be random variables with

Y _ n? —1 with probability 1/n?
N | with probability 1 — 1/n?

Show that

X+ + X,
E( 1+ ) _ 0

n
but with probability one, as n — oo,

Xi+---+ X,
n

— —1.
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2.4 For s > 1 define the zeta function by

C(s) =) n
n=1
Let X and Y be independent random variables with
P(X =n) =P =n)=n"°/{(s).

Show that the events
{p divides X}, p prime

are independent and deduce Euler’s formula
1 1
— = 1——) .
((s) 1;[ ( p5>

P(X is square-free) = 1/{(2s)

Prove also that

and

P(h.cf.(X,Y) =n) =n">/((2s).

2.5 Let X, Xs,... be independent random variables with distribution uniform on
[0,1]. Let A, be the event that a record occurs at time n, that is,

X, > X,, forallm<n.

Find the probability of A, and show that A, Ay,... are independent. Deduce that,
with probability one, infinitely many records occur.

2.6 Let X, X5, ... be independent N(0,1) random variables. Prove that

limsup (X,/v/2logn) =1 a.s.

2.7 Let C, denote the nth approximation to the Cantor set C: thus Cy = [0, 1],
Ci=10,3]U[3,1], Co = [0,5] U[3,35] U3 2] U[,1], etc. and C,, | C as n — .
Denote by F, the distribution function of a random variable uniformly distributed

on C,,. Show
(i) F(z) = lim, . F,(z) exists for all z € [0, 1],
(ii) F is continuous, F'(0) =0 and F(1) =1,
(iii) F is differentiable a.e. with F' = 0.

3.1 A simple function f has two representations:

f = ZaklAk = Zblek.
k=1 j=1
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For ¢ € {0,1}™ define A, = A7 N---N Asm where A = A¢, A} = Ag. For 6 € {0,1}"
define Bjs similarly. Then set

f . ngak lfAEﬂBé#(a
e,6 — h—1
o0 otherwise.

Show that for any measure p

> aep(Ar) =) feon(A: N By)
k=1

€,0
and deduce that

> arp(Ax) = Z bjp(B;).

3.2 Show that any continuous function f : R — R is Lebesgue integrable over any
finite interval.

3.3 Prove Propositions 3.1.4, 3.1.5 and 3.1.6.

3.4 Let X be a non-negative integer-valued random variable. Show that
E(X) =) P(X >n).
n=1

Deduce that, if E(X) = oo and Xj, Xs,... is a sequence of independent random
variables with the same distribution as X, then

lim sup(X,,/n) > 1 a.s.
and indeed
lim sup(X,/n) = oo a.s.

Now suppose that Y7, Ys, ... is any sequence of independent identically distributed
random variables with E|Y; | = co. Show that

limsup(|Y,|/n) = 0o a.s.
and indeed

limsup(|Y; + -+ + Y, |/n) = o0 a.s.

3.5 For o € (0,00) and p € [1, 00) and for
falz) =1/2% >0,
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show carefully that

fo € LP((0,1],dz) & ap<1,
fa € LP([1,00),dz) < ap>1.

3.6 Show that the function

is not Lebesgue integrable over [1, 00) but that the following limit does exist:

Nginzx

dx.

lim
N—oo 1 T

3.7 Show
(i): / sin(e”)/(1 + nz’)dr — 0 as n — oo,
0

1
(ii):/(ncosx)/(1+n2x3)daz—>0 as m — oo.
0

3.8 Let u and v be differentiable functions on [a, b] with continuous derivatives u'
and v’. Show that for a < b

/ w(@) (@)dz = {u(b)o(b) — u(a)v(a)} — / o (2)0(z)dz.

3.9 Prove Propositions 3.4.4, 3.4.6, 3.5.1, 3.5.2 and 3.5.3.

3.10 The moment generating function ¢ of a real-valued random variable X is
defined by

o(1) =E(e™), TeR

Show that the set I = {7 : ¢(7) < oo} is an interval and find examples where I is
R, {0} and (—o0,1). Assume for simplicity that X > 0. Show that if I contains a

neighbourhood of 0 then X has finite moments of all orders given by
d n
sy = () | oo
T

Find a necessary and sufficient condition on the sequence of moments m,, = E(X™)
for I to contain a neighbourhood of 0.

3.11 Let Xi,...,X, be random variables with density functions fi,..., f, respec-
tively. Suppose that the R*-valued random variable X = (X,...,X,) also has a
density function f. Show that X;,..., X, are independent if and only if

[z, . xn) = fi(zr) .. fu(zy) a.e.
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3.12 Let (f, : n € N) be a sequence of integrable functions and suppose that f,, — f
a.e. for some integrable function f. Show that, if || f,||1 — ||f]|1, then || f, — f|l1 — 0.

3.13 Let p and v be probability measures on (E, &) and suppose that, for some
measurable function f : E — [0, R],

V(A)z/Afd,u, Aegé.

Let (X, : n € N) be a sequence of independent random variables in E with law p
and let (U, : n € N) be a sequence of independent U[0, 1] random variables. Set

T =min{n € N: RU, < f(X,)}, Y = X7.
Show that Y has law v.

4.1 Let X be a random variable and let 1 < p < ¢ < 0co. Show that
B(XP?) = [ pa (X > i)
0

and deduce

X € L9(P) = P(|X| > A) = O(A™%) = X € LP(P).

4.2 Give a simple proof of Schwarz’ inequality for measurable functions f and g¢:

179llx < [Ifll2llgll2-

4.3 Show that for independent random variables X and Y
IXY Il = X[ Y[l

and that if both X and Y are integrable then
E(XY) =E(X)E(Y).

4.4 A stepfunction f: R — R is any finite linear combination of indicator functions
of finite intervals. Show that the set of stepfunctions J is dense in LP(R) for all
p € [1,00): that is, for all f € LP(R) and all € > 0 there exists g € J such that

Ilf —gll, <e.

4.5 Let (X, : n € N) be an identically distributed sequence in L*(P). Show that,
for € > 0,

(i): nP(|X1| > ey/n) - 0 as n — oo,
1

(ii): »” 2 maxg<p |Xx| — 0 in probability.
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5.1 Let (E, &, u) be a measure space and let V; <V, < ... be an increasing sequence
of closed subspaces of L?> = L*(E,&, ) for f € L% denote by f, the orthogonal
projection of f on V,,. Show that f, converges in L?.

5.2 Prove Propositions 5.3.1 and 5.3.2.
6.1 Prove Proposition 6.2.2.

6.2 Find a uniformly integrable sequence of random variables (X, : n € N) such
that

X, —0as. and E(sup,|X,|) = oco.

6.3 Let (X, : n € N) be an identically distributed sequence in L?(IP). Show that
]E(I]£1<:3LX|X;€|)/\/H—>O as m — 00.

7.1 Show that the Fourier transform of a finite Borel measure is a bounded continuous
function.

7.2 Let p be a Borel measure on R of finite total mass. Suppose the Fourier
transform /i is Lebesgue integrable. Show that p has a continuous density function
f with respect to Lebesgue measure:

u(4) = / f(@)da.

7.3 Show that there do not exist independent identically distributed random vari-
ables X, Y such that
X-Y~U[-1,1].
7.4 The Cauchy distribution has density function
1

r)=———, z€R
Show that the corresponding characteristic function is given by
o(u) = e Y.

Show also that, if Xi,..., X, are independent Cauchy random variables, then (X +
-+ + X,,)/n is also Cauchy. Comment on this in the light of the strong law of large
numbers and central limit theorem.

7.5 For a finite Borel measure p on the line show that, if [ |z|*du(z) < oo, then the
Fourier transform i of p has a kth continuous derivative, which at 0 is given by

) (0) = * /xkd,u(a:).

7.6 (i) Show that for any real numbers a, b one has f; e'dx — 0 as [t| — oo.
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(ii) Suppose that p is a finite Borel measure on R which has a density f with respect
to Lebesgue measure. Show that its Fourier transform

i) = [ @)

oo

tends to 0 as [t| — co. This is the Riemann—Lebesque Lemma.

(iii) Suppose that the density f of  has an integrable and continuous derivative f.
Show that

i(t) = ot 1), ie, tp(t) — 0 as |t| — oo.
Extend to higher derivatives.
8.1 Prove Proposition 8.1.1.

8.2 Suppose that Xi,..., X, are jointly Gaussian random variables with
]E(Xz) = Uy, COoVv (XZ,X]) = Zij
1
and that the matrix ¥ = (¥;;) is invertible. Set ¥ = X72(X — p). Show that
Y1, ..., Y, are independent N(0,1) random variables.

Show that we can write X5 in the form Xy = aX; + Z where Z is independent of
X; and determine the distribution of Z.

8.3 Let Xi,...,X, be independent N(0,1) random variables. Show that

(Y,z”:(xm—fﬁ) and (Xn/\/ﬁ,gxfn>

m=1
have the same distribution, where X = (X; +--- + X,,)/n.

9.1 Let (E, &, p) be a measure space and 7 : E — E a measure-preserving transfor-
mation. Show that

& ={Aec&:m7(4) = A}

is a o-algebra, and that a measurable function f is €,-measurable if and only if it is
inwvariant, that is for = f.

9.2 Prove Propositions 9.1.1 and 9.1.2.
9.3 For £ =10,1),a € E and p(dx) = dz, show that
7(x) =x+a (mod1)
is measure-preserving. Determine for which values of a the transformation 7 is er-
godic.
Let f be an integrable function on [0,1). Determine for each value of a the limit
- 1
f=1lim = (f+for+---+ for")

n—oo M,
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9.4 Show that

7(z) =2z (mod 1)
is another measure-preserving transformation of Lebesgue measure on [0, 1), and that
T is ergodic. Find f for each integrable function f.

9.5 Call a sequence of random variables (X,, : n € N) on a probability space (Q2, F, P)
stationary if for each n, k € N the random vectors (X1, ..., X)) and (Xgi1, ..., Xgin)
have the same distribution: for A4,..., A, € B,

P(X; € Ay,..., X, €A,) =P( X1 € Ay,..., Xpin € Ayp).

Show that, if (X, : n € N) is a stationary sequence and X; € L?, for some p € [1, 00),
then

1 n
— g X, — X a.s. and in LP,
n

i=1

for some random variable X € L? and find E[X].

10.1 Let f be a bounded continuous function on (0, 00), having Laplace transform

~

f()\):/ooe_)‘zf(m)da;, A € (0,00).

0
Let (X, : n € N) be a sequence of independent exponential random variables, of

parameter A. Show that f has derivatives of all orders on (0,00) and that, for all
n € N, for some C'(A,n) # 0 independent of f, we have

(d/dN)" ' F(A) = C(A, mE(£(Sn))
where S, = X; + -+ -+ X,,. Deduce that if f = 0 then also f = 0.
10.2 For each n € N, there is a unique probability measure pu, on the unit sphere
St ={z € R*: |z| = 1} such that p,(A) = p,(UA) for all Borel sets A and all

orthogonal n x n matrices U. Fix k € N and, for n > k, let ,, denote the probability
measure on RF which is the law of \/n(x2', ..., 2*) under u,. Show

(i) if X ~ N(0,1,) then X/|X| ~ pn,
(ii) if (X, : » € N) is a sequence of independent N(0,1) random variables and if
R,=(X?+---+ Xﬁ)% then R,/y/n — 1 as.,
(iii) for all bounded continuous functions f on R¥, ~,(f) — ~(f), where v is the
standard Gaussian distribution on R¥.
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